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Abstract: Drought has a significant impact on agricultural production, but the evolution of drought
in the North China Plain (NCP) and its impact on winter wheat yield remain unclear. In this paper,
we used the Standardized Precipitation Evapotranspiration Index (SPEI) and combined with the
Standardized Yield Residual Series (SYRS) and the Vegetation Condition Index (VCI) to study the
spatiotemporal distribution of drought at different time scales and its impact on winter wheat yield.
We found that: (1) The southern NCP was dominated by mild drought at the 1-month scale. In
the northern NCP, mild drought was observed at the short-time scale and moderate drought at the
medium- and long-time scales; (2) the frequency of mild drought was high and the frequency of
moderate drought was a step lower. Moreover, drought risks were increasing in the north-central,
eastern, and northeastern NCP, while the southern, west-central, southeastern, and northwestern
NCP were becoming wetter (at the 6- and 9-month scales); (3) the maximum correlation coefficients
were concentrated in the seedling to the greening stages. (4) Drought affected winter wheat with a
lag of approximately 3 months, and the VCI was the most sensitive to the short-term SPEI.

Keywords: drought; SPEI; winter wheat; vegetation condition index; North China Plain

1. Introduction

Drought is disastrous; it can cause enormous social and economic harms [1,2] and is
a serious threat to regional ecosystems and agricultural production [3–5]. China’s total
cultivated land accounts for 7.5% of that of the world [6], and global warming may exacer-
bate the scale of drought in northern China [7,8] and thus hinder agricultural production
and sustainable development [9]. Winter wheat is one of three major crops in China (the
other two are rice and maize), and its total output accounts for approximately one-sixth of
world production. The North China Plain (NCP) has the largest planting area and output of
winter wheat in China [10]. Because drought has a strong correlation with crop growth [11],
understanding the spatial and temporal distribution of drought in the NCP and its dynamic
effects on winter wheat yield can help improve crop adaptability to environmental changes
and optimize agricultural water resource management to ensure regional food security.

Studies have used field experiments to simulate the changes in soil moisture during
drought by limiting irrigation to uncover the relationship between drought and crop growth
and thereby assist irrigation decisions [12–14]. However, drought is a complex meteoro-
logical disaster that also influences air temperature, humidity, and CO2 fixation [15–18],
and drought at different elevations has different effects on crops [19]. Although drought
simulation experiments at point scale can explain the physiological mechanism of crops
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to an extent, they cannot represent regional drought phenomena. Drought indices based
on meteorology were closely correlated with agricultural production and spatially related
to biophysical drought [20]. Thus, several drought indices, such as the Standardized Pre-
cipitation Index (SPI), Palmer Drought Severity index, Palmer Z-index, and Standardized
Precipitation Evapotranspiration Index (SPEI) have been widely used in the assessment of
regional drought and its relationship with crop yield [21–24]. In many studies, the SPEI
was a reliable indicator to explain the correlation between drought and crop yield [25–27].
The SPEI is flexible on different time scales and enables understanding of the relationship
between climate and yield due to its accounting for both precipitation and potential evapo-
transpiration [28,29]. Prabnakorn et al. [30] reported that the 1-month SPEI and the rice
Standardized Yield Residual Series (SYRS) presented a positive correlation in all except
the extremely wet months in Thailand. Potopova et al. [31] indicated that the SPEI with a
short-time scale explained crop growth, and the SPEI and SYRS had a stronger correlation
in the critical stages of crop growth than in other stages. Lu et al. [32] also proved that
most crops were sensitive to drought in the early growth period and reach the maximum
sensitivity in the growth boom period; they also demonstrated that the SPEI was more
reliable than the SPI in monitoring the response relationship of drought to crops. However,
the correlations between the SYRS of different crop types and the SPEI of different time
scales varied between geospatial and climatic environments [33–35], and their responses to
drought also differed [36].

