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Abstract: Industrial hemp (Cannabis sativa L.) is a plant native to Asia, and is considered to be
a primary source of food, textile fiber, and medicines. It is characterized by containing minimal
concentrations of delta-9 tetrahydrocannabidol (THC), which is the main psychoactive chemical
component, and cannabidiol (CBD), a non-psychoactive substance. In most European countries, the
maximum concentration legally allowed for cultivation is 0.2% of THC, and it is currently under
debate whether to increase this level to 0.3%. Moreover, in many countries its production is being
regularized and legalized, increasing the need for a rapid analysis method. The present work
evaluated the cannabinoid content in hemp (Cannabis sativa L.) using near infrared spectroscopy
(NIRS) technology in combination with chemometric techniques. For this, several samples of the
Kompolti variety were analyzed. Samples were dried and ground, and the content of total THC (%)
and total CBD (%) was determined by high performance liquid chromatography (HPLC) with a diode
array detector as reference measurements, and then the spectra were collected by NIRS. Principal
component analysis and partial least square regression models were developed. Good coefficients of
determination of cross-validation of 0.77 for THC and CBD, and a ratio of prediction to deviation
>2 for total THC and CBD, were achieved. The results obtained show that NIRS technology has
potential for the quantitative determination of cannabinoids. Therefore, this analytical method would
allow a simpler, more robust, precise, and sustainable estimation than the current HPLC approach.

Keywords: CBD; THC; near infrared spectroscopy; quantification; HPLC; chemometrics

1. Introduction

The non-psychotropic species Cannabis sativa L. is called industrial hemp [1] and is
characterized by containing minimal concentrations of delta-9 tetrahydrocannabidol (THC),
the main psychoactive chemical component, and cannabidiol (CBD), a non-psychoactive
substance that is often present in amounts similar to those of THC [1,2]. Hemp is mainly
used for food or textile purposes and, in addition, offers great medicinal potential. Although
the regulations of different countries vary according to the definition of the maximum
accepted THC limit, industrial hemp producing countries require that the varieties used
contain THC concentrations lower than 1%. In most European countries, the current upper
legal limit for cultivation is 0.2% of THC and the ratio of CBD to THC should be greater
than one. Currently, the maximum concentration legally permitted for cultivation is under
debate in the European Union [3].

It is important to note that the flower is the part of hemp with the highest significant
content of cannabinoids [4]. These, when heated, spontaneously decarboxylate to the “neu-
tral” cannabinoids THC and CBD. This heat-labile character of acidic cannabinoids (THCA
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and CBDA) highlights the importance of using a low-temperature, non-destructive method
to achieve a precise quantification of these molecules [5]. Moreover, for all stakeholders in
the cannabis supply chain, a precise and trustworthy identification of these cannabinoids
would be of great economic importance [4].

Traditionally, cannabinoid content has been determined by high performance liquid
chromatography (HPLC) and gas chromatography (GC). HPLC provides a full cannabinoid
profile but it has several associated disadvantages, including sample destruction, complex
instrumentation, involvement of hazardous chemicals, and longer sample preparation
times, which limit its application on site, where a fast and non-destructive process is prefer-
able [4]. Similarly, GC is the preferred method for the determination of these compounds.
However, it is a slow and expensive technique, and requires a tedious sample preparation
stage, which involves the extraction of the active ingredients through the use of organic
solvents, whose subsequent residues must be managed with a considerable increase in cost
and time [6].

These limitations have led to a search for faster and easier-to-use alternatives to HPLC
and GC [4]. Therefore, it is important to develop a simple, fast, and sustainable method for
the quantification of cannabinoids. In recent years, spectroscopic methods have emerged
as techniques that are used on a wide range of biological samples without the need for
extraction [7]. One of these techniques is near infrared spectroscopy (NIRS), which is a fast,
cost-effective, versatile, robust, and sustainable tool. In addition, it allows both quantitative
and qualitative determinations of the main parameters, such as proteins, fats, humidity,
ashes, starch, or sugar, of the raw materials related to the quality of agricultural products [6].
In recent years, the interest in NIRS applied to hemp has gained importance due to the
moisture, volatile substances, and chemical compounds in herbal products absorbed in the
NIR region. In general, NIR spectroscopy combined with chemometrics has great potential
in the analysis of natural plant products [8].

