
����������
�������

Citation: Liu, Y.; Zhang, G.; Shao, K.;

Xiao, S.; Wang, Q.; Zhu, J.; Wang, R.;

Meng, L.; Ma, Y. Segmentation of

Individual Leaves of Field Grown

Sugar Beet Plant Based on 3D Point

Cloud. Agronomy 2022, 12, 893.

https://doi.org/10.3390/

agronomy12040893

Academic Editor: Dionisio Andújar

Received: 29 January 2022

Accepted: 5 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Segmentation of Individual Leaves of Field Grown Sugar Beet
Plant Based on 3D Point Cloud
Yunling Liu 1, Guoli Zhang 1, Ke Shao 2, Shunfu Xiao 3,4, Qing Wang 3, Jinyu Zhu 3, Ruili Wang 2, Lei Meng 5

and Yuntao Ma 3,*

1 College of Information and Electrical Engineering, China Agricultural University, Beijing 100081, China;
liuyunling@cau.edu.cn (Y.L.); s20203081455@cau.edu.cn (G.Z.)

2 Inner Mongolia Autonomous Region Biotechnology Research Institute, Huhehaote 010010, China;
shaoke141@sina.com (K.S.); nmg12396@163.com (R.W.)

3 College of Land Science and Technology, China Agricultural University, Beijing 100193, China;
b20203210939@cau.edu.cn (S.X.); wangqing0410@126.com (Q.W.); zhujinyu@caas.cn (J.Z.)

4 Yantai Institute, China Agricultural University, Yantai 264670, China
5 Department of Geography, Environment, and Tourism, Western Michigan University,

Kalamazoo, MI 49008, USA; lei.meng@wmich.edu
* Correspondence: yuntao.ma@cau.edu.cn; Tel.: +86-139-1022-0913

Abstract: Accurate segmentation of individual leaves of sugar beet plants is of great significance for
obtaining the leaf-related phenotypic data. This paper developed a method to segment the point
clouds of sugar beet plants to obtain high-quality segmentation results of individual leaves. Firstly,
we used the SFM algorithm to reconstruct the 3D point clouds from multi-view 2D images and
obtained the sugar beet plant point clouds after preprocessing. We then segmented them using the
multiscale tensor voting method (MSTVM)-based region-growing algorithm, resulting in independent
leaves and overlapping leaves. Finally, we used the surface boundary filter (SBF) method to segment
overlapping leaves and obtained all leaves of the whole plant. Segmentation results of plants with
different complexities of leaf arrangement were evaluated using the manually segmented leaf point
clouds as benchmarks. Our results suggested that the proposed method can effectively segment
the 3D point cloud of individual leaves for field grown sugar beet plants. The leaf length and leaf
area of the segmented leaf point clouds were calculated and compared with observations. The
calculated leaf length and leaf area were highly correlated with the observations with R2 (0.80–0.82).
It was concluded that the MSTVM-based region-growing algorithm combined with SBF can be used
as a basic segmentation step for high-throughput plant phenotypic data extraction of field sugar
beet plants.

Keywords: 3D point cloud; region-growing algorithm; multiscale tensor voting method (MSTVM);
phenotyping

1. Introduction

Sugar beet is the second most important sugar crop after sugar cane [1] and supplies
approximately 35% of the sugar in the world [2]. The phenotypic and genotypic data are the
key elements for sugar beet breeding [3]. The acquisition of sugar beet genotypic data has
been largely resolved through the development of the high-throughput DNA sequencing
technology [4]. In 2004, Dohm et al. presented a reference genome sequence for sugar
beet for the first time [5]. However, the data required for phenotyping still rely on manual
measurements, which are time-consuming and expensive [6]. Segmenting individual leaves
of individual plants in field canopies of sugar beet is meaningful for acquisition of the
phenotype information of field grown sugar beet plants, it would be very helpful to better
calculate the information of individual organs of sugar beet breeding materials, such as
leaf length, leaf area, leaf spatial layout, and light interception at different angles of single
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leaf, etc. The phenotypic information would be a benefit for selecting breeding varieties.
The lack of efficient and accurate methods of data acquisition of sugar beet phenotyping
has become a bottleneck restricting sugar beet breeding [7].

The leaf is the main photosynthetic organ of plants and its shape largely affects photo-
synthesis and determines the yield [8]. Although there are currently many leaf segmentation
methods based on two-dimensional (2D) images [9,10], it is very challenging to obtain
steric information of leaves accurately [11]. Nowadays, many studies have demonstrated
that the analysis of three-dimensional (3D) plants would provide more accurate results in
segmentation and phenotypic data extraction [12,13]. Three-dimensional reconstruction
techniques can be divided into two main categories: active illumination-based approaches
and passive approaches [14]. Active illumination approaches use sensors to emit lights
and do not depend on external light, such as Light Detection and Ranging (LiDAR) [15]
and time of flight (TOF) [16]. Jin et al. [17] proposed a median normalized-vector growth
(MNVG) algorithm to segment the maize point clouds obtained by LiDAR and found that
the mean accuracy of segmentation at point level in terms of the F-score was 0.92 and the ac-
curacy of phenotypic trait extraction was more than 0.96. Bao et al. [16] and Xiang et al. [18]
used the Kinect to obtain maize point cloud in the field and sorghum point cloud in the
laboratory. Both studies obtained the skeleton of the plants after slicing before applying
clustering methods to classify the leaves and stems of plants. The extracted phenotypic data
verified the effectiveness of the segmentation methods. Harmening et al. [19] proposed a
fully automatic leaf segmentation method to segment the time series 3D point clouds of
cucumber plants acquired by an automotive grade laser scanner. It revealed the consistency
with maximal deviations in the determined leaf areas up to 5%.

