Matter Production Characteristics and Nitrogen Use Efficiency under Different Nitrogen Application Patterns in Chinese Double-Cropping Rice Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Experimental Design
2.3. Field Management
2.4. Methods of Sample Collection and Analysis
2.4.1. The Soil Chemical Properties
2.4.2. Yield and Yield Components
2.4.3. Dry Matter Accumulation of Rice
2.4.4. Nitrogen Content
2.4.5. Net Photosynthetic Rate
2.4.6. Leaf Area
2.4.7. Related Formula of Nitrogen Use Efficiency
2.5. Statistical Analysis
3. Results
3.1. Effects of Nitrogen Application Patterns on Yield and Matter Production of Double-Cropping Rice
3.1.1. Grain Yield
3.1.2. Yield Components
3.1.3. Analysis of Variance in Experimental Factors
3.1.4. Dry Matter Accumulation and Translocation
3.1.5. Net Photosynthetic Rate, Leaf Area Index
3.2. Effects of Nitrogen Application Patterns on Nitrogen Use Efficiency of Double-Cropping Rice in 2016
3.2.1. Nitrogen Use Efficiency
3.2.2. Nitrogen Uptake
3.3. Correlation Analysis
4. Discussion
4.1. Effects of Nitrogen Management on Yield and Nitrogen Use Efficiency
4.2. Effects of Nitrogen Management on Matter Production Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, M.; Li, D.; Li, J.; Qin, D.; Hosen, Y.; Shen, H.; Cong, R.; He, X. Polyolefin-coated urea decreases ammonia volatilization in a double rice system of southern China. Agron. J. 2013, 105, 277–284. [Google Scholar] [CrossRef]
- Mi, W.; Yang, X.; Wu, L.; Ma, Q.; Liu, Y.; Zhang, X. Evaluation of nitrogen fertilizer and cultivation methods for agronomic performance of rice. Agron. J. 2016, 108, 1907–1916. [Google Scholar] [CrossRef]
- Peng, S.B.; Huang, J.L.; Zhong, X.H.; Yang, J.C.; Wang, G.H.; Zou, Y.-B.; Zhang, F.-S.; Zhu, Q.-S.; Buresh, R.; Witt, C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric. Sci. China 2002, 1, 776–785. [Google Scholar]
- Cassman, K.G.; Peng, S.; Olk, D.; Ladha, J.; Reichardt, W.; Dobermann, A.; Singh, U. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crop. Res. 1998, 56, 7–39. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.J.; Huang, J.; Yang, J.; Zou, Y.; Zhong, X.; Wang, G.; Zhang, F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crop. Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F. N uptake and distribution in plant canopies. In Diagnosis of the Nitrogen Status in Crops; Springer: Berlin/Heidelberg, Germany, 1997; pp. 3–43. [Google Scholar]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Thakur, A.K.; Mohanty, R.K.; Patil, D.U.; Kumar, A. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy Water Environ. 2014, 12, 413–424. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Yang, X.; Ge, M.; Ma, Q.; Wei, H.; Dai, Q.; Huo, Z.; Xu, K.; Luo, D. Accumulation and utilization of nitrogen, phosphorus and potassium of irrigated rice cultivars with high productivities and high N use efficiencies. Field Crop. Res. 2014, 161, 55–63. [Google Scholar] [CrossRef]
