Optimizing Crop Systems: Integrating Forage Triticale into the Fallow of Peanut Monoculture in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Dry Matter and Grain Yield Measurements
2.4. Soil Water and Water Use Efficiency
2.5. Production Costs and Economic Benefit
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Production Performance
3.3. Soil Water Content and Water Use Efficiency
3.4. Net Income
3.5. Economic Efficiency of Water Use
4. Discussion
4.1. Production and Water Utilization
4.2. Economic Benefit
4.3. EEWU
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics of China (NBSC). China Statistical Yearbook; China Statistics Press: Beijing, China, 2005. [Google Scholar]
- Liu, Z.X.; Liu, T.R.; Liu, Y.; Yang, J.Q.; Zhen, X.Y.; Li, X.X.; Yang, D.Q.; Li, X.D. Effect of row spacing on physiological characteristics and yield of intercropped peanut with wheat. Chin. J. Appl. Ecol. 2018, 29, 1951–1959. (In Chinese) [Google Scholar]
- Nielsen, D.C.; Vigil, M.F. Precipitation Storage Efficiency during Fallow in Wheat-Fallow Systems. Agron. J. 2010, 102, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.A.; Zentner, R.P.; Basnyat, P.; De Jong, R.; Lemke, R.; Desjardins, R. Nitrogen mineralization under summer fallow and continuous wheat in the semiarid Canadian prairie. Can. J. Soil Sci. 2008, 88, 681–696. [Google Scholar] [CrossRef]
- Grant, C.A.; Peterson, G.A.; Campbell, C.A. Nutrient considerations for diversified cropping systems in the northern Great Plains. Agron. J. 2002, 94, 186–198. [Google Scholar] [CrossRef]
- Greb, B.W. Reducing Drought Effects on Croplands in the West Central Great Plains; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1979. [Google Scholar]
- Farahani, H.J.; Peterson, G.A.; Westfall, D.G. Dryland cropping intensification: A fundamental solution to efficient use of precipitation. Adv. Agron. 1998, 64, 197–223. [Google Scholar]
- Unger, P.W.; Schomberg, H.; Dao, T.H.; Jones, O.R. Tillage and crop residue management practices for sustainable dryland farming systems. Ann. Arid Zone 1997, 36, 209–232. [Google Scholar]
- Norwood, C.A.; Dhuyvetter, K.C. An economic comparison of the wheat-fallow and wheat-sorghum-fallow cropping systems. J. Prod. Agric. 1993, 6, 261–266. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Stewart, B.A.; Fu, X.J. Double cropping wheat and corn in a subhumid region of China. Field Crop Res. 1994, 36, 175–183. [Google Scholar]
- Ofori, F.; Stern, W.R. The combined effects of nitrogen fertilizer and density of the legume component on production efficiency in a maize/cowpea intercrop system. Field Crop Res. 1987, 16, 43–52. [Google Scholar] [CrossRef]
- Wan, S.B. Peanut Cultivation in China; Shanghai Science and Technology Press: Shanghai, China, 2003. (In Chinese) [Google Scholar]
- Nielsen, D.C.; Vigil, M.F.; Anderson, R.L.; Bowman, R.A.; Benjamin, J.G.; Halvorson, A.D. Cropping system influence on planting water content and yield of winter wheat. Agron. J. 2002, 94, 962–967. [Google Scholar] [CrossRef]