In the passive approach, multi-view images are used to reconstruct 3D canopies. The
structure from motion (SFM), one of the passive approaches that have been widely used, is
a simple, easy-to-use, and robust passive method [20,21]. Ghahremani et al. [22] used the
random sample consensus (RANSAC) to analyze both Brassica and grapevine 3D point
clouds and found that the predicted leaf angle and branch angle were highly correlated
with the measured values (R2 > 0.90). Elnashef et al. [23] proposed a tensor-based 3D plant
model segmentation algorithm to divide the point cloud into leaves and stems for wheat,
maize, and cotton seedlings grown in laboratory. Miao et al. [24] applied the Laplacian
based method to 3D point cloud of the field grown maize in order to obtain the skeleton and
to classify the leaves and stems. This method could also be used to segment newly grown
leaves. Liu et al. [25] proposed an automated selection method based on support vector
machine (SVM) algorithm to classify the stems and leaves of the potted plant point cloud.
The characteristic of this SVM based method is that the running speed is relatively fast, but
the processing capacity for overlapping leaves is limited. Gélard et al. [26] used a plant
model-based segmentation method to separate the point clouds of sunflower and sorghum
plants. Shi et al. [27] used a fully convolutional network (FCN) and a masked region-based
convolutional neural network (R-CNN) to perform semantic and instance segmentation
on the 2D images and combined all the 2D predicted segmentations to segment the 3D
point cloud with satisfactory results. Liu et al. [28] proposed a method based on existing
Euclidean distance and spectral clustering algorithms to segment the Brassica point cloud
and found that their approach could effectively segment the obtained point clouds. These
segmentation approaches can work on point clouds from either the active approaches or
passive approaches.

In addition to SFM method, stereo vision is another reliable way to collect point
clouds [29]. By combining depth information, a point cloud can be obtained by restoring pix-
els in a 2D image to 3D space. Müller-Linow et al. [30] tested stereo imaging on sugar beet
plants and developed a software package which was also used by Pinto et al. [31]. This pack-
age combines depth and color information to segment green leaf material. Scholz et al. [32]
used three cameras as two camera pairs to generate depth information, while individual
plant components of the beet plant were manually segmented.
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Due to the complexity of the 3D structural data of field grown sugar beet, an accurate
leaf segmentation is a challenge, and the existing methods do not meet the requirements
yet. The goal of this study was to propose a method to segment the 3D point cloud of
sugar beet plants to obtain individual leaves, in view of the complex leaf layout of the
3D data acquired in the field. This study first obtained point clouds of sugar beet plants
reconstructed by the SFM method and manually removed the background points. Then, we
proposed a combined method to segment the point cloud of field grown sugar beet plants,
where the performance of the method was compared on sugar beet plants with different
complexities. Finally, to evaluate the availability of the point cloud segmentation results,
we extracted leaf length and leaf area from individual leaf point clouds.

2. Materials and Methods
2.1. Field Trials and Data Acquisition

The experimental site is located in Liangcheng, Inner Mongolia, China (40.502261◦ N,
112.145304◦ E) (Figure 1a). There were 20 different genotypes of sugar beets planted in
20 plots, which were KWS2314, KWS1197, KWS5598, KWS6661, KWS5599, KWS3432,
KWS1234, KWS1233, KWS4511, KWS9149, KWS0120, KWS3354, KWS0109, KWS4502,
KWS0117, BE7A5044, BE7A468, BE7A165, BE7A866, BE7A7121. They were sourced by
Biotechnology Research Institute of Inner Mongolia Academy of Science and Technology.
The individual plot size was 1.2 m × 2.3 m. Sugar beet was planted on 20 May 2019. The
plant spacing was 0.25 m, the row spacing was 0.4 m, and the plot spacing was 0.5 m. There
were 36 plants in each plot. The artificial sowing method and the flood irrigation method
were used for field management, and the sowing depth was 15 cm.
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Figure 1. (a) A site map taken with a drone in July 2019. The 20 plots in the blue box are planted with
the sugar beet plants studied in this article. (b) A photo of the plants in the field with a Rubik’s cube.

A Canon 800D camera was used to take multi-view images of each individual plant
at 69 and 124 days after emergence. Fifteen plants were randomly selected from fifteen
different plots each time, and a total of 30 sets of image sequences at two stages were
taken. Photographing was taken in two circles around the plant with a handheld camera
(Xiao et al. [7]). The approximate camera distances to selected plants were 1 m and 2 m, the
corresponding camera orientations were about 60◦ and 45◦. About 60 images were taken
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for each plant. The image resolution was 6000 × 4000 and the format was JPEG (Figure 1b).
The overlapping area of adjacent images was 70–80%. A 5.5 cm3 Rubik’s cube was put next
to the sugar beet plant as a reference for the subsequent calculation of the true size of the
plant. Thirty-nine leaves were randomly selected, and their lengths and maximum widths
were measured by using a scale.