- Ling, Q.; Zhang, H.; Dai, Q.; Ding, Y.; Ling, L.; Su, Z.; Xu, M.; Que, J.; Wang, S. Study on precise and quantitative N application in rice. Sci. Agric. Sin. 2005, 38, 2457–2467. [Google Scholar]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Chuan, L.; He, P.; Jin, J.; Li, S.; Grant, C.; Xu, X.; Qiu, S.; Zhao, S.; Zhou, W. Estimating nutrient uptake requirements for wheat in China. Field Crop. Res. 2013, 146, 96–104. [Google Scholar] [CrossRef]
- Wang, D.; Xu, C.; Ye, C.; Chen, S.; Chu, G.; Zhang, X. Low recovery efficiency of basal fertilizer-N in plants does not indicate high basal fertilizer-N loss from split-applied N in transplanted rice. Field Crop. Res. 2018, 229, 8–16. [Google Scholar] [CrossRef]
- Sui, B.A.; Feng, X.M.; Tian, G.L.; Hu, X.Y.; Shen, Q.R.; Guo, S.W. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crop. Res. 2013, 150, 99–107. [Google Scholar] [CrossRef]
- Ye, C.; Ma, H.Y.; Huang, X.; Xu, C.M.; Chen, S.; Chu, G.; Zhang, X.F.; Wang, D.Y. Effects of increasing panicle-stage N on yield and N use efficiency of indica rice and its relationship with soil fertility. Crop J. 2022, in press. [Google Scholar] [CrossRef]
- Ye, C.; Huang, X.; Chu, G.; Chen, S.; Xu, C.; Zhang, X.; Wang, D. Effects of Postponing Topdressing-N on the Yield of Different Types of japonica Rice and Its Relationship with Soil Fertility. Agronomy 2019, 9, 868. [Google Scholar] [CrossRef] [Green Version]
- Kamiji, Y.; Yoshida, H.; Palta, J.A.; Sakuratani, T.; Shiraiwa, T. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crop. Res. 2011, 122, 242–247. [Google Scholar] [CrossRef]
- Wang, D.; Xu, C.; Yan, J.; Zhang, X.; Chen, S.; Chauhan, B.S.; Wang, L.; Zhang, X. 15 N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crop. Res. 2017, 211, 27–36. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, G.; Lin, J.; Ding, Y.; Li, G.; Wang, S.; Liu, Z.; Tang, S.; Ding, C. Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops. Eur. J. Agron. 2015, 70, 41–47. [Google Scholar] [CrossRef]
- Yi, J.; Gao, J.; Zhang, W.; Zhao, Y.; Zhao, C.; Zhao, Y.; Li, Z.; Xin, W. Delayed timing of tillering fertilizer improved grain yield and nitrogen use efficiency in japonica rice. Crop Sci. 2020, 60, 1021–1033. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, T.; Zhang, P.; Huang, Y.; Chen, Y.; Ren, W. Regular nitrogen application increases nitrogen utilization efficiency and grain yield in indica hybrid rice. Agron. J. 2016, 108, 1951–1961. [Google Scholar] [CrossRef]
- Nowicka, B.; Ciura, J.; Szymańska, R.; Kruk, J. Improving photosynthesis, plant productivity and abiotic stress tolerance current trends and future perspectives. J. Plant Physiol. 2018, 231, 415–433. [Google Scholar] [CrossRef] [PubMed]
- Cechin, I.; Valquilha, É.M. Nitrogen effect on gas exchange characteristics, dry matter production and nitrate accumulation of Amaranthus cruentus L. Braz. J. Bot. 2019, 42, 373–381. [Google Scholar] [CrossRef]