The NCP is a major grain producing area in China with frequent droughts, but the
evolution of drought in this area and its impact on winter wheat yield remain unclear. In
this paper, we analyzed the spatial and temporal distribution characteristics of drought at
different time scales and its effects on winter wheat yield in the NCP. The main objectives
were: (1) evaluating the evolution of drought at different timescales and its inter-annual
and intra-annual variations at different SPEI time scales; (2) analyzing the correlation of
various lags of the SPEI with the SYRS; and (3) evaluating the response of winter wheat
vegetation index (VCI) to SPEI.

2. Materials and Methods
2.1. Study Area

The study area is located in the east of China (32–40◦ N, 114–120◦ E), mainly in THE
Beijing, Tianjin, Henan, Hebei, Shandong, Anhui, and Jiangsu provinces. It is the second
largest plain in China, with an elevation of less than 50 m in most places and a total area of
approximately 30 × 104 km2. The sown area of winter wheat is 16.2 × 102 km2. The area is
an impact plain formed by the large amount of sediment deposited by the Yellow River,
Huaihe River, Haihe River, and Luanhe River. It is the main winter wheat planting area in
China, and winter wheat and summer maize are rotated as the main crops. Climatically,
the NCP has a temperate to subtropical monsoon climate. The average annual precipitation
is 403.9–1192.8 mm, falling mainly from June to September and inter-annual variation is
large, and the average daily temperature is 9.9–16.4 ◦C; both decrease from south to north
with increasing latitude. Winter wheat is a cross-year growing crop, which is usually sown
in October of the first year and harvested in late May or early June of the following year.
We used ENVI 5.3 software to classify the land type and to extract the planting area of
winter wheat by using a support vector machine. In addition, the actual distribution points
of winter wheat were used to verify, the classification accuracy was 95.9%, and the Kappa
coefficient was 0.93 (Figure 1).

2.2. Dataset

Meteorological data were obtained from the China Meteorological Information Center
(http://data.cma.cn/ (accessed on 30 June 2021)), including daily minimum and maximum,
average temperature, and precipitation data from 68 meteorological stations from 2001
to 2015 for the calculation of the SPEI. Previous studies had used similar years to study
drought [37–39].

http://data.cma.cn/
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Figure 1. (a) Study area. (b) Distribution of meteorological stations. (c) Winter wheat planting areas
and rivers. (d) Average daily temperature. (e) Average annual precipitation.

The yield data of each city from 2002 to 2015 were obtained from the statistical
yearbooks of each province (http://www.stats.gov.cn/ (accessed on 30 June 2021)). To
avoid the error caused by changes in planting area each year, unit yield was selected for
calculation and analysis (winter wheat is a cross-year growing crop, and its growth period
is from September or October of the previous harvest year to May or June of the current
harvest year).

The remote sensing data were derived from the MOD09A1 product in Google Earth En-
gine (https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD0
9A1?hl=en (accessed on 30 June 2021)) with a spatial resolution of 500 m for calculating VCI,
which eliminates part of the cloud interference through the maximum synthesis method to
generate the best observation data for 8d synthesis, including the estimated surface spectral
reflectance in bands 1–7.

2.3. Methods

The methodological framework in this paper was shown in Figure 2. We first prepro-
cessed meteorological data, yield data and remote sensing data, then calculated the basic
indicators, and finally analyzed the results.
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2.3.1. Meteorological Data Processing

First, the fishnet tool of ArcGIS 10.6 software was used to create grids covering the
study area, with a spatial resolution of 25 km2 × 25 km2 (a total of 1001 grids). Then, the
ordinary Kriging interpolation method was used to interpolate the daily meteorological
data of 68 meteorological stations into all grids to obtain daily temperature and precipitation
grid spatial distribution data from 2001 to 2015 in the study area. Finally, the grid covering
the winter wheat area was extracted in each city (if one grid was not enough, the grid was
calculated according to one grid, because it is possible that only part of a grid is in a city).
The resulting raster data were averaged to represent the winter wheat meteorological data
for each city.