It should be taken into account that the cannabis flower is heterogeneous in nature,
which presents a series of problems and drawbacks. It is a complex matrix, made up of
a great variety of types of plant tissues and more than 500 different naturally produced
chemicals. Moreover, it is a material that can vary widely between plants of the same crop,
in an individual plant, and even within the same sample [9]. Consequently, no two parts
of the cannabis flower are alike and their cannabinoid content is likely to vary widely. In
this scenario, NIRS technology is an adequate alternative for the analysis of heterogeneous
vegetal samples and may therefore overcome the inherent heterogeneity of the cannabis
plant [4].

NIRS has been applied to discriminate between “drug type” (chemotype I) and “fiber
type” (chemotype II) [10], for the discrimination of leaves of Cannabis sativa L. and other
plant species [11], and for the prediction of the growth stage of cannabis plants in the early
stages of cultivation [12].

Marcel et al. [13] developed a prediction model of the chemical composition of the
fiber and the central fraction of hemp (chemotype III) using NIRS combined with a partial
least squares (PLS) regression analysis. Similarly, a procedure was developed for the
identification and quantitative determination of synthetic cannabinoids in illicit herbal
samples. The methodology was based on the measurement by Fourier transform infrared
spectroscopy of attenuated total reflectance (ATR-FTIR) [14].

Moreover, the total content of THC and CBD in the cannabis flower has been deter-
mined by FT–NIR [4]. Similarly, Sánchez-Carnerero et al. [6] studied the prediction of
cannabinoid content using NIRS. They used both FT-NIR and NIR spectrophotometers for
their analysis and compared the results obtained with the two techniques. Similar results
were obtained using both instruments, thus confirming that there is enough information in
the spectral region of the NIR for the prediction of cannabinoids.

More recently, Duchateau et al. [15] created two classification methods according to
the European laws about the discrimination of the legal limits of Cannabis spp. using
NIR. Valinger et al. [7] described the development of artificial neural network (ANN)
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models for the prediction of the physical and chemical properties of industrial hemp
extracts, based on the combination of UV-VIS-NIR spectra. For this, two different extraction
methods were prepared (solid–liquid extraction and microwave-assisted extraction). The
results showed that reliable ANN models can be developed to describe the physical and
chemical characteristics, without the need for pre-processing of the spectra. In a recent
study, Risoluti et al. [16], using a MicroNIR spectrometer, developed a test for cannabinoid
determination in commercial hemp flours spiked with THC, CBD, and CBG.

Therefore, the aim of this study was to evaluate the functionality of near infrared
spectroscopy for the quantification of the main cannabinoids present in hemp samples
(Cannabis sativa L.). In addition, a study of the NIR spectra was carried out to identify
the peaks.

2. Materials and Methods
2.1. Vegetal Material

Thirty-five hemp samples were obtained in collaboration with Genscore Navarra
S.L. The specimens obtained were of the Kompolti variety, which is among the varieties
authorized for the cultivation of industrial hemp in Spain [17].

The plant material was weighed on a AB104 Mettler-Toledo analytical balance and
dried in an oven at 60 ◦C for 24 h, until a humidity between 8% and 13% was achieved, as
recommended by regulation (EU) 2017/1155 [18].

Stems and seeds of more than 2 mm were removed from the dry samples and, with
the help of a mortar, they were crushed until obtaining a semi-fine powder, in such a way
that it could pass through a 1 mm mesh sieve. The samples were stored, without crushing
them, in a dark place at a temperature below 25 ◦C [18,19].