- Inthapanya, P.; Sihavong, P.; Sihathep, V.; Chanphengsay, M.; Fukai, S.; Basnayake, J. Genotype differences in nutrient uptake and utilisation for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crop. Res. 2000, 65, 57–68. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Zhong, X.H.; Zeng, J.H.; Liang, K.M.; Pan, J.F.; Xin, Y.F.; Liu, Y.Z.; Hu, X.Y.; Peng, B.L.; Chen, R.B.; et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J. Integr. Agric. 2021, 20, 565–580. [Google Scholar] [CrossRef]
- Hooper, P.; Zhou, Y.; Coventry, D.R.; McDonald, G.K. Use of nitrogen fertilizer in a targeted way to improve grain yield, quality, and nitrogen use efficiency. Agron. J. 2015, 107, 903–915. [Google Scholar] [CrossRef]
- Zhou, C.; Jia, B.; Wang, S.; Huang, Y.; Wang, Y.; Han, K.; Wang, W. Effects of Nitrogen Fertilizer Applications on Photosynthetic Production and Yield of Japonica Rice. Int. J. Plant Prod. 2021, 15, 599–613. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, H.; Zhang, J.H. Root Morphology and Physiology in Relation to the Yield Formation of Rice. J. Integr. Agric. 2012, 11, 920–926. [Google Scholar] [CrossRef]
- Chu, G.; Chen, T.; Wang, Z.; Yang, J.; Zhang, J. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crop. Res. 2014, 165, 36–48. [Google Scholar] [CrossRef]
- Xu, G.W.; Lu, D.K.; Wang, H.Z.; Li, Y. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric. Water Manag. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Lu, R. Soil Chemical Analysis Method for Agriculture; Agriculture Science and Technique Press: Beijing, China, 2000. [Google Scholar]
- Chen, Y.; Peng, J.; Wang, J.; Fu, P.; Hou, Y.; Zhang, C.; Fahad, S.; Peng, S.; Cui, K.; Nie, L.; et al. Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China. Field Crop. Res. 2015, 184, 50–57. [Google Scholar] [CrossRef]
- Chen, L.; Xie, H.; Wang, G.; Qian, X.; Wang, W.; Xu, Y.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z. Reducing environmental risk by improving crop management practices at high crop yield levels. Field Crop. Res. 2021, 265, 108123. [Google Scholar] [CrossRef]
- Jiang, L.; Dai, T.; Jiang, D.; Cao, W.; Gan, X.; Wei, S. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crop. Res. 2004, 88, 239–250. [Google Scholar] [CrossRef]
- Ju, C.; Liu, T.; Sun, C. Panicle nitrogen strategies for nitrogen-efficient rice varieties at a moderate nitrogen application rate in the lower reaches of the Yangtze River, China. Agronomy 2021, 11, 192. [Google Scholar] [CrossRef]
- Ju, C.; Zhu, Y.; Liu, T.; Sun, C. The effect of nitrogen reduction at different stages on grain yield and nitrogen use efficiency for nitrogen efficient rice varieties. Agronomy 2021, 11, 462. [Google Scholar] [CrossRef]
- Fu, J.; Huang, Z.; Wang, Z.; Yang, J.; Zhang, J. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crop. Res. 2011, 123, 170–182. [Google Scholar] [CrossRef]
