Temporal Variation of the Non-Volatile Compounds and Key Odorants in Xinyang Maojian Green Teas during the Spring and Autumn Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
2.2. Equipment and Apparatus
2.3. Analysis of Catechins, Caffeine, and Free Amino Acids
2.4. Analysis of Tea Volatiles
2.5. Odor Activity Value (OAV) Calculation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Variation of Non-Volatile Compounds in XYMJ Green Teas
3.2. Variation of Volatile Compounds in XYMJ Green Teas
3.3. Key Odorants in XYMJ Green Teas
3.4. Comparision of Key Odorants in XYMJ and Other Green Teas
Green Teas | Top 10 Key Odorants Identified in Green Teas |
---|---|
Chestnut-like green tea [19] | trans-β-ionone (1617) d, 1-methylnaphthalene (241.6) e, 3-methylbutanal (105.2) b, nonanal (99.79) a, benzeneacetaldehyde (77.28) b, decanal (60.80) a, linalool (41.64) c, (E)-3-penten-2-one (22.34) a, heptanal (17.22) a, octanal (15.16) a |
Fangping green tea [20] | dimethyl sulfide (1195.21) e, linalool (80.27) c, octanal (36.36) a, 1-nonanal (27.91) a, β-ionoine (20.24) d, pentanal (15.58) a, 2-methylbutyraldehyde (12.87) b, benzaldehyde (11.98) b, ethyl acetate (10.98) e, α-ionone (6.72) d |
Longjing tea [46] | β-ionone (20,406) d, 1-methylnaphthalene (7275) e, naphthalene (2347) e, 2,4-nonadienal (2022) a, (E)-2-nonenal (1354) a, decanal (1100) a, 1-octen-3-ol (507) a, hexanal (417) a, (E,E)-3,5-octadien-2-one (397) a, 2-methylbutanal (390) b |
Jingshan green tea [51] | dimethyl sulfide (458) e, (E,E)-2,4-heptadienal (46) a, 1-hexen-3-one (19) a, geraniol (17) c, methanethiol (14) b, (E,Z)-2,6-nonadienal (13) a, 3-methylnonane-2,4-dione (13) a, (Z)-1,5-octadien-3-one (12) a, (Z)-4-heptenal (11) a, linalool (11) c |
Longjing tea [52] | dimethyl sulfide (440) e, (E,E)-2,4-Heptadienal (50) a, methylpropanal (32) b, 3-methylbutanal (28) b, 3-methylnonane-2,4-dione (27) a, 1-hexen-3-one (22) a, (Z)-1,5-octadien-3-one (21) a, β-ionone (16) d, (Z)-4-heptenal (15) a, methanethiol (12) b |
XYMJ green tea | trans-β-ionone (2195.05) d, decanal (57.94) a, nonanal (30.96) a, dimethyl sulfide (19.53) e, linalool (15.81) c, geraniol (14.37) c, naphthalene (10.34) e, (Z)-3-hexenyl hexanoate (2.62) a, 1-octen-3-ol (2.06) a, benzaldehyde (2.00) b |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, X.-Q.; Li, Q.-S.; Xiang, L.-P.; Liang, Y.-R. Recent advances in volatiles of teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- da Silva Pinto, M. Tea: A new perspective on health benefits. Food Res. Int. 2013, 53, 558–567. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.-Q.; Granato, D.; Xu, Y.-Q.; Ho, C.-T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef]
- Xu, W.; Song, Q.; Li, D.; Wan, X. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. J. Agric. Food Chem. 2012, 60, 7064–7070. [Google Scholar] [CrossRef]
- Dai, W.; Qi, D.; Yang, T.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Xie, D.; Tan, J.; et al. Nontargeted analysis using ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Liu, M.; Ma, L.; Shi, Y.; Ruan, J. Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season. J. Agric. Food Chem. 2016, 64, 3302–3309. [Google Scholar] [CrossRef]
- Ji, H.-G.; Lee, Y.-R.; Lee, M.-S.; Hwang, K.H.; Park, C.Y.; Kim, E.-H.; Park, J.S.; Hong, Y.-S. Diverse metabolite variations in tea (Camellia sinensis L.) leaves grown under various shade conditions revisited: A metabolomics study. J. Agric. Food Chem. 2018, 66, 1889–1897. [Google Scholar] [CrossRef]
- Wan, X.C. Tea Biochemistry, 3rd ed.; China Agriculture Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Kumazawa, K.; Masuda, H. Identification of potent odorants in different green tea varieties using flavor dilution technique. J. Agric. Food Chem. 2002, 50, 5660–5663. [Google Scholar] [CrossRef]
- Ma, L.-L.; Cao, D.; Liu, Y.-L.; Gong, Z.-M.; Liu, P.-P.; Jin, X.-F. A comparative analysis of the volatile components of green tea produced from various tea cultivars in China. Turk. J. Agric. For. 2019, 43, 451–463. [Google Scholar] [CrossRef]