2.2. 3D Point Cloud Reconstruction

The 3DF Zephyr Aerial 4.353 was used to generate 3D point clouds of each individual
sugar beet from multi-view 2D images using the SFM algorithm. The scale-invariant
feature transform (SIFT) detector was used to detect and match the feature points of each
2D image among multi-view 2D images [33]. The random sample consensus (RANSAC)
algorithm [34] was adopted to eliminate mismatched and outlier error points. The SFM
and the matched feature point coordinates were used to complete the accurate match of the
point cloud, and the point cloud was finally generated.

The point cloud of sugar beet plants was down-sampled in order to speed up the data
processing. The outliers were removed to prevent noise from affecting the subsequent point
cloud segmentation. These removed points were further away from their neighbors com-
pared to the average of the entire point cloud. In order to compare the segmentation effect
on sugar beet plants with different complexity, background points were manually removed
from the sugar beet plant group with Cloud Compare 2.10 to obtain the individual plant.

2.3. Point Cloud Segmentation of Individual Leaves

Individual leaves can be separated into two groups (Figure 2): independent leaves
and overlapping leaves. Point cloud segmentation of individual leaves is implemented
in Python 3.7 with sklearn [35] and open3d [36] libraries. The operating environment is
Intel-10750 H CPU, 16 GB DRAM. The operating system is Windows 10.
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Figure 2. Steps for processing point cloud of individual sugar beet leaves: (a) point cloud of individual
sugar beet plant needs to be segmented; (b) point cloud of overlapping leaves needs to be segmented;
(c) separated individual leaves by further segmentation of the point clouds for overlapping leaves;
(d) final segmentation of individual leaves, different leaves were represented with different colors.

2.3.1. Point Cloud Segmentation of Independent Leaves

The region-growing algorithm [37] usually uses the point with the smallest curvature
as the initial seed point [38]. Due to the influence of natural wrinkles and bending on
the surface of sugar beet leaves for the calculation of curvature, it is necessary to adopt a
criterion that can reflect the ‘smoothness’ of sugar beet leaves for the selection of initial
seed points. This criterion should tolerate uneven folds on ‘smooth’ leaves and effectively
distinguish plant leaves with stems. In this paper, the multiscale tensor voting method
(MSTVM)-based region-growing algorithm is used to segment the point cloud of sugar
beet leaves [39].

The calculated strength of the comprehensive plane feature is used as the initial seed
point selection criterion. In MSTVM, multiscale means that the range of tensor voting is
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not unique. The voting size µi of the point Pi in the 3D point cloud is attenuated by the
Gaussian function:

µi = e(−
s2
j

σ2 ) (1)

where sj is the distance of the voter to the receiver. The scale parameter σ influences the
voting range and the number of adjacent points and is very important for the correct
acquisition of the 3D structural features of point position Pi [40]. In this research, scale
parameter σ is determined by the semivariogram. To calculate the semivariogram value
γ(h) of the given point cloud and fit the exponential model Formula (2), methods used by
Wu et al. [39] were adopted.

γ(h) = C0 + C
(

1− e−
h
b

)
(2)

where b is a constant value associated with range, range is the lag distance where the model
first flattens out. Nugget C0 is the intercept of the semivariogram model on the y axis.
The value that the semivariogram model attains at the range is called the sill, represented
by C0 + C. When h approaches 0, γ(h) reaches nugget C0; when h approaches 3b, γ(h)
reaches 95% of sill C0 + C [41]; when h approaches maximum, γ(h) reaches sill C0 + C. For
Formula (2), it was shown that “when h increases to 3b, the plane feature strength can be
more accurately calculated since the search region and the detection plane are essentially
the same size” [39]. In this paper, the range of the scale parameter σ was selected as (0, 3b].
When σ is determined, the voting size µi of the point Pi is then calculated.

Then, tensor voting is performed within the voting size µi of point Pi. Tensor voting
has some certain resistance to noise [42]. The algorithm first encodes the points, and then
infers the 3D geometric structure of the points based on the results of the information
propagation between the points and the surrounding points. In tensor voting, the tensor
(voter) corresponding to each point Pi spreads its information to the tensor (receiver)
corresponding to other points within the voting size of µi in the form of ball voting. The
voting tensor Ti of point Pi can be calculated by Equation (3) [43]:

Ti = ∑
j∈N(i)

µj

(
I3 −

vjvT
j

‖vjvT
j ‖

)
(3)

where I3 is an identity matrix, vj is the vector which connects to the receiver. After the
information propagation at voting size µi is over, the symmetric and positive semi-definite
3 × 3 matrix T can be decomposed according to Formula (4) and the 3D structure around
the point can be inferred.