- Huang, M.; Chen, J.; Cao, F.; Zou, Y. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crop. Res. 2018, 221, 333–338. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, G.; Huo, Z.; Xu, K.; Gao, H.; Wei, H.; Wan, L.; Huang, Y. Precise postponing nitrogen application and its mechanism in rice. Acta Agron. Sin. 2011, 37, 1837–1851. [Google Scholar] [CrossRef]
- Deng, F.; Wang, L.; Ren, W.-J.; Mei, X.-F.; Li, S.-X. Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield of indica hybrid rice. Soil Tillage Res. 2015, 145, 1–9. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Zhang, H.; Yi, J. Recovery efficiency and loss of 15N-labelled urea in a rice-soil system in the upper reaches of the Yellow River basin. Agric. Ecosyst. Environ. 2012, 158, 118–126. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, D.P.; Peng, X.L.; Ma, B.J.; Shao, S.M.; Jing, W.J.; Gu, J.F.; Liu, L.J.; Wang, Z.Q.; Liu, Y.Y.; et al. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. J. Integr. Agric. 2019, 18, 2716–2731. [Google Scholar] [CrossRef]
- Pan, S.G.; Huang, S.Q.; Zhai, J.; Wang, J.P.; Cao, C.G.; Cai, M.L.; Zhan, M.; Tang, X.R. Effects of N management on yield and N uptake of rice in central China. J. Integr. Agric. 2012, 11, 1993–2000. [Google Scholar] [CrossRef]
- Haque, M.M.; Pramanik, H.R.; Biswas, J.K.; Iftekharuddaula, K.M.; Hasanuzzaman, M. Comparative performance of hybrid and elite inbred rice varieties with respect to their source-sink relationship. Sci. World J. 2015, 2015, 326802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, J.; Shi, Y.; Yu, Z.; Zhang, Y. Dry matter production, photosynthesis of flag leaves and water use in winter wheat are affected by supplemental Irrigation in the Huang-Huai-Hai Plain of China. PLoS ONE 2015, 10, e0137274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef]
- Gaju, O.; Reynolds, M.P.; Sparkes, D.L. Relationships between physiological traits, grain number and yield potential in a wheat DH population of large spike phenotype. Field Crop. Res. 2014, 164, 126–135. [Google Scholar] [CrossRef]
- Richards, R. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef]
- Zakari, S.A.; Asad, M.A.U.; Han, Z.; Guan, X.; Zaidi, S.H.R.; Gang, P.; Cheng, F. Senescence-related translocation of nonstructural carbohydrate in rice leaf sheaths under different nitrogen supply. Agron. J. 2020, 112, 1601–1616. [Google Scholar] [CrossRef]
- Huang, J.; He, F.; Cui, K.; Buresh, R.J.; Xu, B.; Gong, W.; Peng, S. Determination of optimal nitrogen rate for rice varieties using chlorophyll meter. Field Crop. Res. 2008, 105, 70–80. [Google Scholar] [CrossRef]
- Mae, T. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant Soil 1997, 196, 201–210. [Google Scholar] [CrossRef]
Month | Average Air Temperature (°C) | Total Precipitation (mm) | ||
---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | |
March | 13.10 | 13.33 | 289.40 | 115.30 |
April | 17.95 | 19.77 | 116.70 | 233.70 |
May | 23.30 | 21.64 | 147.20 | 282.00 |
June | 26.95 | 27.15 | 713.10 | 237.10 |
July | 26.75 | 29.27 | 287.00 | 492.30 |
August | 27.65 | 29.10 | 155.10 | 29.70 |
September | 25.35 | 25.04 | 108.10 | 162.60 |
October | 20.45 | 20.95 | 23.70 | 20.80 |
Years | Organic Matter (g·kg−1) | Effective N (mg·kg−1) | Effective P (mg·kg−1) | Effective K (mg·kg−1) | Total N (g·kg−1) | Total P (mg·kg−1) | Total K (g·kg−1) |
---|---|---|---|---|---|---|---|
2015 | 35.29 | 142.49 | 53.77 | 98.02 | 2.57 | 534 | 6.11 |
2016 | 34.81 | 138.27 | 53.95 | 98.06 | 1.87 | 538 | 5.93 |
Means | 35.05 | 140.38 | 53.86 | 98.04 | 2.22 | 536 | 6.02 |
Season | Treatment | Proportion | N Application Rate (kg·ha−1) | ||||
---|---|---|---|---|---|---|---|
Total | Basal N | Tiller N | Spikelet- Promoting N | Spikelet- Developing N | |||
Early rice | A | 10:0:0:0 | 120 | 120 | 0 | 0 | 0 |
B | 10:0:0:0 | 120 | 120 | 0 | 0 | 0 | |
C | 0:6:3:1 | 120 | 0 | 72 | 36 | 12 | |
D | 0:5:3:2 | 120 | 0 | 60 | 36 | 24 | |
E | 0:4:3:3 | 120 | 0 | 48 | 36 | 36 | |
CK | 5:2:3:0 | 120 | 60 | 24 | 36 | 0 | |
Late rice | A | 10:0:0:0 | 150 | 150 | 0 | 0 | 0 |
B | 10:0:0:0 | 150 | 150 | 0 | 0 | 0 | |
C | 0:6:3:1 | 150 | 0 | 90 | 45 | 15 | |
D | 0:5:3:2 | 150 | 0 | 75 | 45 | 30 | |
E | 0:4:3:3 | 150 | 0 | 60 | 45 | 45 | |
CK | 5:2:3:0 | 150 | 75 | 30 | 45 | 0 |
Year | Season | Treatment | EP | FGP (%) | SNP | KGW (g) |
---|---|---|---|---|---|---|
2015 | ER1 | A | 12.81 ab | 80.74 a | 122.12 bc | 28.38 a |
B | 11.7 6 c | 74.66 b | 126.99 b | 28.43 a | ||
C | 13.8 ab | 71.29 c | 117.94 c | 27.8 bc | ||
D | 13.41 ab | 68.75 d | 123.57 bc | 27.41 c | ||
E | 14.19 a | 63.08 e | 146.31 a | 27.93 ab | ||
CK | 13.63 ab | 75.49 b | 118.77 c | 28.32 a | ||
LR1 | A | 11.71 ab | 63.78 c | 150.18 a | 27.95 a | |
B | 11.07 b | 59.17 d | 145.21 a | 27.54 b | ||
C | 13.12 a | 71.92 b | 134.98 b | 27.96 a | ||
D | 12.62 ab | 76.06 a | 135.17 b | 27.52 b | ||
E | 12.84 ab | 62.51 c | 144.21 a | 27.93 a | ||
CK | 13.36 a | 65.38 c | 136.60 b | 27.90 a | ||
2016 | ER1 | A | 10.56 a | 62.51 d | 144.21 c | 27.93 a |
B | 10.08 b | 59.17 d | 145.21 ab | 27.54 b | ||
C | 9.12 d | 71.92 b | 134.98 c | 27.96 a | ||
D | 9.61 c | 63.78 cd | 150.18 a | 27.95 a | ||
E | 9.37 cd | 76.06 a | 135.17 c | 27.52 b | ||
CK | 9.94 b | 65.38 c | 136.60 c | 27.90 a | ||
LR1 | A | 16.00 a | 68.99 c | 109.74 a | 29.35 a | |
B | 14.20 d | 65.72 d | 110.54 a | 29.09 a | ||
C | 15.58 ab | 71.64 c | 103.27 b | 28.18 b | ||
D | 14.54 cd | 71.01 bc | 102.98 b | 27.82 b | ||
E | 14.97 bc | 75.54 a | 109.08 a | 27.25 c | ||
CK | 13.88 d | 73.23 ab | 105.98 ab | 28.05 b | ||
ER2 | A | 8.92 ab | 81.13 ab | 158.15 a | 26.66 a | |
B | 9.21 a | 76.74 c | 140.70 c | 26.32 b | ||
C | 8.41 c | 82.50 ab | 139.61 c | 26.69 a | ||
D | 8.69 bc | 79.83 b | 153.93 ab | 26.64 a | ||