- Dong, F.; Zeng, L.; Yu, Z.; Li, J.; Tang, J.; Su, X.; Yang, Z. Differential accumulation of aroma compounds in normal green and albino-induced yellow tea (Camellia sinensis) leaves. Molecules 2018, 23, 2677. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; He, Y.; Yan, X.; Zhao, S.; Zhu, J.; Wei, C. Unraveling a crosstalk regulatory network of temporal aroma accumulation in tea plant (Camellia sinensis) leaves by integration of metabolomics and transcriptomics. Environ. Exp. Bot. 2018, 149, 81–94. [Google Scholar] [CrossRef]
- Zeng, L.; Watanabe, N.; Yang, Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Crit. Rev. Food Sci. Nutr. 2019, 59, 2321–2334. [Google Scholar] [CrossRef]
- Cheng, S.; Hu, J.; Fox, D.; Zhang, Y. Tea tourism development in Xinyang, China: Stakeholders’ view. Tour. Manag. Perspect. 2012, 2, 28–34. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, B.; Ma, C.; Zheng, C.; Zhou, B.; Guo, G.; Xia, T. Region identification of Xinyang Maojian tea using UHPLC-Q-TOF/MS-based metabolomics coupled with multivariate statistical analyses. J. Food Sci. 2021, 86, 1681–1691. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Yuan, Z.; Guo, G. Untargeted metabolomics coupled with chemometrics approach for Xinyang Maojian green tea with cultivar, elevation and processing variations. Food Chem. 2021, 352, 129359. [Google Scholar] [CrossRef]
- Liu, P.; Zheng, P.; Gong, Z.; Feng, L.; Gao, S.; Wang, X.; Teng, J.; Zheng, L.; Liu, Z. Comparing characteristic aroma components of bead-shaped green teas from different regions using headspace solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry combined with chemometrics. Eur. Food Res. Technol. 2020, 246, 1703–1714. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, H.-P.; Shao, C.-Y.; Kang, S.; Zhang, Y.; Guo, L.; Dai, W.-D.; Tan, J.-F.; Peng, Q.-H.; Lin, Z. Identification of key odorants responsible for chestnut-like aroma quality of green teas. Food Res. Int. 2018, 108, 74–82. [Google Scholar] [CrossRef]
- Liao, X.; Yan, J.; Wang, B.; Meng, Q.; Zhang, L.; Tong, H. Identification of key odorants responsible for cooked corn-like aroma of green teas made by tea cultivar ‘Zhonghuang 1’. Food Res. Int. 2020, 136, 109355. [Google Scholar] [CrossRef]
- Schieberle, P. Odour-active compounds in moderately roasted sesame. Food Chem. 1996, 55, 145–152. [Google Scholar] [CrossRef]
- Chen, G.-H.; Yang, C.-Y.; Lee, S.-J.; Wu, C.-C.; Tzen, J.T. Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude. J. Food Drug Anal. 2014, 22, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.-T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Li, J.; Li, W.; Li, Y.; Li, T.; Xiao, D. Characterization of volatile compounds of pu-erh tea using solid-phase microextraction and simultaneous distillation–extraction coupled with gas chromatography–mass spectrometry. Food Res. Int. 2014, 57, 61–70. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Yin, H.; Deng, Y.; Jiang, Y.; Yuan, H.; Dong, C.; Li, J.; Hua, J.; Wang, J. Rapid profiling of volatile compounds in green teas using Micro-Chamber/Thermal Extractor combined with thermal desorption coupled to gas chromatography-mass spectrometry followed by multivariate statistical analysis. LWT-Food Sci. Technol. 2018, 96, 42–50. [Google Scholar] [CrossRef]
- Pino, J.A.; Quijano, C.E. Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Food Sci. Technol. 2012, 32, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Djojoputro, H.; Ismadji, S. Density and viscosity correlation for several common fragrance and flavor esters. J. Chem. Eng. Data 2005, 50, 727–731. [Google Scholar] [CrossRef]
- Lv, S.; Wu, Y.; Li, C.; Xu, Y.; Liu, L.; Meng, Q. Comparative Analysis of Pu-erh and Fuzhuan Teas by Fully Automatic Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry and Chemometric Methods. J. Agric. Food Chem. 2014, 62, 1810–1818. [Google Scholar] [CrossRef]