2.2. Spectra Acquisition

Spectra were collected using an Acousto-Optic Tunable Filter (AOTF) NIR and Indium
Gallium Arsenide (InGaAs) detector, called a Luminar 5030 Miniature “Hand-held”, in
the reflectance mode and equipped with Snap32!™ software (Brimrose Corporation of
America, Sparks, MD, USA). A spectral range of 1200–2200 nm was used to obtain the
spectra, with a sampling interval of 2 nm, and scanning speed of 60 ms. Each spectrum
recorded by the instrument was the average of 50 scans.

In this study, 3 g of each of the 35 hemp powder samples was weighed and placed on
the rotating cell of the AOTF-NIR spectrophotometer. As the sample rotates, the spectrum is
measured so that different parts of the sample are scanned from above and inhomogeneities
averaged. For each individual sample, 3 reflectance spectra were acquired by contacting
the probe with the sample.

2.3. Reference Measurements: High Performance Liquid Chromatography

After acquisition of the NIRS data, the same hemp samples were removed from the
Petri dishes and sent to a certified laboratory, ANANDA ANALYTICS LAB S.L., where the
high performance liquid chromatography with diode array detector (HPLC-DAD) method
was used for the determination of total THC and total CBD cannabinoids. The extraction
was performed by ultrasound with subsequent methanol-chloroform decarboxylation.
The mobile phase was acetonitrile (water (8:2 v/v), isocratic, stop time 8 min.) according
to ‘Recommended methods for the identification and analysis of cannabis and cannabis
products’ by the United Nations Office on Drugs and Crime [19]. Regarding the result, for
a qualitative identification, the retention time and the DAD spectrum of the cannabinoid
must match. The calculation for the quantitative results was carried out at the wavelengths
of 220 and 240 nm.

The results were received after 10 days and, then, these reference chromatographic
data were correlated with the spectral information to generate the NIR models for total
THC and CBD prediction. Thirty-two samples of 35 were analyzed by HPLC-DAD because
3 fungus-infected hemp plants were identified.
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2.4. Multivariate Data Analysis

Data analysis was performed using the specific software The Unscrambler® X v.10.4
(Camo Software AS, Oslo, Norway). First, principal component analysis (PCA) was per-
formed with the full set of samples. PCA was applied to explore the spectral variability
of the population [20], which also allows elimination of outliers that can have a negative
effect on modeling [21].

During the pre-model building phase, data pre-processing was carried out to eliminate
the non-informative effects of light scattering or system noise. For the development of
the models, in addition to working with the raw data, different data pretreatments were
applied: spectra normalization, standard normal variate (SNV), standard normal variate
and detrend (SNV-DT), multiplicative scatter correction (MSC) and first derivative (1st D).

Raw data: The absolute reflectance was obtained from the radiation measurements of
the 35 samples with 3 repetitions each.

Spectra normalization: Raw NIR spectra are often mathematically processed prior
to development of the calibration model; such treatments include normalization, which
is performed to minimize unwanted sources of data variation prior to calibration and to
improve spectral characteristics [22]. Mean normalization was performed in this study,
which is the most classical approach. In this normalization, each sample of the dataset
(each row of the data matrix) is divided by its average.

Standard normal variate (SNV): To eliminate interferences due to path length effects,
SNV consists of subtracting the mean value of the spectrum from each reflectance value at
each wavelength and dividing it by the standard deviation [23].

Standard normal variation and detrend (SNV-DT): SNV-DT was developed by
Barnes et al. [24] to eliminate multiplicative scattering interferences and particle size, and
to take into account the variation in the baseline change and curvilinearity in diffuse re-
flectance spectra. Detrend consists of fitting a second-order polynomial to the spectrum
corrected by SNV, which is subtracted to eliminate the dispersion effect that is dependent
on each wavelength [25].

Multiplicative scatter correction (MSC): MSC [26] is another preprocessing technique
that corrects the displacements between samples due to the particles of the samples. This is
undertaken by using a reference spectrum and correcting the different spectra to it so that
the baseline and the amplification effects are at the same average level in all spectra [27].
The basic concept of MSC is to remove non-linearities in the data caused by scattering from
particulates in the samples [28].