E | 8.77 b | 83.69 a | 158.32 a | 26.3 b | ||
CK | 8.97 ab | 75.65 c | 152.35 b | 26.56 a | ||
LR2 | A | 11.33 c | 78.12 b | 138.96 c | 30.04 a | |
B | 12.06 b | 77.26 bc | 142.69 b | 29.33 c | ||
C | 12.64 a | 75.12 de | 140.68 bc | 28.47 d | ||
D | 12.07 b | 74.71 e | 148.63 a | 29.59 bc | ||
E | 11.81 b | 76.43 cd | 141.46 bc | 29.78 ab | ||
CK | 10.90 c | 79.76 a | 142.88 b | 29.41 c |
Source of Variation | GY | EP | FGP | SNP | KGW |
---|---|---|---|---|---|
Year (Y) | 1279.73 ** | 1215.38 ** | 109.76 ** | 351.33 ** | 178.64 ** |
Variety (V) | 270.48 ** | 694.49 ** | 81.94 ** | 953.62 ** | 425.41 ** |
N treatment (N) | 141.22 ** | 12.09 ** | 18.72 ** | 31.57 ** | 19.64 ** |
Y × V | 1881.56 ** | 0.48 ns | 711.12 ** | 18.65 ** | 81.8 ** |
Y × N | 33.87 ** | 21.09 ** | 60.62 ** | 22.09 ** | 5.9 ** |
V × N | 39.59 ** | 6.06 ** | 18.09 ** | 9.15 ** | 12.79 ** |
Y × V × N | 35.67 ** | 1.41 ns | 49.44 ** | 26.83 ** | 2.33 ns |
M | Season | Treatment | PDM (t·ha−1) | Heading to Maturity | ||||
---|---|---|---|---|---|---|---|---|
Stage | DM Transportation (t·ha−1) | DM (t·ha−1) | ||||||
TS | HS | MAS | Stem | Leaf | Panicle | |||
2015 | ER1 | A | 4.76 bc | 11.44 c | 16.10 d | 0.05 b | 0.44 a | 10.95 d |
B | 4.48 bcd | 11.63 bc | 16.37 cd | 0.56 ab | 0.87 a | 11.26 d | ||
C | 4.82 b | 11.66 bc | 18.49 b | 0.29 b | 0.95 a | 12.64 b | ||
D | 4.03 d | 10.63 d | 17.33 c | 0.05 b | 0.58 a | 11.59 cd | ||
E | 4.34 cd | 13.49 a | 19.7 a | 0.98 a | 1.00 a | 14.60 a | ||
CK | 5.72 a | 12.28 b | 18.57 b | 0.42 b | 0.87 a | 12.16 bc | ||
LR1 | A | 2.57 a | 10.88 b | 16.2 b | 1.36 a | 0.47 b | 8.95 ab | |
B | 2.31 b | 12.92 a | 17.38 a | 0.26 b | 1.54 a | 8.92 ab | ||
C | 0.87 c | 8.96 c | 14.65 c | 0.28 b | 0.27 b | 8.32 b | ||
D | 0.78 c | 7.66 c | 12.55 d | 0.49 b | 0.39 b | 7.33 c | ||
E | 0.99 c | 8.92 c | 15.88 b | 0.60 ab | 0.36 b | 9.63 a | ||
CK | 1.08 c | 7.82 c | 12.48 d | 0.60 ab | 0.31 b | 7.12 c | ||
2016 | ER1 | A | 1.69 a | 13.06 c | 17.82 b | 2.35 ab | 0.97 a | 10.47 b |
B | 1.38 bcd | 12.14 c | 16.79 c | 1.36 b | 0.77 ab | 9.37 d | ||
C | 1.17 d | 12.35 c | 18.34 b | 1.53 ab | 0.49 ab | 10.51 b | ||
D | 1.51 ab | 15.64 a | 19.23 a | 2.76 a | 0.20 b | 9.70 cd | ||
E | 1.19 cd | 14.77 ab | 19.08 a | 2.19 ab | 0.99 a | 10.85 a | ||
CK | 1.47 abc | 14.31 b | 17.12 c | 2.67 a | 0.90 a | 9.88 c | ||
LR1 | A | 1.29 a | 14.32 a | 19.02 a | 2.00 a | 0.96 a | 10.73 b | |
B | 1.34 a | 11.43 c | 16.61 d | 1.18 c | 0.81 a | 9.20 d | ||
C | 1.07 b | 12.12 b | 18.43 b | 1.69 b | 0.49 b | 10.85 b | ||
D | 1.31 a | 10.85 d | 15.86 e | 0.91 c | 0.48 b | 8.70 e | ||
E | 1.07 b | 11.92 b | 18.51 b | 2.21 a | 0.35 b | 11.53 a | ||
CK | 1.31 a | 12.08 b | 17.34 c | 1.61 b | 0.40 b | 9.81 c | ||
ER2 | A | 1.85 a | 15.05 a | 18.74 b | 2.45 ab | 1.12 a | 11.28 d | |
B | 1.3 b | 13.91 ab | 18.09 c | 2.70 a | 0.87 ab | 11.55 cd | ||
C | 1.34 b | 13.67 ab | 18.57 b | 1.91 ab | 0.92 ab | 11.83 bc | ||