- Han, Z.-X.; Rana, M.M.; Liu, G.-F.; Gao, M.-J.; Li, D.-X.; Wu, F.-G.; Li, X.-B.; Wan, X.-C.; Wei, S. Data on green tea flavor determinantes as affected by cultivars and manufacturing processes. Data Brief 2017, 10, 492–498. [Google Scholar] [CrossRef]
- Wang, L.-F.; Lee, J.-Y.; Chung, J.-O.; Baik, J.-H.; So, S.; Park, S.-K. Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds. Food Chem. 2008, 109, 196–206. [Google Scholar] [CrossRef]
- Lasekan, O.; Lasekan, A. Flavour chemistry of mate and some common herbal teas. Trends Food Sci. Technol. 2012, 27, 37–46. [Google Scholar] [CrossRef]
- Liao, Z.-H.; Chen, Y.-J.; Tzen, J.T.-C.; Kuo, P.-C.; Lee, M.-R.; Mai, F.-D.; Rairat, T.; Chou, C.-C. Effect of teapot materials on the chemical composition of oolong tea infusions. J. Sci. Food Agric. 2018, 98, 751–757. [Google Scholar] [CrossRef]
- Kiribuchi, T.; Yamanishi, T. Studies on flavor of green tea: Part IV. Dimethyl Sulfide and its precursor. Agric. Biol. Chem. 1963, 27, 56–59. [Google Scholar] [CrossRef]
- Jumtee, K.; Komura, H.; Bamba, T.; Fukusaki, E. Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis. J. Biosci. Bioeng. 2011, 112, 252–255. [Google Scholar] [CrossRef]
- Gong, X.; Han, Y.; Zhu, J.; Hong, L.; Zhu, D.; Liu, J.; Zhang, X.; Niu, Y.; Xiao, Z. Identification of the aroma-active compounds in Longjing tea characterized by odor activity value, gas chromatography-olfactometry, and aroma recombination. Int. J. Food Prop. 2017, 20, S1107–S1121. [Google Scholar] [CrossRef]
- Lin, Q.; Ni, H.; Wu, L.; Weng, S.Y.; Li, L.; Chen, F. Analysis of aroma-active volatiles in an SDE extract of white tea. Food Sci. Nutr. 2021, 9, 605–615. [Google Scholar] [CrossRef]
- Ni, H.; Jiang, Q.-X.; Zhang, T.; Huang, G.-L.; Li, L.-J.; Chen, F. Characterization of the Aroma of an Instant White Tea Dried by Freeze Drying. Molecules 2020, 25, 3628. [Google Scholar] [CrossRef]
- Guo, X.; Ho, C.-T.; Schwab, W.; Wan, X. Effect of the roasting degree on flavor quality of large-leaf yellow tea. Food Chem. 2021, 347, 129016. [Google Scholar] [CrossRef]
- Guo, X.; Ho, C.-T.; Wan, X.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Yu, D.; Shu, C.; Chen, H.; Wang, H.; Xiao, Z. Comparison of aroma-active volatiles in oolong tea infusions using GC–olfactometry, GC–FPD, and GC–MS. J. Agric. Food Chem. 2015, 63, 7499–7510. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Wen, J.; An, K.; Yu, Y.; Zou, B.; Guo, M. A comparative study of aromatic characterization of Yingde Black Tea infusions in different steeping temperatures. LWT-Food Sci. Technol. 2021, 143, 110860. [Google Scholar] [CrossRef]
- Chen, X.; Sun, H.; Qu, D.; Yan, F.; Jin, W.; Jiang, H.; Chen, C.; Zhang, Y.; Li, C.; Xu, Z. Identification and characterization of key aroma compounds in Chinese high altitude and northernmost black tea (Camellia sinensis) using distillation extraction and sensory analysis methods. Flavour Fragr. J. 2020, 35, 666–673. [Google Scholar] [CrossRef]
- Pang, X.; Yu, W.; Cao, C.; Yuan, X.; Qiu, J.; Kong, F.; Wu, J. Comparison of potent odorants in raw and ripened pu-erh tea infusions based on odor activity value calculation and multivariate analysis: Understanding the role of pile fermentation. J. Agric. Food Chem. 2019, 67, 13139–13149. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zeng, X.; Wu, H.; Shen, S.; Yang, X.; Deng, W.-W.; Ning, J. Characterizing volatile metabolites in raw Pu’er tea stored in wet-hot or dry-cold environments by performing metabolomic analysis and using the molecular sensory science approach. Food Chem. 2021, 350, 129186. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.-N.; Zhong, X.-X.; He, L.; Gao, Y.; Zhang, X.; Wang, C.-M.; Du, X. Comparison of different aroma-active compounds of Sichuan Dark brick tea (Camellia sinensis) and Sichuan Fuzhuan brick tea using gas chromatography–mass spectrometry (GC–MS) and aroma descriptive profile tests. Eur. Food Res. Technol. 2019, 245, 1963–1979. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Ma, W.-J.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H.-P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 28 February 2022).