2.3.2. Calculating the SPEI

In this paper, the SPEI was used to represent the drought level. It was a more realistic
representation of actual drought in a region than the SPI because it takes into account
potential evapotranspiration [37,38,40]. The SPEI calculates water balance (Equation (1))
based on the difference between monthly precipitation and potential evapotranspiration.
The specific calculation steps were described by Vicente-Serrano et al. [22]. In addition, the
slope of unary linear regression was used to estimate the trend in this paper (Equation (2)).

Di = Pi − PETi (1)

SPEIj,k = T × yearj,k + b (2)

where Pi and PETi are precipitation and potential evapotranspiration in month i, respec-
tively. SPEIj,k and yearj,k are SPEI value and year of grid k in year j, respectively. T and b are
slope and intercept, respectively, and slope (T) was defined as trend in this study.

In this paper, the modified Hargreaves method for the NCP was selected to calculate
potential evapotranspiration [41]. Although the P-M method is the standard method
recommended by the FAO to calculate potential evapotranspiration, it requires too many
parameters and cannot be used in regions where meteorological data are lacking. Moreover,
Mavromatis [21] reported that simple and complex methods for calculating potential
evapotranspiration yield similar results when calculating a drought index. In this study,
monthly precipitation, daily maximum and minimum, and average temperatures were
input into a Python-based SPEI package (https://www.drought.gov/data-maps-tools/
climate-and-drought-indices-python-spi-spei-pet (accessed on 30 June 2021)) to calculate
the 1-, 3-, 6-, and 9-month SPEI (SPEI-1, SPEI-3, SPEI-6, and SPEI-9) during the winter
wheat growth period from 2001 to 2015; studies had shown that crops may be affected by
drought at different time scales with space changes [36]. The classification of drought levels
was provided in Table 1.

Table 1. Classifications of the SPEI and SYRS.

SPEI Values Category SYRS Values Category

≥ 2.0 Extreme wet ≥ 1.5 High yield increment
1.5–2.0 Severe wet 1.0–1.5 Moderate yield increment
1.0–1.5 Moderate wet 0.5–1.0 Low yield increment
0.5–1.0 Mild wet −0.5–0.5 Normal
−0.5–0.5 Normal −1–−0.5 Low yield losses
−1–−0.5 Mild drought −1.5–−1 Moderate yield losses
−1.5–−1 Moderate drought ≤ −1.5 High yield losses
−2–−1.5 Severe drought
≤ −2.0 Extreme drought

2.3.3. Calculating the SYRS

Observed yield is composed mainly of trend yield, climate yield, and random yield.
Trend yield reflects the impact of productivity development on crop yield, including

https://www.drought.gov/data-maps-tools/climate-and-drought-indices-python-spi-spei-pet
https://www.drought.gov/data-maps-tools/climate-and-drought-indices-python-spi-spei-pet
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the renewal of species, optimization of management technology, reasonable and efficient
application of fertilizer. Therefore, we must de-trend the observed yield to extract the
climate yield, which we care about. We first used the quadratic function to fit the actual
yield to obtain the trend yield, and then the residual of the de-trended series of crop yield
(yi) was obtained by subtracting the observed yield from the trend yield, and yi was used
for analysis. To compare crop yield variability between different mean values and standard
deviations, Z-score transformation was used to standardize the yield of the de-trended
crop yield time series.

SYRS =
yi − µ

σ
(3)

where SYRS is Standardized Yield Residual Series, yi is the yield residual, µ is the mean of
the yield residual, and σ is the standard deviation of the yield residual.

2.3.4. Calculating VCI

VCI was defined as the ratio of the current NDVI to the maximum and minimum
value of NDVI in the same period over many years, which reflected the growth status of
vegetation in the same physiological period [42] (Equations (4) and (5)). The difference
between the maximum and minimum values in the denominator represent the habitat of
the local vegetation, wherein the smaller the difference between the molecular NDVI value
and the minimum value in a certain period, the worse the growth. VCI values range from
0 to 100, with VCI < 30, 30 < VCI < 70, and VCI > 70 indicates poor, moderate, and good
growth, respectively. We took the average of the VCI over a month due to the step size of
the SPEI being 1 month.