First derivative: The first derivative (1st D) of the spectra based on the Savitzky–Golay
algorithm is used to increase the spectral resolution and interpret the spectra [29]. One
smoothing point was applied to the right and another to the left, and a polynomial of order
2 was used to smooth and eliminate random noise from the NIR spectra. Vasques et al. [30]
confirmed that the Savitzky–Golay derivatives were among the best methods for prepro-
cessing the spectra. Similarly, Ertlen et al. [31] reported that, by using derivatives, more
convenient information can be taken from NIR spectra.

Then, a PLS regression analysis was applied to the dataset to build a model capable
of predicting the content of cannabinoids, both for total THC and total CBD, in the hemp
samples, and to be able to assess the effectiveness of NIR spectroscopy. For the validation
of the model, cross-validation (CV) was used in order to calculate the relationships between
spectral and chemical properties. Williams et al. [32] recommend CV for the evaluation of
any calibration model based on small sets of samples below 100 units.

The performance of the calibration models was evaluated using the root mean square
error of the calibration (RMSEC), the root mean square error of cross-validation (RMSECV),
the coefficient of determination of calibration (R2c), the coefficient of determination of
cross-validation (R2cv), and the ratio of prediction to deviation (RPD). The number of latent
variables (LV) was used to prevent overfitting.
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3. Results and Discussions
3.1. HPLC Results

For each of the samples analyzed, an individualized report was received with the
sample identification data, the characteristics of the analysis methods used, and the results
obtained from the HPLC-DAD analysis. The results provided by the reference laboratory,
expressed as a percentage, included data for humidity, THC total, CBD total, and 12 other
cannabinoids that were not the subject of this study. Thirty-two samples of 35 were analyzed
by HPLC-DAD because three hemp plants infected with fungi were identified. The mean,
the maximum, the minimum, and the standard deviation of the reference results can be
seen in Table 1.

Table 1. HPLC-DAD analysis results.

Samples
Humidity (%) THC Total (%) CBD Total (%)

Min Max Mean SD Min Max Mean SD Min Max Mean SD

32 9.02 12.34 10.65 3.16 0.057 0.161 0.103 0.028 2.178 5.342 3.367 0.892

Regarding the percentage of humidity, all samples presented values between 9.02% and
12.34%. These values are between the ranges established in the delegated regulation [18],
which indicates a humidity of 8–13% in the preparation of cannabis samples. All selected
samples had a THC value detected between 0.057% and 0.161%. Concerning CBD, which is
currently the compound of greatest interest, the results in Table 1 show a maximum value
of 5.342% and a minimum value of 2.178%, which indicates the high concentration of CBD
in the samples, this being a characteristic of industrial cannabis [19].

3.2. Spectral Data

In Figure 1, the spectra of the hemp sample set are shown, which correspond to the
spectra collected in the Luminar 5030 AOTF-NIR spectrophotometer, where the typical
reflectance bands of hemp appear in the NIR region from 1200 to 2200 nm.
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Principal component analysis (PCA) was applied to explore the spectral variability of
the population, where no atypical samples were identified. This indicates that the dataset
was uniformly distributed and covered as much spectral variation as possible (Figure 2).
Then, PLS analysis was applied to the dataset. The results for each PLS model, for total
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THC and total CBD, with each pretreatment applied, including the number of samples
used, were compared based on the values obtained for RMSEC, RMSECV, R2c, R2cv, LV,
SD, and RPD.
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3.3. Interpretation of Spectra