- Feng, Z.; Li, M.; Li, Y.; Wan, X.; Yang, X. Characterization of the orchid-like aroma contributors in selected premium tea leaves. Food Res. Int. 2020, 129, 108841. [Google Scholar] [CrossRef] [PubMed]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Flaig, M.; Qi, S.; Wei, G.; Yang, X.; Schieberle, P. Characterization of the key odorants in a high-grade Chinese green tea beverage (Camellia sinensis; Jingshan cha) by means of the sensomics approach and elucidation of odorant changes in tea leaves caused by the tea manufacturing process. J. Agric. Food Chem. 2020, 68, 5168–5179. [Google Scholar] [CrossRef]
- Flaig, M.; Qi, S.C.; Wei, G.; Yang, X.; Schieberle, P. Characterisation of the key aroma compounds in a Longjing green tea infusion (Camellia sinensis) by the sensomics approach and their quantitative changes during processing of the tea leaves. Eur. Food Res. Technol. 2020, 246, 2411–2425. [Google Scholar] [CrossRef]
Compounds | XYMJ Spring Teas | XYMJ Autumn Teas | ||
---|---|---|---|---|
Range | Average | Range | Average | |
FAA | 1.658~2.007 | 1.826 ± 0.147 a | 1.619~1.750 | 1.691 ± 0.060 b |
CAF | 3.317~3.738 | 3.477 ± 0.197 b | 3.559~3.694 | 3.608 ± 0.062 a |
GA | 0.055~0.060 | 0.057 ± 0.003 a | 0.044~0.053 | 0.047 ± 0.004 b |
EGC | 1.979~2.466 | 2.178 ± 0.284 | 1.748~2.362 | 1.991 ± 0.274 |
C | 0.077~0.104 | 0.090 ± 0.011 b | 0.091~0.126 | 0.104 ± 0.015 a |
EGCG | 4.527~6.790 | 5.712 ± 1.107 | 5.724~5.871 | 5.820 ± 0.065 |
EC | 0.517~0.703 | 0.623 ± 0.093 | 0.531~0.696 | 0.604 ± 0.076 |
ECG | 1.681~1.893 | 1.793 ± 0.101 a | 1.620~1.770 | 1.703 ± 0.072 b |
No. | Retention Time (min) | CAS No. | Volatile Compounds | XYMJ Spring Teas | XYMJ Autumn Teas | ||
---|---|---|---|---|---|---|---|
Range | Average | Range | Average | ||||
1 | 1.873 | 75-18-3 | dimethyl sulfide | 0.57~3.98 | 2.66 b | 8.05~11.95 | 9.06 a |
2 | 4.916 | 66-25-1 | hexanal | 5.41~15.04 | 9.01 a | 2.77~6.16 | 4.03 b |
3 | 8.688 | 111-71-7 | heptanal | 2.81~17.20 | 7.18 a | 1.33~3.24 | 2.65 b |
4 | 11.359 | 100-52-7 | benzaldehyde | 5.25~10.60 | 7.08 a | 3.90~5.59 | 4.91 b |
5 | 12.383 | 26001-58-1 | 1-octen-3-ol | 1.07~3.62 | 2.04 | 1.06~3.40 | 2.08 |
6 | 12.631 | 585-25-1 | 2,3-octanedione | 2.04~4.46 | 2.64 | 3.35~3.90 | 3.61 |
7 | 12.774 | 127-91-3 | (±)-β-pinene | 0~5.04 | 1.92 | 0~0.99 | 0.49 |
8 | 12.869 | 110-93-0 | 6-methyl-5-heptene-2-one | 1.31~3.90 | 2.46 | 0~6.28 | 1.85 |
9 | 13.412 | 28973-97-9 | (6Z)-farnesene | 0~51.39 | 12.85 | 0~5.25 | 2.21 |
10 | 14.488 | 874-41-9 | 1,3-dimethyl-4-ethylbenzene | 0~3.43 | 1.58 | 0~0.54 | 0.17 |