Although the MOD09A1 product underwent cloud monitoring and radiometric correc-
tion, noise introduced by clouds and the atmosphere was still present. The Savitzky–Golay
filtering method was used for de-noising and smoothing (Equation (6)).

NDVI =
ρnir + ρred
ρnir − ρred

(4)

VCIi,j =
NDVIi,j − NDVIi,min

NDVIi,max − NDVIi,min
(5)

Y∗
j =

i=m
∑

i=−m
CiYj+1

N
(6)

where ρnir and ρred are the reflectivity values of near infrared and red channels, respec-
tively; NDVIi,j is the NDVI value in month i and year j; NDVIi,min and NDVIi,max are the
minimum and maximum values of month i during 2001–2015, respectively; Y is the VI
before smoothing; Y∗ is the VI after smoothing; Ci is the filtering coefficient of the ith VI in
the smoothing window; N is the number of convolutions equal to the length of the sliding
array (2m + 1); m is half the width of the sliding window; and Ci was calculated using the
formula proposed by Hannibal [43].

2.3.5. Correlation Analysis

The nonparametric Spearman’s Rho coefficient was used to evaluate the effects of
drought on winter wheat yield in different months and at multiple time scales (Equation (7)).
The Spearman correlation coefficient can be used to evaluate the correlation between
two statistical variables by using monotone equations. For our sample data, correlation
coefficients of 0.538 and 0.675 represented significance levels of 5% and 1%, respectively.

ρ = 1 −
6 ×

n
∑

i=1
d2

i

n(n2 − 1)
(7)
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where n is the number of samples and d is the drought level difference between the
two variables.

3. Results
3.1. Spatiotemporal Distribution of Drought

We used raster meteorological data to calculate the SPEI in the study area for 2001–2015
and observed that if drought occurs, the NCP was affected mainly by mild drought in
SPEI-1, whereas the area with moderate drought gradually increased with an increase
in the time scale (SPEI-6 was the largest affected area), distributed mainly in the center,
northwest, and southeast areas of the NCP (Figure 3(a1–a4)), indicating that the NCP was
affected mainly by moderate drought on a medium and long-time scale. SPEI-1 had the
highest frequency during the winter wheat growth period with 3–5 months of drought each
year, and the frequency of drought in the center and north exhibited a decreasing trend
when the SPEI time scale was longer. However, the frequency of drought remained high
in parts of the south and the east of the study area. The frequency in SPEI-1 was highest
(Figure 3(a1–b4)), but it was dominated by mild drought; the areas with low frequency of
drought in SPEI-9 were characterized by moderate drought; the areas with high frequency
of drought generally corresponded to low drought level (except SPEI-3), indicating that
the NCP did not suffer from severe droughts in general and that most droughts were
dominated by short-time scale.
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Figure 3. (a1–a4) Mean SPEI values. (b1–b4) Frequency of drought. (c1–c4) Spatial distribution
trend of the SPEI during winter wheat growth in the NCP from 2001 to 2015 at 1, 3, 6, and
9 months, respectively.

The variation trend of SPEI-1 indicates that the NCP was gradually becoming wetter;
that is, drought in the short-time scale was alleviated and the risk of drought was reduced.
The southern, west-central, southeastern, and northwestern NCP had a faster tendency to
become wetter with the time scale increases. By contrast, the north-central, eastern, and
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northeastern NCP were becoming drier and the risk of drought was increasing. Thus, the
NCP was becoming polarized between dry and wet.