D | 1.15 b | 14.01 ab | 19.90 a | 0.47 c | 0.06 c | 11.81 bc | ||
E | 1.39 b | 12.54 bc | 19.85 a | 0.47 c | 0.83 ab | 12.62 a | ||
CK | 1.1 bc | 12.4 bc | 18.77 b | 1.5 bc | 0.61 b | 11.99 b | ||
LR2 | A | 1.61 b | 11.74 b | 16.30 c | 2.55 c | 0.92 ab | 10.55 bc | |
B | 1.82 a | 12.19 a | 17.38 a | 2.31 d | 1.00 a | 11.07 a | ||
C | 1.48 c | 11.21 c | 16.14 c | 2.78 b | 0.75 bc | 10.67 b | ||
D | 1.55 bc | 11.55 bc | 16.75 b | 2.94 b | 0.72 c | 11.36 a | ||
E | 1.30 d | 11.12 c | 16.00 c | 2.55 c | 0.44 d | 10.66 b | ||
CK | 1.55 bc | 12.52 a | 15.83 c | 3.25 a | 0.9 ab | 10.3 c |
Year | Season | Treatment | LAI | Pn (µmol·m−2·s−1) | ||||
---|---|---|---|---|---|---|---|---|
Stage | Stage | |||||||
TS | HS | MS | TS | HS | MS | |||
2015 | ER1 | A | 5.19 a | 7.58 a | 3.45 bc | 22.21 a | 20.54 a | 14.78 bc |
B | 4.06 b | 6.39 b | 3.84 ab | 21.07 bcd | 18.64 b | 14.18 c | ||
C | 1.99 d | 6.01 b | 5.05 a | 20.99 cd | 20.59 a | 15.86 b | ||
D | 1.7 e | 4.85 c | 4.38 ab | 22.11 ab | 20.32 a | 17.23 a | ||
E | 1.7 e | 4.56 c | 4.32 ab | 20.25 d | 19.9 ab | 17.67 a | ||
CK | 3.66 c | 6.56 b | 2.54 c | 21.82 abc | 18.56 b | 17.55 a | ||
LR1 | A | 6.16 a | 6.88 c | 4.5 ab | 24.07 a | 16.65 bc | 13.57 c | |
B | 5.02 b | 9.39 a | 4.92 a | 20.14 bc | 16.09 c | 14.87 b | ||
C | 1.95 c | 4.66 d | 3.91 bc | 21.37 b | 18.94 a | 15.58 ab | ||
D | 1.98 c | 4.66 d | 3.38 c | 20.24 bc | 16.97 bc | 15.94 a | ||
E | 1.28 d | 4.37 d | 2.63 d | 20.65 bc | 17.51 b | 16.04 a | ||
CK | 5.95 a | 8.29 b | 3.66 c | 19.02 c | 16.86 bc | 15.53 ab | ||
2016 | ER1 | A | 1.53 a | 4.70 a | 4.01 b | 22.54 a | 16.28 b | 18.83 a |
B | 1.17 bc | 3.84 b | 3.65 c | 21.46 a | 16.58 b | 17.8 b | ||
C | 0.98 d | 4.39 ab | 4.2 ab | 21.72 a | 18.1 a | 19.01 a | ||
D | 1.27 b | 4.75 a | 4.31 a | 22.03 a | 16.63 b | 19.95 a | ||
E | 1.1 c | 3.58 c | 3.16 d | 21.1 a | 16.98 b | 20.27 a | ||
CK | 1.21 b | 4.64 a | 4.35 a | 21.98 a | 15.22 c | 17.58 b | ||
LR1 | A | 1.99 c | 7.88 b | 6.15 b | 30.2 bc | 21.08 b | 19.14 c | |
B | 2.08 b | 8.14 a | 6.44 a | 31.25 a | 22.57 a | 19.38 bc | ||
C | 1.66 d | 6.21 b | 5.34 c | 28.01 d | 20.37 c | 19.82 abc | ||
D | 1.6 d | 5.63 c | 5.31 c | 30.12 bc | 21.93 a | 20.21 ab | ||
E | 1.59 d | 5.47 c | 5.4 c | 30.26 abc | 22.11 a | 20.12 ab | ||
CK | 1.86 a | 6.34 b | 5.01 d | 29.25 c | 20.83 bc | 20.29 a | ||
ER2 | A | 1.28 a | 4.15 a | 3.48 a | 24.86 a | 21.54 a | 16.72 a | |
B | 0.99 b | 3.4 b | 3.26 a | 23.24 ab | 19.87 ab | 15.57 a | ||
C | 0.97 b | 4.05 a | 3.19 a | 22.56 ab | 19.04 b | 17.03 a | ||
D | 0.91 b | 3.92 a | 3.01 a | 24.09 ab | 20.83 ab | 17.55 a | ||
E | 0.96 b | 3.15 b | 2.89 a | 21.32 b | 21.96 a | 16.93 a | ||
CK | 0.78 c | 4.07 a | 3.33 a | 23.29 ab | 19.86 ab | 14.71 b | ||
LR2 | A | 2.73 a | 7.35 b | 5.76 b | 29.80 a | 19.73 bc | 18.79 bc | |
B | 2.83 a | 7.88 a | 6.31 a | 28.56 b | 18.13 e | 17.21 d | ||
C | 2.08 c | 7.17 b | 5.42 c | 28.17 c | 18.66 de | 18.42 c | ||