T = (λ1 − λ2)e1eT
1 + (λ2 − λ3)

(
e1eT

1 + e2eT
2

)
+ λ3

(
e1eT

1 + e2eT
2 + e3eT

3

)
(4)

where λi is the eigenvalue corresponding to the eigenvector ei (i = 1, 2, 3).
According to the spectrum theorem [44], combinations of different eigenvalues can

represent various local structure features. In the segmentation of the point cloud of sugar
beet plants, the plane features are the most concerned. The plane feature strength ϕ [45]
used in this paper is defined as:

ϕ =
(λ1 − λ2)

λ1
(5)

In order to calculate the comprehensive plane feature corresponding to the point Pi,
the plane feature strength ϕi = (ϕi1, ϕi2, . . . , ϕim) of the point Pi in scales of σ is calculated.
There are m different scales within (0, 3b] which is the range of the scale parameter σ.
The comprehensive plane feature strength ϕ′i of point pi can be calculated according to
Formula (6):
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ϕ′i =

(
∑m

j=1 ϕij

)
m

(6)

where ϕ′i is the comprehensive plane feature strength of Pi. When it is greater than the
set threshold, this point can be judged as the initial seed point and be used in the region-
growing algorithm.

Taking the sugar beet plant shown in (Figure 1a) as an example, the calculation result
of the semivariogram value was shown by the blue dots in (Figure 3), and the fitting curve
was shown by the red line, which gave γ(h) = 0.14+ 1.99

(
1− e−

h
0.91

)
. Therefore, the range

of the scale parameter ϕ was (0, 2.73]. When the MSTVM was executed, the number of
different scales m was set to 5, σ = (0.5, 1.0, 1.5, 2.0, 2.5).

Agronomy 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

corresponding to other points within the voting size of 𝜇 in the form of ball voting. The 
voting tensor 𝑇 of point 𝑃 can be calculated by Equation (3) [43]: 𝑇 =  𝜇 ቆ𝐼ଷ − 𝒗𝒋𝒗𝒋𝑻ฮ𝒗𝒋𝒗𝒋𝑻ฮቇ∈ே()  (3) 

where 𝐼ଷ is an identity matrix, 𝒗𝒋 is the vector which connects to the receiver. After the 
information propagation at voting size 𝜇  is over, the symmetric and positive semi-
definite 3 × 3 matrix  𝑇  can be decomposed according to Formula (4) and the 3D structure 
around the point can be inferred. 𝑇 = (𝜆ଵ − 𝜆ଶ)𝒆𝟏𝒆𝟏𝑻  (𝜆ଶ − 𝜆ଷ)൫𝒆𝟏𝒆𝟏𝑻  𝒆𝟐𝒆𝟐𝑻൯  𝜆ଷ൫𝒆𝟏𝒆𝟏𝑻  𝒆𝟐𝒆𝟐𝑻  𝒆𝟑𝒆𝟑𝑻൯ (4) 

where 𝜆୧ is the eigenvalue corresponding to the eigenvector 𝒆𝒊 (i = 1, 2, 3). 
According to the spectrum theorem [44], combinations of different eigenvalues can 

represent various local structure features. In the segmentation of the point cloud of sugar 
beet plants, the plane features are the most concerned. The plane feature strength 𝜑 [45] 
used in this paper is defined as: 𝜑 = (𝜆ଵ − 𝜆ଶ)𝜆ଵ  (5) 

In order to calculate the comprehensive plane feature corresponding to the point 𝑃, 
the plane feature strength 𝜑 = (𝜑ଵ, 𝜑ଶ, … , 𝜑)  of the point 𝑃  in scales of 𝜎  is 
calculated. There are m different scales within (0, 3𝑏ሿ which is the range of the scale 
parameter 𝜎. The comprehensive plane feature strength 𝜑ᇱ of point 𝑝 can be calculated 
according to Formula (6): 

𝜑ᇱ = ቀ 𝜑ୀଵ ቁ𝑚  (6) 

where 𝜑ᇱ is the comprehensive plane feature strength of 𝑃. When it is greater than the 
set threshold, this point can be judged as the initial seed point and be used in the region-
growing algorithm. 

Taking the sugar beet plant shown in (Figure 1a) as an example, the calculation result 
of the semivariogram value was shown by the blue dots in (Figure 3), and the fitting curve 

was shown by the red line, which gave 𝛾(ℎ) = 0.14  1.99(1 − 𝑒ି బ.వభ) . Therefore, the 
range of the scale parameter 𝜑  was (0, 2.73ሿ . When the MSTVM was executed, the 
number of different scales m was set to 5, 𝜎 = (0.5, 1.0, 1.5, 2.0, 2.5). 

 
Figure 3. The semivariogram value and exponential fitting curve. 
Figure 3. The semivariogram value and exponential fitting curve.