According to the annual variation, when drought occurred, it was mainly mild or
moderate, and severe droughts were rare (SPEI-6 and SPEI-9 never experienced extreme
droughts) (Figure 4). SPEI-1 was dominated by mild drought from October to January of
the following year, followed by alternating mild and moderate drought, and then moderate
drought gradually came to dominate. The frequency of moderate drought increased with
an increase in the time scale, and the frequency of moderate drought in SPEI-9 was greater
than 0.6 during the entire growth period of winter wheat. In addition, the jointing and
heading stages of rapid growth of winter wheat were also dominated by moderate drought
(except for SPEI-3), which had a greater impact on the final yield in rain-fed areas.
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3.2. Correlation Analysis of the SPEI and SYRS

The sensitivity of crops to drought varied with geographic space, and the optimal
correlation coefficient of the SPEI and the SYRS was positive or negative in the NCP
(Figure 5). A negative correlation between SPEI and SYRS was present for the north-central,
south-central, and southeastern NCP. In addition, the months and time scales with the
maximum correlation coefficients were generally from October to February of the following
year at short and medium-time scales (SPEI-1 and SPEI-3), indicating that drought at the
short-time scale from seedling stage to greening stage had a promoting effect on the yield
in these areas. The months with the highest positive correlation coefficient were mainly
those of seedling to greening, but the time scales were mainly medium and long (SPEI-3,
SPEI-6, and SPEI-9). The highest correlation coefficient was concentrated mainly in the
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seedling stage of winter wheat (over 80%), whereas the proportion of March and April with
the highest correlation coefficient was small during the winter wheat growth period. We
divided cities into two categories based on positive and negative correlation coefficients and
evaluated the impact of drought on final yield (Figure 6). In cities with a positive correlation
between the SPEI and the SYRS, the yield increased with the increase in precipitation and
the wetness of the climate. By contrast, in the cities with a negative correlation coefficient,
drought seems to have had a positive effect on the final yield.
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The growing cycle of crops was related to all stages. To further understand changes in
the correlation between the SPEI and the SYRS over time, we continued to map the spatial
distribution of the correlation with monthly steps during the growth period of winter
wheat (Figure 7). Drought in September and October of the previous harvest year inhibited
the final yield in more than 90% of areas, whereas drought in the north and southwest of
the NCP from November of the previous harvest year to February of the harvest year had a
positive effect on the yield. During March to June of the harvest year, the number of such
active cities decreased, and they were mainly distributed in the northwestern, southern,
and southeastern NCP. In addition, during the entire winter wheat growth period, drought
in the east-central and southwestern NCP mainly inhibited growth, whereas drought in the
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north-central NCP had a positive effect on yield. Thus, the occurrence of drought did not
cause production loss; indeed, timely drought was helpful in the growth of winter wheat,
but the positive effect of drought on yield varied with the time and location of drought.
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3.3. Effects of Drought on Winter Wheat Growth

Taking Henan Province, which has the highest winter wheat planting area and yield,
as an example, we analyzed the impact of drought on the growth of winter wheat during
2001–2015 (Figures 8 and 9). The VCI was most sensitive to SPEI-1 and SPEI-3, whereas
the sensitivity of the VCI to the long-term SPEI gradually decreased. This was because the
short-term SPEI reflected a short-term water deficit and was sensitive to climate change.
Restated, the short-term SPEI could show better effected on winter wheat growth than
the long-term SPEI. Moreover, the correlation between SPEI-3 and VCI was greater than
that between SPEI-1 and VCI, suggesting that the effect of drought on winter wheat
lagged about 3 months. The VCI exhibited an obvious downward trend and was prone to
growth stress according to the drought increase and continues. However, this trend was
improved after 2012. Henan Province provided financial support for the construction of
small irrigation and water conservancy facilities in 30 counties in 2012 according to inquiry
data (http://czt.henan.gov.cn/2012/07-31/1059363.html (accessed on 30 June 2021)), and
this policy substantially improved winter wheat growth; timely supplementary irrigation
mitigated the negative effects of drought and reduced yield loss due to drought even if in
high intensity and prolonged droughts.
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4. Discussion