Figure 3 shows the reflectance spectra of the samples after applying the first derivative
based on the Savitzky–Golay algorithm. The typical absorption bands of plant material
appear in the NIR region derived from the superpositions corresponding mainly to over-
tones and to the combination of vibration modes that involve chemical bonds of the types
C-H, O-H, and N-H [8]. In NIR reflectance spectra, the absorption bands of the molecules
that make up the sample are described as valleys rather than peaks, since the absorbance
equals Log (1/Reflectance). The hemp spectra obtained in this study show the characteristic
bands around 1210, 1450, 1736, 1762, 1820, 1940, 2060, and 2090 nm that are characteristic
of proteins, lipids, water, and other compounds present in hemp in the main absorptions
(of OH, NH, CH, and other bonds).
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The 1450 and 1940 nm bands that appear in the spectra correspond to the first overtone
and to the -OH group combination bands, mainly due to the presence of water. Although
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the samples were oven dried at 60 ◦C, they were left with a humidity between 8 and
13%, which may be responsible of these absorption bands. Bands associated with lipids
were found around 1210 nm (second overtone of stretching vibrations) and 1762 nm
(first overtone of stretching vibrations) of functional groups -CH and -CH2 corresponding
to aliphatic hydrocarbons. Bands around 2060 nm have been associated with protein
absorption, which are related to NH secondary combination bands of amides in proteins,
for peptide groups, and those around 1820 and 2090 nm correspond to associated bands of
cellulose and polymeric structure, which are related to the fiber content of hemp [33,34]. In
addition, the reflectance band found at 1736 nm corresponds to the aromatic hydrocarbons
of the terpenes, of the functional group C-H [33–35]. This band is more evident in samples
that have a higher CBD content, because terpenes and cannabinoids share biosynthetic
pathways, and because cannabinoids are terpene-phenolic compounds [6]. In general,
the absorption bands obtained in the present study are similar to those reported by other
similar studies on cannabinoids [6].

3.4. PLS Model for Total THC

PLS analysis was applied to the dataset using the same number of samples for both
calibration and CV predictive models. The results of each PLS model for total THC applied
with each pretreatment include the number of samples used, RMSEC, RMSECV, R2c, R2cv,
SD, and RPD.

The results for the R2cv of the predictive models were higher than 0.72, which indicates
that the calibration models can be considered good [20].

Similarly, the RPD was considered a good indicator of the predictive capacity. In
the prediction of total THC content, RPD values > 2 were obtained, which indicates the
goodness of the models. The higher the RPD value, the greater the ability of the calibration
model to accurately predict the reference parameter values (Table 2).

Table 2. Calibration and validation statistics to predict total THC content.

Pretreatment Nc RMSEC RMSECV R2c R2cv LV RPD

Raw data 91 0.010 0.014 0.87 0.77 7 2.04
Standardization 94 0.011 0.014 0.85 0.75 7 2.04
SNV 94 0.010 0.014 0.87 0.76 7 2.04
SNV-DT 94 0.011 0.014 0.84 0.72 6 2.04
MSC 94 0.010 0.014 0.86 0.76 7 2.04
1st D 94 0.010 0.014 0.86 0.75 7 2.04

Some authors have established five levels of prediction accuracy based on the RPD.
Saeys et al. [36] indicated that models with RPD values below 1.5 should not be used for
prediction; an RPD value between 1.5 and 2.0 should only be used to distinguish between
high and low values; and a value between 2.0 and 2.5 can be used to make approximate
quantitative predictions. Values between 2.5 and 3.0 and above 3.0 can be used for good
and excellent predictions, respectively.

For total THC (%), the best model was selected according to the highest values of
R2cv and RPD, and the lowest values of RMSECV. The results without applying any data
pretreatment technique presented higher values of R2c of 0.87, R2cv of 0.77, and an RPD > 2,
which indicates that approximate quantitative predictions are possible. The lower RMSECV
values of 0.014 were also taken into account.

Figure 4 represents the result of the PLS model without applying any data pretreatment
technique, for the quantification of total THC. The graph shows measured values (X-axis)
versus predicted values (Y-axis) for total THC from the cross-validation dataset showing
analogous results. The proximity between the calibration line and the cross-validation line
can be observed with slopes very close to the unit, which provides an idea of the quality of
the model obtained.
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Figure 4. PLS model for total THC without pretreatment (numbers above (blue): calibration; numbers
below (red): cross-validation).