After the initial seed points are determined, the region growing process from the
seed point with the largest comprehensive plane feature strength is used to determine the
segmentation area where this seed point is located. If the angle between the normal vector
of the neighboring point and the seed point is less than the threshold θth, the neighboring
point will be merged into the segmentation area. At the same time, the curvature of the
neighboring point is calculated. If the curvature is less than the curvature threshold cth, the
neighboring point is used as the next seed point of the segmented region to continue the
region growing process, otherwise the point is ignored. The above process will be repeated
until the area reaches the maximum value. Once this segmented area is determined, the
region growing process is proceeded from the next initial seed point to repeat the above
process until all initial seed points are processed. The angle threshold θth of normal vector
is an empirical value selected based on the calculation results, and the curvature threshold
cth is 95% of the curvature value of each point in the point cloud after sorting in ascending
order [46]. The purpose of using threshold in this paper is to keep a balance between
over-segmentation and under-segmentation. Finally, all the leaf areas are saved, including
the individual leaf point clouds that has been segmented and the overlapping leaf point
clouds that need further segmentation.

2.3.2. Point Cloud Segmentation of Overlapping Leaves

In this study, we use the SBF method to segment overlapping leaves. The SBF uses
the principal component analysis (PCA) to extract edge points of the curved surface and
performs well when applied to plant leaves [47].
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In one filter process, SBF searches the edge points of overlapping leaves. Specifi-
cally, for the point Pi to be processed in the point cloud, Pi and its k-nearest neighbors
Pj(j = 1, 2, 3 . . . k) are projected to the principal plane obtained by PCA. Then, projected
point Xi and projected k-nearest neighbors Xj(j = 1, 2, 3 . . . k) are calculated and all the
angles between any two adjacent vectors Xj − Xi are saved. If the maximum adjacent angle
difference is greater than the set threshold, the point Pi will be judged as an edge point.
The above process is then repeated for the unprocessed points. Finally, all the edge points
are temporarily removed.

After multiple filtering, enough points of the leaf overlap boundary are removed by
the SBF, and the remaining part of each leaf are completely separated from each other.
Then, the region-growing algorithm is applied to the remaining part to distinguish each
leaf region. Finally, temporarily removed points are merged into different leaf regions with
the criterion that whether more than 50% of the points in the neighborhood belong to one
of the leaf regions.

2.4. Performance Evaluation of Phenotypic Data Extraction

The specific calculation methods for leaf length and leaf area are as follows:
The leaf length is calculated according to Xiao et al. [6]. The approximate shortest

curve between the tip point and the base point of the leaf point cloud is searched. The
curve is then projected and fitted, and the length of the calculated curve is the leaf length.

The Helen formula (Equation (7)) [48] is used to calculate the area of a single triangle.

S =
√

p ∗ (p− a) ∗ (p− b) ∗ (p− c) (7)

where S is the area of a triangle, p is the half of perimeter of this triangle and a, b, and c
are the lengths of the three sides of this triangle. The estimated area of individual leaf was
calculated by adding all the triangles belong to this leaf.

Manually segmented leaf point clouds were used as a reference to calculate the accu-
racy, recall, and F1-Score in order to evaluate the model performance. These performance
metrics evaluated based on leaf-to-leaf comparison.

Accuracy : p =
TP

(TP + FP)
(8)

Recall : r =
TP

(TP + FN)
(9)

F1-Score : F1-Score =
2 ∗ p ∗ r

p + r
(10)

Correlation coefficient R2, Mean Absolute Percentage Error (MAPE), and Root Mean
Square Error (RMSE) were also calculated to evaluate the accuracy of extracted phenotypic data.

MAPE(X, h) =
100%

n

n

∑
i=1

|h(xi)− yi|
yi

(11)

RMSE(X, h) =

√
1
n

n

∑
i=1

(h(xi)− yi)
2 (12)

where n is the number of samples; h(xi) and yi are the estimation value and manual
measurement, respectively.

The measured leaf area of individual sugar beet was calculated with (Equation (13)) [49]:

Leaf area = L ×W × k (13)
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where L is the measured leaf length, W is the measured maximum leaf width, and k is the
Montgomery parameter with 0.802 here [50].

3. Results
3.1. Segmentation of Individual Leaves with MSTVM-Based Region-Growing Algorithm

To verify the segmentation effect to sugar beet plants with different complexity of leaf
layout, three categories were divided with the 3D point clouds based on the complexity
of the leaf layout: simple structure with no more than three overlapping leaves in one
overlapping area (hereafter referred to as simple), ordinary structure with 3~5 overlapping
leaves in one overlapping area (hereafter referred to as ordinary), and complex structure
with more than five overlapping leaves in one overlapping area overlapping of leaves
(hereafter referred to as complex). The examples of the three plant types were shown in
(Figure 4). The total numbers of simple, ordinary, and complex plant types evaluated were
9, 13, and 8, respectively.
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Figure 4. The plant type categories based on the complexity of the leaf layout of the sugar beet plant:
simple plant type structure with less overlapping leaves (a1–a3), ordinary plant type structure with
3–5 leaf overlaps (b1–b3), belonged to complex plant type structure with severe overlap of leaves
(c1–c3).