Precipitation and evapotranspiration were the main influencing factors of drought,
and sometimes evapotranspiration was the larger factor [3]. Therefore, SPEI-1 in the
NCP was mainly mild drought because rain and snow often occur in the northern NCP
in winter (November to February), and evapotranspiration had a low value due to low
temperatures and snow cover. In March and April, when winter wheat grows vigorously,
the temperature rose slowly and a small amount of rainfall occurred; thus, severe drought
was less likely to occur, and this was similar to Cheng’s results [44]. In the southern NCP,
temperature and the frequency of precipitation were higher, so there was fewer severe or
worse drought. However, with an increased time scale, reduced precipitation frequency
and continuous evapotranspiration led to moderate drought in the northern NCP, and
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this was mainly driven by the rise in temperature [38]. In the southern and southwestern
NCP, moderate drought phenomena were still detected at SPEI-6 and SPEI-9; this may be
because snow rarely occurs in the south, and the average daily temperature stayed high
for a long duration. Although the frequency of rain was higher than that in the north,
rain was generally light (less than 10 mm during 24 h). Therefore, evapotranspiration was
greater than rainfall, leading to the occurrence of moderate drought, Tirivarombo et al. [45]
indicated that temperature played an important role in drought because it controlled
evapotranspiration. Figure 3b supports this hypothesis to an extent, as drought frequency
decreased more in the northern than in the southern NCP with an increased time scale. The
drought was mainly mild or moderate during the winter wheat growth period, and the
drought area decreased in the southern, west-central, southeastern, and northeastern NCP;
field management strategies should be changed from drought to flood prevention. The
risk of drought increased in the north-central, eastern, and northeastern NCP, and drought
prevention should remain the main management decision. Thus, irrigation decisions
should be made according to local conditions to ensure maximal irrigation efficiency.

A strong correlation existed between the SPEI and the SYRS, and the maximum
correlation coefficient was concentrated from the seedling to the greening stage (October
to February of the following year), which was similar to the results of Wang et al. [38] but
different from those of Liu et al. [3]. Liu et al. [3] observed a strong correlation between the
SPEI and the SYRS in the early growth stage of winter wheat, and the correlation reached
its maximum during growth spurts. This difference may be caused by the different scales
of the studies. Liu et al. [3] used the provincial level as the research scale, which ignored the
spatial differences of crop environments and the fact that the phenology of winter wheat
varies from the south to the north of the plain (by up to 1 month). Wang et al. [38] adopted
stations as the research target, and the uniform distribution of stations explained the spatial
differences to an extent. In addition, the optimal correlation coefficient of the SPEI and the
SYRS in the NCP were positive and negative, which agreed with findings by Guo et al. [40]
(irrigation was regarded as a precipitation event). This may be related to the distribution of
rivers and irrigated areas in the study area (Figure 1c and Figure S1) [39] because continuous
water deficit was the main cause of drought, and Lu et al. [32] proved that irrigation was
an effective method to alleviate drought. Timely, effective irrigation can ensure the normal
growth of crops even if drought occurs in these areas. Furthermore, appropriate drought
was conducive to the growth of crops and even increased yield according to Fang et al. [46].
Previous studies have shown that climate had a lag effect on vegetation [47,48], while
drought had a lag effect on winter wheat by about 3 months. In other words, soil water
availability in the early stage was more important. Therefore, we suggest that irrigation
decisions for drought should be made 3 months in advance.

5. Conclusions

This study used the SPEI as a drought index to discuss the spatiotemporal distribution
characteristics of multiscale drought and its effect on winter wheat growth in the NCP. We
observed that the NCP was dominated by mild drought at short-time scales and moderate
drought at medium or long-time scales. Severe or worse drought rarely occurred in the NCP.
Moderate drought often occurred in places with a low frequency of drought, whereas places
with a high frequency of drought tended to have a low level of drought. The north-central,
eastern, and northeastern NCP are becoming drier, while the risk of drought is decreasing in
the southern, west-central, southeastern, and northwestern NCP. The strongest correlation
between the SPEI and the SYRS was mainly negative in areas where the irrigation area
was concentrated or in river basins. The strongest correlation between the SPEI and the
SYRS was mainly positive elsewhere, and all correlation coefficients reached their maxima
during the seedling to greening stages. The effects of drought on crops generally lagged
by about 3 months and were most sensitive to short-term SPEI. Irrigation can alleviate the
negative effects of drought to an extent and can ensure the normal growth of crops.
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