- Ryan, J.; Pala, M.; Harris, H.; Masri, S.; Singh, M. Rainfed wheat-based rotations under Mediterranean-type climatic conditions: Crop sequences, N fertilization, and stubble grazing intensity in relation to cereal yields parameters. J. Agric. Sci. Camb. 2010, 148, 205–216. [Google Scholar] [CrossRef]
- Grabriel, J.L.; Quemada, M. Replacing bare fallow with cover crops in a maize cropping system: Yield, N uptake and fertiliser fate. Eur. J. Agron. 2011, 34, 133–143. [Google Scholar] [CrossRef]
- Wang, Z.K.; Jiang, H.L.; Shen, Y.Y. Forage production and soil water balance in oat and common vetch sole crops and intercrops cultivated in the summer-autumn fallow season on the Chinese Loess Plateau. Eur. J. Agron. 2020, 115, 126042. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Lyon, D.J.; Miceli-Garcia, J.J. Replacing fallow with forage triticale in a dryland wheat-corn-fallow rotation may increase profitability. Field Crop Res. 2017, 203, 227–237. [Google Scholar] [CrossRef]
- Christiansen, S.; Ryan, J.; Singh, M.; Ates, S.; Bahhady, F.; Mohamed, K.; Youssef, O.; Loss, S. Potential legume alternatives to fallow and wheat monoculture for Mediterranean environments. Crop Pasture Sci. 2015, 66, 113–121. [Google Scholar] [CrossRef]
- Yuan, Z.; Yan, D.H.; Yang, Z.Y.; Yin, J.; Breach, P.; Wang, D.Y. Impacts of climate change on winter wheat water requirement in Haihe River Basin. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 677–697. [Google Scholar] [CrossRef]
- Cao, G.L.; Han, D.M.; Song, X.F. Evaluating actual evapotranspiration and impacts of groundwater storage change in the North China Plain. Hydrol. Process. 2014, 28, 1797–1808. [Google Scholar] [CrossRef]
- Zhang, Q.P.; Bell, L.W.; Shen, Y.Y.; Whish, J.P.M. Indices of forage nutritional yield and water use efficiency amongst spring-sown annual forage crops in north-west China. Eur. J. Agron. 2018, 93, 1–10. [Google Scholar] [CrossRef]
- Zhu, X.M.; Li, Y.S.; Peng, X.L.; Zhang, S.G. Soils of the loess region in China. Geoderma 1983, 29, 237–255. [Google Scholar]
- Zhang, Z.X.; Whish, J.P.M.; Bell, L.W.; Nan, Z.B. Forage production, quality and water-use-efficiency of four warm-season annual crops at three sowing times in the Loess Plateau region of China. Eur. J. Agron. 2017, 84, 84–94. [Google Scholar] [CrossRef]
- Liu, C.M.; Zhang, X.Y.; Zhang, Y.Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric. For. Meteorol. 2002, 111, 109–120. [Google Scholar] [CrossRef]
- Huang, M.B.; Shao, M.A.; Zhang, L.; Li, Y.S. Water use efficiency and sustainability of different long-term crop rotation systems in the Loess Plateau of China. Soil Tillage Res. 2003, 72, 95–104. [Google Scholar] [CrossRef]
- Neal, J.S.; Fulkerson, W.J.; Hacker, R.B. Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation. Agric. Water Manag. 2011, 98, 759–774. [Google Scholar] [CrossRef]
- Wallace, J.S.; Batchelor, C.H. Managing water resources for crop production. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1997, 352, 937–947. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Aiken, R.M.; O Brien, D.M.; Olson, B.L.; Murray, L. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat. Agron. J. 2013, 105, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.T.; Hamel, C.; O’Donovan, J.T.; Cutforth, H.; Zentner, R.P.; Campbell, C.A.; Niu, Y.N.; Poppy, L. Diversifying crop rotations with pulses enhances system productivity. Sci. Rep. 2015, 5, 14625. [Google Scholar] [CrossRef]