11 | 14.683 | 5989-27-5 | limonene | 3.09~29.04 | 14.17 a | 1.22~5.78 | 3.18 b |
12 | 15.759 | 13466-78-9 | 3-carene | 1.44~6.40 | 4.36 | 4.34~7.75 | 6.39 |
13 | 16.216 | 29050-33-7 | (+)-4-carene | 0~3.56 | 0.89 | / | 0.00 |
14 | 16.921 | 69668-93-5 | 3-decyn-2-ol | 10.45~15.07 | 12.10 a | 4.93~8.40 | 6.50 b |
15 | 17.717 | 34995-77-2 | Linalool oxide (trans-furanoid) | 0~5.33 | 2.69 | 2.07~3.22 | 2.81 |
16 | 18.34 | 78-70-6 | linalool | 77.70~103.23 | 88.97 | 86.29~115.74 | 100.77 |
17 | 18.545 | 124-19-6 | nonanal | 24.20~51.62 | 34.51 | 22.56~32.80 | 27.41 |
18 | 18.912 | 60-12-8 | Phenylethyl alcohol | 0~3.27 | 2.30 | 0.88~4.25 | 2.56 |
19 | 21.875 | 39028-58-5 | Linalool oxide (trans-pyranoid) | 0~3.56 | 1.21 | 0~7.77 | 3.81 |
20 | 22.112 | 91-20-3 | naphthalene | 2.76~9.39 | 4.53 | 3.57~6.25 | 4.57 |
21 | 22.545 | 53398-84-8 | trans-3-hexenyl butyrate | 6.67~23.70 | 14.69 | 5.85~16.20 | 9.08 |
22 | 22.783 | 119-36-8 | methyl salicylate | 13.37~26.56 | 19.01 a | 9.64~16.64 | 11.47 b |
23 | 23.412 | 112-31-2 | decanal | 4.73~6.00 | 5.30 | 3.50~8.61 | 6.29 |
24 | 24.021 | 432-25-7 | β-cyclocitral | 2.31~3.39 | 2.87 | 3.38~14.72 | 9.61 |
25 | 24.116 | 21777-77-7 | methyl 2-methylpentanoate | 9.68~23.67 | 17.95 | 17.15~28.90 | 24.67 |
26 | 24.679 | 53398-85-9 | cis-3-hexenyl-α-methylbutyrate | 6.24~22.02 | 13.04 | 7.27~14.07 | 9.26 |
27 | 25.731 | 106-24-1 | geraniol | 111.71~190.69 | 150.72 a | 29.15~136.04 | 64.77 b |
28 | 27.208 | 91-57-6 | 2-methylnaphthalene | 0~1.71 | 0.61 | 0~2.32 | 1.30 |
29 | 27.336 | 120-72-9 | indole | 7.59~21.82 | 15.37 a | 0.92~9.99 | 3.33 b |
30 | 29.831 | 17699-14-8 | α-cubebene | 5.25~7.48 | 6.30 | 3.97~8.72 | 6.51 |
31 | 31.283 | 31501-11-8 | (Z)-3-hexenyl hexanoate | 20.89~83.72 | 53.38 a | 20.78~49.87 | 30.48 b |
32 | 31.483 | 6378-65-0 | hexanoic acid, hexyl ester | 2.96~11.08 | 7.17 a | 2.15~3.76 | 3.29 b |
33 | 34.198 | 3879-26-3 | cis-geranylacetone | 2.63~8.67 | 5.36 b | 5.12~11.45 | 8.89 a |
34 | 35.522 | 14901-07-06 | trans-β-ionone | 5.90~10.97 | 8.55 | 2.93~12.81 | 7.44 |
35 | 36.083 | 629-62-9 | pentadecane | 13.80~19.73 | 17.58 | 12.30~15.22 | 13.15 |
36 | 38.569 | 142-50-7 | cis-nerolidol | 0~26.21 | 15.93 | 12.25~22.32 | 17.55 |
37 | 39.931 | 629-92-5 | nonadecane | 14.10~25.08 | 20.20 | 13.45~21.15 | 17.29 |
38 | 40.979 | 483-76-1 | δ-cadinene | 3.54~6.93 | 5.82 | 4.87~7.55 | 6.23 |
39 | 41.484 | 19435-97-3 | δ-cadinol | 5.15~10.39 | 8.29 b | 11.53~17.45 | 14.61 a |
Odor-Active Compounds | Odor Characteristics 1 | Odor Threshold 2 (μg/L) | XYMJ Spring Teas | XYMJ Autumn Teas | Average (OAV) |