In general, the results showed that the developed models had the ability to make
approximate predictions of total THC content, with high R2 and RPD, and low RMSE.
Furthermore, the difference between RMSEC and RMSECV was low in all models devel-
oped. Therefore, for the determination of total THC, the prediction model obtained without
applying any data pretreatment technique presented the best results, taking seven latent
variables. For the rest of the calibration models carried out applying different combinations
of data pretreatments, similar results were obtained with minimal differences.

3.5. PLS Model for Total CBD

The results for the R2cv of the predictive models were higher than 0.73, which indicates
that the calibration models can be considered good, except for the first derivative model,
which has an R2cv value of 0.68. The latter would allow adequate discrimination between
samples having high, medium, and low total CBD content [20].

The standard deviation of CBD content was equal to 0.892 considering only the samples
used for each calibration model and 0.871 for the first derivative model. In general, the
results obtained for the RPD were around 2, which indicates the possibility for approximate
quantitative predictions (Table 3).

Table 3. Calibration and validation statistics for predicting total CBD content.

Pretreatment Nc RMSEC RMSECV R2c R2cv LV RPD

Raw data 103 0.333 0.431 0.86 0.77 7 2.07
Standardization 103 0.361 0.459 0.83 0.74 7 1.94
SNV 103 0.357 0.464 0.84 0.73 7 1.92
SNV-DT 103 0.358 0.459 0.84 0.74 6 1.94
MSC 103 0.359 0.465 0.84 0.73 7 1.91
1st D 98 0.389 0.494 0.79 0.68 3 1.76

The best model to predict CBD content was also obtained without applying any data
pretreatment technique. A high R2c value of 0.86, R2cv of 0.77, and an RPD > 2 were
achieved, indicating the predictive capacity of the model. The lower RMSECV values of
0.431 were also considered.

Figure 5 represents the result of the PLS model without applying any data pretreatment
technique, for the quantification of total CBD.
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Moreover, as with the prediction of THC, all developed models showed an excellent
performance in predicting total CBD content, with high R2 and RPD, and low RMSE, which
demonstrates the potential of NIRS for cannabinoid content estimation.

Furthermore, the difference between RMSEC and RMSECV was low in all models
developed. Therefore, for the determination of the total CBD, the prediction model obtained
without applying any data pre-treatment technique presented the best results, taking seven
latent variables. Comparable results were obtained for the rest of the calibration models
carried out applying different combinations of data pretreatments.

Interest in the determination of the cannabinoid content of Cannabis sativa has in-
creased in recent years, as indicated by the various studies published in this field. As in
this study, other authors have achieved good results for the prediction of THC and CBD by
NIRS without any data pretreatment. Thus, Sánchez-Carnerero et al. [6] obtained an R2cv
of 0.99 for CBD and an R2cv of 0.99 for THC with an FT-NIR instrument. However, using a
NIR Systems 6500 scanning monochromator for CBD prediction, a SNV-DT pretreatment
was applied, and resulted in an R2cv of 0.99 and a MSC for THC with an R2cv 0.98 and an
RPD of 3.07.

In a more recent study, Deidda et al. [37] explored the feasibility of using NIRS for the
quantitative analysis of THC. For this study, two handheld NIR spectrophotometers were
used and compared, a low-cost device (NIR-S-G1) and a mid-cost device (MicroNIR onsite
W 1700). Both entire inflorescence and resin samples were analyzed, and the reference
method used was UHPLC coupled to UV detection. A preliminary study was conducted
on 26 entire inflorescences that were then ground and sieved in order to evaluate the
impact of sample homogeneity on the THC content predictions. Researchers obtained a
THC concentration far wider than in our study, ranging from 0.92 to 22.21%. RPD values
between 1 and 4.54 were obtained for the different physical forms of samples using both
devices. In general, the MicroNIR spectrophotometer outperformed NIR-S-G1. More-over,
45 resin samples were analyzed with both devices, obtaining an RPD value of 2.26 with the
MicroNIR and 1.51 with NIR-S-G1. Therefore, authors concluded that the mid-cost system
was the best-suited spectrophotometer for their application.