Both the region-growing algorithm and the MSTVM-based region-growing algorithm
were used to segment the point clouds of 30 sugar beets, as shown in Figure 5. The
only difference between these two algorithms was the selection criteria of seed points.
All other parameter values were the same. Based on visual checks, the MSTVM-based
region-growing algorithm yielded more complete leaf point clouds as compared to the
region-growing algorithm. (Figure 5a–c).
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Figure 5. Visualization of point clouds segmentation for individual sugar beet plant by using the
region-growing algorithm and MSTVM-based region-growing algorithm. The first row, the second
row and the third row are one of the simple, ordinary and complex plant type structures, respectively.
(a) are the individual sugar beet plants to be proceeded. (b) are the segmentation results based
on the region-growing algorithm. Red circled area indicates incorrect segmentations. (c) are the
segmentation results based on the MSTVM-based region-growing algorithm. Blue circled area
indicates correct segmentations.

The manually segmented leaf point clouds were used to evaluate the performance
of the two methods (Table 1). The t-test was used to compare the average of precision,
recall, and f1-score of these two methods (Table 2). In addition, the results of Table 1 were
expressed in boxplots (Figure 6). It could be seen that the MSTVM-based region-growing
algorithm has an average F1-Score between 0.89 and 0.90 for the three categories of sugar
beet plants, an average precision between 0.95 and 0.96, and an average recall value between
0.85 and 0.86, respectively. Compared with the region-growing algorithm, the average
recall value increased, and the standard deviation decreased slightly, suggesting that the
MSTVM-based region-growing algorithm performed better in segmenting relatively simple
and ordinary leaves.

Table 1. The mean and standard deviation of precision, recall, and F1-Score values with region-
growing algorithm and MSTVM-based region-growing algorithm.

Plant Categories Simple Ordinary Complex

Accuracy
Indicators p r f1 p r f1 p r f1

Region-growing
algorithm 0.97 ± 0.08 0.79 ± 0.17 0.86 ± 0.13 0.97 ± 0.05 0.78 ± 0.16 0.85 ± 0.11 0.96 ± 0.07 0.74 ± 0.18 0.82 ± 0.14

MSTVM-based
region-growing

algorithm
0.96 ± 0.08 0.85 ± 0.14 0.89 ± 0.11 0.96 ± 0.07 0.86 ± 0.12 0.90 ± 0.09 0.95 ± 0.09 0.85 ± 0.14 0.89 ± 0.10

Note: All results were calculated against manually segmented results. p: precision, r: recall, f1: F1-Score.
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Table 2. The t-test of precision, recall, and F1-Score values with region-growing algorithm and
MSTVM-based region-growing algorithm.

Plant Categories Simple Ordinary Complex

Accuracy Indicators p r f1 p r f1 p r f1

T −1.33 5.29 4.08 −2.91 8.48 6.12 −2.21 9.90 7.31
p 0.18 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.03 * 0.00 * 0.00 *

Note: * indicates a significance level of 0.05.
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3.2. Further Segmentations for Overlapping Leaves

K-means clustering algorithm and SBF were further used to separate the overlapping
leaves based on the results from the MSTVM-based region-growing algorithm (Figure 7).
The purpose of using k-means clustering algorithm was to evaluate the performance of
the SBF. The value of k in k-means algorithm was selected manually. K-means algorithm
could obtain reasonable segmentation results when the overlapping leaves were similar in
size and the overlaps between leaves were less (Figure 7(a2)). The performance of K-means
algorithm was poor when the overlaps between leaves were large or the difference in leaf
size was large (Figure 7(b2–b4)). Particularly, K-means algorithm could not accurately
segment each leaf from multiple overlapped leaves (Figure 7(a5,a6)). SBF performed much
better than K-means and six groups of data were shown in (Figure 7). Particularly, SBF
could completely segment each complex overlapping leaf in (Figure 7(a6)). However, SBF
is strongly influenced by the holes in the leaves, which the rightmost red leaf shown in
(Figure 7(a5)) was separated into two leaves due to the large holes on that leaf.
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Figure 7. Visualization of leaf segmentation results using SBF and K-means clustering algorithm.
(a1–a6) are the original leaf point clouds with different complex; (b1–b6) are the leaves separated
with the K-means clustering algorithm; (c1–c6) are the leaves separated with the SBF.

Table 3 evaluated the performance of SBF and K-means clustering algorithm in seg-
menting overlapping leaves. The t-test was used to compare the average of precision,
recall, and f1-score of these two methods (Table 4). In addition, the results of Table 3 were
expressed in boxplots (Figure 8). The SBF method produced a higher F1-Score, ranging
from 0.83 to 0.97, a precision value ranging from 0.91 to 0.93, and a recall value ranging from
0.79 to 0.83, respectively, as shown in Table 3. The corresponding indicators for K-means
were 0.75~0.79 for F1-Score, 0.87~0.88 for precision, 0.76~0.79 for recall. Compared with the
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K-means clustering algorithm, SBF has higher mean values and lower standard deviations,
and performs better in the segmentation of overlapping leaves. The advantage of low
standard deviations could be clearly seen from Figure 8.

Table 3. The Mean and standard deviation of segmented overlapping leaves by SBF and K-means
clustering algorithm.