---|---|---|---|---|---|
Range (OAV) | Range (OAV) | ||||
Dimethyl sulfide | sweet, chestnut-like, cabbage-like | 0.30 | 1.90~13.25 | 26.84~39.84 | 19.53 |
Hexanal | green grass, tallow, fat | 4.50 | 1.20~3.34 | 0.62~1.37 | 1.45 |
Heptanal | chestnut-like, citrus, rancid | 3.00 | 0.94~5.73 | 0.44~1.08 | 1.64 |
Benzaldehyde | almond-like smell | 2.03 | 1.75~3.53 | 1.30~2.03 | 2.00 |
1-Octen-3-ol | mushroom | 3.62 | 1.07~3.40 | 1.06~3.62 | 2.06 |
2,3-Octanedione | green flavor, broccoli-like | 2.52 | 0.58~1.77 | 1.33~1.55 | 1.24 |
Linalool | floral, citrusy, clean aroma | 6.00 | 12.95~17.20 | 14.38~19.29 | 15.81 |
Nonanal | fatty, green, sweet orange-like | 1.00 | 24.20~51.62 | 22.56~32.80 | 30.96 |
Naphthalene | tar, camphoric and greasy odor | 0.44 | 6.28~21.33 | 8.11~14.21 | 10.34 |
Decanal | floral-fatty odor, citrus | 0.10 | 47.28~59.99 | 35.02~86.06 | 57.94 |
β-cyclocitral | citrus, lemon | 5.00 | 0.46~0.68 | 0.68~2.94 | 1.25 |
Geraniol | rose-like odor | 7.50 | 14.89~25.42 | 3.89~18.14 | 14.37 |
(Z)-3-Hexenyl hexanoate | tender, fresh and clean | 16.00 | 1.31~5.23 | 1.30~3.12 | 2.62 |
trans-β-Ionone | violet, sweet, floral | 0.007 | 1972.05~2819.05 | 1756.73~2174.90 | 2195.05 |
cis-Nerolidol | slight neroli-like, rose-like | 10.00 | 0~1.67 | 1.23~2.23 | 1.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, P.; Kong, Y.-S.; Liu, P.-P.; Jiang, C.-L.; Sun, M.-F.; Guo, G.-Y.; Liu, Z.-H. Temporal Variation of the Non-Volatile Compounds and Key Odorants in Xinyang Maojian Green Teas during the Spring and Autumn Seasons. Agronomy 2022, 12, 1085. https://doi.org/10.3390/agronomy12051085
Yin P, Kong Y-S, Liu P-P, Jiang C-L, Sun M-F, Guo G-Y, Liu Z-H. Temporal Variation of the Non-Volatile Compounds and Key Odorants in Xinyang Maojian Green Teas during the Spring and Autumn Seasons. Agronomy. 2022; 12(5):1085. https://doi.org/10.3390/agronomy12051085
Chicago/Turabian StyleYin, Peng, Ya-Shuai Kong, Pan-Pan Liu, Chang-Ling Jiang, Mu-Fang Sun, Gui-Yi Guo, and Zhong-Hua Liu. 2022. "Temporal Variation of the Non-Volatile Compounds and Key Odorants in Xinyang Maojian Green Teas during the Spring and Autumn Seasons" Agronomy 12, no. 5: 1085. https://doi.org/10.3390/agronomy12051085
APA StyleYin, P., Kong, Y. -S., Liu, P. -P., Jiang, C. -L., Sun, M. -F., Guo, G. -Y., & Liu, Z. -H. (2022). Temporal Variation of the Non-Volatile Compounds and Key Odorants in Xinyang Maojian Green Teas during the Spring and Autumn Seasons. Agronomy, 12(5), 1085. https://doi.org/10.3390/agronomy12051085