- St. Luce, M.; Lemke, R.; Gan, Y.T.; McConkey, B.; May, W.; Campbell, C.; Zentner, R.; Wang, H.; Kroebel, R.; Fernandez, M.; et al. Diversifying cropping systems enhances productivity, stability, and nitrogen use efficiency. Agron. J. 2020, 112, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, D.C.; Vigil, M.F. Intensifying a semi-arid dryland crop rotation by replacing fallow with pea. Agric. Water Manag. 2017, 186, 127–138. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Kendy, E.; Yu, Q.; Liu, C.M.; Shen, Y.J.; Sun, H.Y. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agric. Water Manag. 2004, 64, 107–122. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.D.; Ahuja, L.R. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Lyon, D.J.; Hergert, G.W.; Higgins, R.K.; Calderón, F.J.; Vigil, M.F. Cover crop mixtures do not use water differently than single-species plantings. Agron. J. 2015, 107, 1025–1038. [Google Scholar] [CrossRef]
- Norwood, C.A. Dryland winter wheat as affected by previous crops. Agron. J. 2000, 92, 121–127. [Google Scholar] [CrossRef]
- Lv, L.H.; Yao, Y.R.; Zhang, L.H.; Dong, Z.Q.; Jia, X.L.; Liang, S.B.; Ji, J.J. Winter wheat grain yield and its components in the North China Plain: Irrigation management, cultivation, and climate. Chil. J. Agric. Res. 2013, 73, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Komarek, A.M.; Bell, L.W.; Whish, J.P.M.; Robertson, M.J.; Bellotti, W.D. Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop-livestock systems in western China. Agric. Syst. 2015, 133, 63–72. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Zaman, M.S.; Hasan, M.K.; Khan, A.S.M.M.R. Increasing cropping intensity and productivity through boro T.aus-T.aman-mustard cropping pattern in Bangladesh. SAARC J. Agric. 2018, 15, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.Q.; Zhang, Z.X.; Liang, Z.T.; Li, Z.; Yang, X.L.; Wang, Z.K.; Jeffrey, A.C.; Shen, Y.Y. Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system. Agric. Water Manag. 2020, 230, 10598. [Google Scholar] [CrossRef]
- Li, L.; Yang, L.; Liao, Y.C.; Wen, X.X. Study on soil water effect of double cropping in the dryland of subhumid areas of the Loess Plateau. Agric. Res. Arid. Areas 2010, 28, 145–151. (In Chinese) [Google Scholar]
- Tan, M.H.; Zheng, L.Q. Increase in economic efficiency of water use caused by crop structure adjustment in arid areas. J. Environ. Manag. 2019, 230, 386–391. [Google Scholar] [CrossRef]
Soil Layer (cm) | Sand (%) | Silt (%) | Clay (%) | Bulk Density (g cm−3) | Organic Matter (g kg−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | pH |
---|---|---|---|---|---|---|---|---|---|
0–20 | 31.2 | 43.7 | 25.1 | 1.49 | 17.4 | 96.4 | 7.7 | 89.4 | 7.88 |
20–40 | 28.7 | 41.8 | 29.5 | 1.55 | 12.4 | 47.9 | 4.2 | 87.2 | 8.01 |