Plant Categories Simple Ordinary Complex

Accuracy
Indicators p r f1 p r f1 p r f1

K-means 0.88 ± 0.15 0.79 ± 0.14 0.79 ± 0.16 0.88 ± 0.16 0.77 ± 0.15 0.76 ± 0.15 0.87 ± 0.16 0.76 ± 0.15 0.75 ± 0.15
SBF 0.93 ± 0.12 0.83 ± 0.12 0.87 ± 0.13 0.93 ± 0.11 0.81 ± 0.14 0.86 ± 0.11 0.91 ± 0.12 0.79 ± 0.14 0.83 ± 0.11

Note: All results were calculated against manually segmented results. p: precision, r: recall, f1: F1-Score.

Table 4. The t-test of precision, recall, and F1-Score values of segmented overlapping leaves by SBF
and K-means clustering algorithm.

Plant Categories Simple Ordinary Complex

Accuracy Indicators p r f1 p r f1 p r f1

T 2.30 1.15 3.08 1.98 2.54 5.29 −0.32 0.51 1.84
p 0.03 * 0.26 0.01 * 0.05 * 0.01 * 0.00 * 0.75 0.60 0.07

Note: * indicates a significance level of 0.05.
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3.3. Evaluation of the Individual Leaf Segmentation for the Whole Plant

Figure 9 shows the results of simple, ordinary, and complex plant type structures
created with a combination of different methods. Table 5 evaluated the performance of
the region-growing algorithm combined with SBF and the MSTVM-based region-growing
algorithm combined with SBF in segmenting the individual leaf of the whole plant. The t-
test was used to compare the average of precision, recall, and f1-score of these two methods
(Table 6). The results of Table 5 were expressed in boxplots (Figure 10). Compared with the
region-growing algorithm combined with SBF in (Figure 9b,c), leaf segmentation with the
MSTVM-based region-growing algorithm combined with SBF was more accurate, as shown
in blue circles in (Figure 9c) with a higher F1-Score (0.87~0.89), precision (0.93~0.95), and
recall values (0.83~084), and a lower standard deviation. The corresponding evaluation
indicators for the region-growing algorithm combined with SBF were 0.81~0.84, 0.95~0.96,
and 0.72~0.77, respectively. From Figure 10, it can be clearly seen that the effect of the
MSTVM-based region-growing algorithm combined with SBF was better.
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Figure 9. Visualization of the leaf segmentation results using the combinations of different methods.
The first row, the second row and the third row are one of the simple, ordinary and complex plant
type structures; (a) are the individual sugar beet plants to be proceeded. (b) are the results of leaf
segmentation by using the region-growing algorithm combined with SBF. The red circles are the
regions segmented incompletely. (c) are the results of leaf segmentation by using the MSTVM-based
region-growing algorithm combined with SBF. The blue circles are the regions segmented correctly.
(d) are the manual segmentation results (ground truth).

Table 5. The Mean and standard deviation of segmented leaves for the whole plant by the MSTVM-
based region-growing algorithm combined with the SBF and by the region-growing algorithm
combined with SBF.

Plant Categories Simple Ordinary Complex

Accuracy Indicators p r f1 p r f1 p r f1

Region-growing
algorithm combined

with SBF
0.96 ± 0.07 0.77 ± 0.17 0.84 ± 0.13 0.96 ± 0.05 0.75 ± 0.16 0.84 ± 0.11 0.95 ± 0.07 0.72 ± 0.17 0.81 ± 0.14

MSTVM-based
region-growing

algorithm combined
with SBF

0.95 ± 0.09 0.84 ± 0.14 0.88 ± 0.11 0.95 ± 0.09 0.83 ± 0.13 0.89 ± 0.10 0.93 ± 0.10 0.83 ± 0.14 0.87 ± 0.10

Note: All results were calculated against manually segmented results. p: precision, r: recall, f1: F1-Score.
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Table 6. The t-test of precision, recall, and F1-Score values of segmented leaves for the whole plant
by the MSTVM-based region-growing algorithm combined with SBF and by the region-growing
algorithm combined with SBF.

Plant Categories Simple Ordinary Complex

Accuracy Indicators p r f1 p r f1 p r f1

T −1.99 6.51 4.44 −2.71 9.88 7.22 −3.04 11.04 7.51
p 0.05 * 0.00 * 0.00 * 0.01 * 0.00 * 0.00 * 0.03 * 0.00 * 0.00 *

Note: * indicates a significance level of 0.05.
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the precision; (c) are the f1-score.

3.4. Evaluation of Extracted Phenotypic Data

The leaf blade length and leaf area of an individual leaf were calculated based on the
best method identified above by the MSTVM-based region-growing algorithm combined
with SBF and compared with the measured leaf length and leaf area (Figure 11). The linear
fitting equation between the calculated and the measured leaf length is y = 0.92x + 2.04
with a correlation coefficient R2 of 0.80, RMSE of 1.78 cm, and MAPE of 5.27%, respectively.
The linear fitting equation between calculated and measured leaf area is y = 0.82x + 36.86.
The corresponding R2 is 0.82, RMSE is 50.63 cm2, and MAPE is 14.61%.
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length (b) with the measured value. The black and red dashed lines denote the fitting line and the 1:1
line, respectively.