In another study carried out by Chen et al. [38], a different approach was adopted in
which the authors explored the potential of NIRS for the in situ determination of CBD in
hemp oil. For their study, 20 hemp oil samples with different concentrations of CBD and
CBDA (determined by HPLC) were analyzed by a Bruker MATRIX-F FT-NIR spectrometer
covering the 4000 to 12,000 cm−1 range. Super partial least-squares regression (sPLSR)
and a self-optimizing support vector elastic net (SOSVEN) were applied to predict the
concentrations of CBD, achieving promising results with a coefficient of determination for
the validation set >0.98 and an RMSEV of 6.4 ± 0.1 mg/mL.
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In addition, as mentioned in the Introduction, spectroscopic techniques have been used
to differentiate fiber-type from drug-type Cannabis sativa L [39]. In that study, attenuated
total reflectance-Fourier’s transform infrared (ATR-FTIR) in the 5000–400 cm−1 region was
used to assess 36 samples of C. sativa inflorescences; eight were drug-type, 14 fiber-type,
and another set of 14 were cannabis samples having a low THC concentration. PLS models
were developed to predict the content of seven neutral and acidic cannabinoids (THC,
THCA, CBD, CBDA, CBG, CBGA, CBN). Authors achieved very good results, with an R2cv
higher than 0.99 for each cannabinoid and RMSECV values ranging from 0.020 to 0.163.

Moreover, mid-infrared (MIR) spectroscopy has been explored for the prediction
of THC and CBD content in C. sativa. Thus, Geskovski et al. [40] used an ATR Fourier
transform infrared spectrometer, in the 1700 to 400 cm−1 range, to quantify the content of
THC and CBD in 45 flowers and 34 cannabis extracts. PLS models were developed for both
types of sample, obtaining good results with R2p and RMSEP values of 0.99% and 2.32%
for THC, and 0.99% and 1.33% for CBD, respectively, for the flower samples, and R2p and
RMSEP values of 0.95% and 3.79% for THC, and 0.99% and 1.44% for CBD, in the cannabis
extract samples, respectively.

In the current study, we present a feasible and low-cost method for the THC and CBD
content determination in C. sativa samples using NIRS. Promising results were obtained for
both cannabinoids, indicating the potential of NIR technology as a predictive tool.

4. Conclusions

The functionality of NIRS for the quantification of THC and CBD as principal cannabi-
noids in hemp (Cannabis sativa L.), along with their related spectral peaks, was evaluated
in this study. According to the latter, the region of the NIR spectrum analyzed presents
characteristic absorption bands around 1210, 1450, 1736, 1762, 1820, 1940, 2060, and 2090 nm
that are typical of proteins, lipids, water, and other compounds present in hemp (from
OH, NH, CH, and other bonds). In addition, the band at 1736 nm, related to aromatic
hydrocarbons of the terpenes, was associated with the CBD content, since cannabinoids are
terpene-phenolic compounds.

Moreover, predictive models of the cannabinoid content in hemp were obtained
combining NIR spectroscopy and chemometric analysis. The best results for the prediction
of both THC and CBD were obtained using the raw data, providing a simpler form of
analysis. For the THC, the best PLS model achieved a determination coefficient of cross-
validation of 0.77 and an RPD value > 2 which indicates its predictive capacity. For the CBD,
the best PLS model achieved a coefficient of 0.77 and an RPD value > 2, also indicating the
goodness of the prediction model.

Although the number of samples in this study was limited due to the high cost of
HPLC, it allowed us to demonstrate the potential of NIRS for the determination of the main
cannabinoid content in samples of the Kompolti variety. Due to the goodness of the models
and the results obtained, this study may be extended to include a larger number of samples
or other varieties of industrial hemp with a wider concentration of THC.

The results obtained here demonstrate that NIR spectroscopy offers speed and simplic-
ity unmatched by other traditional techniques. Accordingly, it was tested as an alternative
to conventional HPLC analysis for the evaluation of cannabinoid content with promis-
ing results.
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