D | 1.87 d | 6.88 c | 4.92 d | 28.76 b | 19.55 c | 19.4 b | ||
E | 1.71 e | 6.11 d | 5.52 bc | 29.64 a | 21.15 a | 20.5 a | ||
CK | 2.23 b | 7.22 b | 5.34 c | 28.72 d | 20.46 ab | 19.25 bc |
Measured Parameters | Grain Yield | Nitrogen Use Efficiency | ||
---|---|---|---|---|
NRE | NAE | NPFP | ||
The effective panicle | 0.45 ** | 0.18 | −0.15 | −0.67 ** |
Filled grain percentage | 0.31 | 0.22 | 0.71 ** | 0.46 * |
Spikelets per panicle | −0.26 | −0.05 | 0.27 | 0.62 ** |
Kilogram grain weight | 0.16 | 0.16 | −0.38 | −0.68 ** |
Dry matter weight transportation of stems | −0.28 | 0.11 | −0.12 | −0.13 |
Dry matter weight transportation of leaves | −0.12 | −0.48 * | −0.02 | 0.04 |
Dry matter weight of panicle at maturity | 0.49 ** | 0.23 | 0.76 ** | 0.73 ** |
Plant dry matter weight at tillering | 0.58 ** | −0.17 | −0.05 | −0.68 ** |
Plant dry matter weight at heading | −0.17 | −0.31 | 0.14 | −0.61 ** |
Plant dry matter weight at maturity | 0.09 | 0.20 | 0.11 | −0.16 |
Leaf area index at tillering | 0.13 | 0.09 | −0.18 | −0.62 ** |
Leaf area index at heading | 0.14 | 0.10 | −0.17 | −0.66 ** |
Leaf area index at milk stage | 0.00 | 0.15 | −0.26 | −0.73 ** |
Net photosynthesis rate at tillering | 0.04 | 0.18 | −0.01 | 0.02 |
Net photosynthesis rate at heading | 0.59 ** | 0.38 | −0.10 | 0.47 * |
Net photosynthesis rate at milk stage | −0.18 | 0.48 * | −0.22 | −0.22 |
Nitrogen translocation rate of stem | 0.22 | −0.04 | 0.25 | 0.16 |
Nitrogen translocation rate of leaf | 0.23 | −0.01 | −0.08 | −0.44 * |
Nitrogen increment of panicle | 0.58 ** | 0.63 ** | 0.35 | 0.00 |
Nitrogen transportation of stem | 0.35 | 0.37 | −0.09 | −0.41 * |
Nitrogen transportation of leaf | −0.30 | −0.36 | −0.32 | −0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Long, W.; Wang, H.; Long, P.; Xu, Y.; Fu, Z. Matter Production Characteristics and Nitrogen Use Efficiency under Different Nitrogen Application Patterns in Chinese Double-Cropping Rice Systems. Agronomy 2022, 12, 1165. https://doi.org/10.3390/agronomy12051165
Zhou W, Long W, Wang H, Long P, Xu Y, Fu Z. Matter Production Characteristics and Nitrogen Use Efficiency under Different Nitrogen Application Patterns in Chinese Double-Cropping Rice Systems. Agronomy. 2022; 12(5):1165. https://doi.org/10.3390/agronomy12051165
Chicago/Turabian StyleZhou, Wentao, Wenfei Long, Hongrui Wang, Pan Long, Ying Xu, and Zhiqiang Fu. 2022. "Matter Production Characteristics and Nitrogen Use Efficiency under Different Nitrogen Application Patterns in Chinese Double-Cropping Rice Systems" Agronomy 12, no. 5: 1165. https://doi.org/10.3390/agronomy12051165
APA StyleZhou, W., Long, W., Wang, H., Long, P., Xu, Y., & Fu, Z. (2022). Matter Production Characteristics and Nitrogen Use Efficiency under Different Nitrogen Application Patterns in Chinese Double-Cropping Rice Systems. Agronomy, 12(5), 1165. https://doi.org/10.3390/agronomy12051165