Crop | Cultivar | Sowing Date | Harvest Date | Date of Irrigation | Amount of Each Irrigation (mm) | Fertilizer N/P2O5/K2O (kg ha−1) |
---|---|---|---|---|---|---|
Forage triticale | Zhongsi 1048 | 11 October 2011 | 14 May 2012 | 17 April 2012 | 60 | 215/120/113 |
15 October 2012 | 13 May 2013 | 3 April 2013 | 60 | 215/120/113 | ||
15 October 2013 | 11 May 2014 | 5 March 2014 | 60 | 215/120/113 | ||
Peanut | Jihua 5 | 15 May 2012 | 16 September 2012 | 2 June 12 | 60 | 105/120/113 |
15 May 2013 | 19 September 2013 | 11 June 13 | 60 | 105/120/113 | ||
13 May 2014 | 13 September 2014 | 6 June 13 | 60 | 105/120/113 |
Year | Cropping System | Crop | Seeds | N and P Fertilizer | Irrigation | Herbicides | Labor | Machine | Total Input |
---|---|---|---|---|---|---|---|---|---|
US$ ha−1 | |||||||||
2012 | F-P | Peanut | 452.38 | 323.81 | 19.05 | 80.95 | 1595.24 | 666.67 | 3138.10 |
2012 | T-P | Peanut | 452.38 | 323.81 | 19.05 | 80.95 | 1595.24 | 666.67 | 3138.10 |
2011–2012 | Forage triticale | 190.48 | 304.76 | 38.10 | 0.00 | 47.62 | 285.71 | 866.67 | |
2013 | F-P | Peanut | 405.41 | 331.48 | 19.08 | 81.08 | 1633.55 | 691.57 | 3162.16 |
2013 | T-P | Peanut | 405.41 | 331.48 | 19.08 | 81.08 | 1633.55 | 691.57 | 3162.16 |
2012–2013 | Forage triticale | 190.78 | 310.02 | 38.16 | 0.00 | 71.54 | 310.02 | 920.51 | |
2014 | F-P | Peanut | 376.22 | 322.48 | 19.54 | 78.18 | 1734.53 | 723.13 | 3254.07 |
2014 | T-P | Peanut | 376.22 | 322.48 | 19.54 | 78.18 | 1734.53 | 723.13 | 3254.07 |
2013–2014 | Forage triticale | 195.44 | 317.59 | 39.09 | 0.00 | 73.29 | 342.02 | 967.43 |
Crop | 2012 | 2013 | 2014 |
---|---|---|---|
Forage triticale | 0.222 | 0.238 | 0.244 |
Pod of peanut | 1.048 | 0.827 | 0.814 |
Straw of peanut | 0.119 | 0.119 | 0.122 |
Crop | Growing Season | Precipitation (mm) | |||
---|---|---|---|---|---|
2011–2012 | 2012–2013 | 2013–2014 | LTA | ||
Forage triticale | October–May | 132.0 | 63.5 | 72.2 | 126.9 |
Peanut | May–September | 372.3 | 493.2 | 221.8 | 413.9 |
Year | Cropping System | DM of Forage Triticale (t ha−1) | Peanut (t ha−1) | DM of Total System (t ha−1) | |
---|---|---|---|---|---|
Pod Yield | Straw Yield | ||||
2012 | F-P | - | 5.25 ± 0.02 | 5.27 ± 0.02 | 10.52 ± 0.03 |
2011–2012 | T-P | 10.01 ± 0.07 | 5.01 ± 0.07 | 5.06 ± 0.02 | 20.09 ± 0.08 |
2013 | F-P | - | 5.57 ± 0.08 | 5.73 ± 0.07 | 11.30 ± 0.14 |
2012–2013 | T-P | 8.41 ± 0.04 | 5.17 ± 0.06 | 5.40 ± 0.05 | 18.98 ± 0.15 |
2014 | F-P | - | 4.91 ± 0.09 | 5.06 ± 0.02 | 9.97 ± 0.11 |
2013–2014 | T-P | 11.12 ± 0.12 | 4.25 ± 0.05 | 4.43 ± 0.01 | 19.78 ± 0.09 |
LSD | 0.28 | 0.21 | 0.12 | 0.33 | |
Analysis of variance results (P > F) | |||||
Year (Y) | <0.001 | <0.001 | <0.001 | <0.001 | |
Cropping system (CS) | - | <0.001 | <0.001 | <0.001 | |
Y × CS | - | 0.001 | <0.001 | <0.001 |
Year | Cropping System | Seed Yield of Peanut (t ha−1) | Plants per Hectare (×105) | Pod Number per Plant | 100-Pod Weight (g) | 100-Seed Weight (g) |
---|---|---|---|---|---|---|
2012 | F-P | 4.17 ± 0.03 | 2.94 ± 0.04 | 11.50 ± 0.11 | 175.30 ± 0.61 | 93.11 ± 0.31 |
2011–2012 | T-P | 4.19 ± 0.04 | 2.94 ± 0.02 | 12.10 ± 0.10 | 178.71 ± 0.80 | 94.20 ± 0.14 |