4. Discussion

The reason why this paper uses the SFM algorithm to generate point clouds is that
it has the advantages of a low cost, simple use, and robustness [20]. Before point cloud
segmentation, background points such as soil and shadows should be removed, to obtain
clean plants and to avoid the interference to the proposed method. Xiao et al. [7] used color
filter to remove soil and shadows points. However, this method cannot remove all the
background points, and instead removes some of the plant points. Therefore, we removed
the background points from the sugar beet plant group manually. The region-growing
algorithm has been applied to the segmentation of 3D point cloud of plants with smooth
leaf surfaces such as eggplant [51] and maize [52]. However, the region-growing algorithm
is unable to acquire accurate segmentation for field grown sugar beet leaves due to the
existence of leaf curvatures and serious overlapping within individual plant. Xiao et al. [7]
used a clustering algorithm to cluster the discarded points into different leaf regions after
segmentation of region-growing algorithm, but the effect of clustering was not evaluated,
and the segmentation of overlapping leaves was not considered.

In order to resolve the incomplete segmentation of leaf point cloud caused by folds
on the surface of sugar beet leaves, this paper used the MSTVM, a multi-scale processing
method, to calculate the comprehensive plane feature strength of each point in the input
point cloud as the seed point selection criterion for the region-growing algorithm. Due
to the fact that the calculation of the comprehensive plane feature strength was carried
out at multiple scales, the selected seed points produced a smoother leaf surface. The
results showed that selection methods of seed points improved the performance of the
region-growing algorithm. The F1-Score increased from 0.82~0.86 to 0.89~0.90, and the
standard deviation was reduced (Table 1).

The MSTVM-based region-growing algorithm performed poorly in the segmentation
of overlapping leaves. Most of overlapping leaves in the reconstructed 3D point cloud of
sugar beet plants were horizontal overlapped, which was favorable for PCA projection
and the accurate operation of SBF. Therefore, we used the SBF to segment the overlapping
leaves and compared its performance with the K-means clustering algorithm. Compared
with other machine learning methods such as SVM [53] and boosting [54], the K-means
clustering algorithm is superior in processing efficiency and segmentation accuracy in the
segmentation of overlapping leaves [55].

Due to the mutual occlusion between sugar beet leaves, there are holes in SFM recon-
structed leaf point clouds. This situation will cause the SBF method to mistake the points of
the hole edge as the ones of leaf edge, then remove them mistakenly. In order to reduce the
impact of these holes in the overlapping leaf point cloud during the filter operation, a fixed
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radius is used when searching for the neighboring points of the point Pi in the overlapping
leaf point cloud [47]. Compared with the K-means, the SBF increased the f1-score by 0.08,
0.10, and 0.08 on simple, ordinary and complex plant categories, respectively (Table 3). In
this paper, the SBF was used to segment overlapping leaf point clouds obtained by the
MSTVM-based region-growing algorithm. However, improvement in the performance of
the severe occlusion between leaves is still needed as shown in (Figure 7(a5,a6)). The 3D
space information of the leaf edge will be further combined to deal with the severe occlusion.
The leaf length and leaf area extracted based on individual leaves after segmentation agree
well with the measurements with high accuracy. Elnashef et al. [23] had used the automatic
segmentation on crops that were characterized by narrow leaves and tillers, and conducted
experiments on cotton, maize and wheat seedlings. It could potentially be used in high-
throughput phenotypic data acquisition. In the existing research [19,20,25,27,56], the point
cloud data of the early-growth plant was used to divide the leaves with simple plant struc-
tures. This study directly segmented the sugar beet plants with different complexities of the
plant leaf layout at different growth stages in the field with obvious leaf overlapping. The
segmentation results showed the robustness of MSTVM-based region-growing algorithm
combined with SBF in leaf segmentation.

In field experiment, the process of SFM method for image collection is laborious. The
SFM method uses multi-view images to reconstruct point clouds, which requires adjacent
images with a certain degree of overlap. The camera carrier must move around the plant
while capturing the image at a constant speed. To save labor costs, we will consider using
drones to collect imagery in the future. One of the limitations about the experiment is the
small amount of genotypes evaluated (only 20). Another is that the experiment does not
have enough repetition and randomization. In the future, we will use more genotypes
and repeat these genotypes in several plots in the same experimental area to verify the
effectiveness of the method. Furthermore, we will improve the automation of the entire
process and increase the processing speed, meanwhile ensuring the accuracy of calculation
so as to provide high-throughput analysis methods for the phenotypic data acquisition of
more complex plants in the field.

5. Conclusions

In this study, the 3D point clouds were divided into three categories based on the
complexity of the plant leaf layout. The combination of the MSTVM-based region-growing
algorithm with SBF was used to achieve the point cloud segmentation of an individual
leaf of a field sugar beet plant. The MSTVM was used to calculate the comprehensive
plane feature. The SBF method was used to process the overlapping leaf point cloud. For
the point clouds of 30 field grown sugar beet plants, this method achieved a F1-score of
0.87~0.89, recall of 0.83~0.84, and precision of 0.93~0.95. Based on the individual leaf
obtained by the method, the calculated leaf length and leaf were correlated well with the
measurement (R2 = 0.80~0.82). This method could be used as an efficient leaf segmentation
method which is a basic step for the phenotypic analysis of plants with complex leaf layouts
and would be particularly useful for sugar beet breeding.
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