2013 | F-P | 3.88 ± 0.06 | 2.95 ± 0.02 | 11.00 ± 0.14 | 180.62 ± 0.21 | 95.01 ± 0.23 |
2012–2013 | T-P | 3.60 ± 0.04 | 2.95 ± 0.02 | 10.00 ± 0.12 | 179.40 ± 0.23 | 94.22 ± 0.10 |
2014 | F-P | 3.44 ± 0.06 | 2.96 ± 0.03 | 10.50 ± 0.06 | 178.63 ± 0.22 | 95.01 ± 0.11 |
2013–2014 | T-P | 2.96 ± 0.03 | 2.95 ± 0.03 | 9.60 ± 0.10 | 177.32 ± 0.19 | 93.63 ± 0.13 |
LSD | 0.15 | 0.08 | 0.32 | 1.27 | 0.57 | |
Analysis of variance results (P > F) | ||||||
Year (Y) | <0.001 | 0.003 | <0.001 | <0.001 | <0.001 | |
Cropping system (CS) | <0.001 | 0.07 | <0.001 | <0.001 | <0.001 | |
Y × CS | 0.001 | 0.584 | <0.001 | 0.919 | <0.001 |
Year | Cropping System | WU of Forage Triticale (mm) | WUEDM of Forage Triticale (kg ha−1 mm−1) | WU of Peanut (mm) | WUEDM of Peanut (kg ha−1 mm−1) |
---|---|---|---|---|---|
2012 | F-P | - | - | 453.85 ± 7.34 | 23.19 ± 0.41 |
2011–2012 | T-P | 232.94 ± 4.49 | 43.03 ± 0.82 | 396.90 ± 9.83 | 25.38 ± 0.50 |
2013 | F-P | - | - | 608.83 ± 11.07 | 18.56 ± 0.11 |
2012–2013 | T-P | 251.69 ± 13.33 | 33.60 ± 1.67 | 504.82 ± 6.27 | 20.95 ± 0.46 |
2014 | F-P | - | - | 356.92 ± 7.50 | 27.96 ± 0.55 |
2013–2014 | T-P | 253.69 ± 2.74 | 43.77 ± 0.95 | 289.63 ± 5.47 | 29.99 ± 0.66 |
LSD | 28.62 | 4.17 | 20.96 | 1.49 | |
Analysis of variance results (P > F) | |||||
Year (Y) | 0.227 | 0.002 | <0.001 | <0.001 | |
Cropping system (CS) | - | - | <0.001 | <0.001 | |
Y × CS | - | - | 0.025 | 0.914 |
Year | Cropping System | Forage Triticale (US$ ha−1) | Peanut (US$ ha−1) | Total Cropping System (US$ ha−1) |
---|---|---|---|---|
2012 | F-P | - | 2988.8 ± 26.2 | 2988.8 ± 26.2 |
2011–2012 | T-P | 1359.4 ± 14.5 | 2710.7 ± 68.0 | 4070.2 ± 63.8 |
2013 | F-P | - | 2125.6 ± 75.3 | 2125.6 ± 75.3 |
2012–2013 | T-P | 1133.6 ± 88.8 | 1758.1 ± 58.1 | 2891.7 ± 66.8 |
2014 | F-P | - | 1362.1 ± 76.4 | 1362.1 ± 76.4 |
2013–2014 | T-P | 1817.5 ± 29.4 | 745.7 ± 41.1 | 2563.2 ± 21.1 |
LSD | 67.9 | 186.0 | 183.0 | |
Analysis of variance results (P > F) | ||||
Year (Y) | <0.001 | <0.001 | <0.001 | |
Cropping system (CS) | - | 0.007 | <0.001 | |
Y × CS | - | 0.410 | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Deng, J.; Liu, G.; Yang, X.; Zhang, Z.; Shen, Y. Optimizing Crop Systems: Integrating Forage Triticale into the Fallow of Peanut Monoculture in the North China Plain. Agronomy 2022, 12, 1138. https://doi.org/10.3390/agronomy12051138
You Y, Deng J, Liu G, Yang X, Zhang Z, Shen Y. Optimizing Crop Systems: Integrating Forage Triticale into the Fallow of Peanut Monoculture in the North China Plain. Agronomy. 2022; 12(5):1138. https://doi.org/10.3390/agronomy12051138
Chicago/Turabian StyleYou, Yongliang, Jianqiang Deng, Guibo Liu, Xianlong Yang, Zhixin Zhang, and Yuying Shen. 2022. "Optimizing Crop Systems: Integrating Forage Triticale into the Fallow of Peanut Monoculture in the North China Plain" Agronomy 12, no. 5: 1138. https://doi.org/10.3390/agronomy12051138
APA StyleYou, Y., Deng, J., Liu, G., Yang, X., Zhang, Z., & Shen, Y. (2022). Optimizing Crop Systems: Integrating Forage Triticale into the Fallow of Peanut Monoculture in the North China Plain. Agronomy, 12(5), 1138. https://doi.org/10.3390/agronomy12051138