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Abstract: Activated water irrigation has been widely investigated as an effective production in-
creasing measure. However, the response of activated water irrigation in plant growth and water
use efficiency (WUE) with the irrigation amount is not well understood. Here, a pot experiment
was conducted to determine the effects of activated water irrigation on winter wheat growth, yield,
and WUE under irrigation amount. Twelve treatments included four irrigation water types, (i) tap
water (TW), (ii) tap water with magnetization (MW), (iii) tap water with oxygenation (OW), (iv) tap
water with magnetization and oxygenation (M&OW), and three irrigation amounts, (1) 80% of the
field capacity (FC), (2) 65%FC, and (3) 50%FC. The results indicated that activated water irrigation
improved the plant height, leaf area, aboveground biomass, and photosynthetic characteristics at each
growth stage of winter wheat. However, the yield and WUE varied with water type and irrigation
amount. With 80%FC, the yield and WUE of MW were significantly greater by 35.7% and 53.9% than
TW. The yield and WUE of OW were greater by 11.4% and 23.1% than TW. With 65%FC, the yield
of MW, OW, and M&OW were greater by 43.9%, 46.3%, and 14.6% than TW, respectively. WUE of
MW, OW, and M&OW were greater by 37.0%, 37.0%, and 11.1% than TW, respectively. With 50%FC,
the yield of OW and M&OW were significantly greater by 77.3% and 122.7% than TW. WUE of OW
and M&OW were significantly greater by 41.4% and 75.9% than TW (p < 0.05). Overall, the research
provides clear evidence that OW is an effective way to increase yield and WUE, MW and M&OW
should be applied in suitable soil water conditions.

Keywords: irrigation amount; activated water; oxygenated water; magnetized water; growth
characteristic; yield; water use efficiency

1. Introduction

Economic development and an increasing population accelerate the demand for fresh-
water resources, as do environmental challenges such as uncertain global climate change
and soil salinization, therefore, the shortage of such resources has become a worldwide
problem [1–3]. About 70% of the global freshwater resources are used for agricultural
irrigation [4]. For example, as a large country with a population of 1.3 billion, China has
less than 2200 cubic meters of water per capita, only a quarter of the world average, and
is one of the 13 countries that lack sufficient water for agriculture [5]. The arable area in
the northern region is about 65% of the total arable area in China, but irrigation water
resources in that area are less than 20% of the total [6]. This unbalanced distribution of
irrigation water is mainly attributed to the uneven distribution of rainfall in time and space,
especially in the arid and semi–arid rain–fed agriculture regions in the Loess Plateau [7,8].
The increasing demand for food brought about by the rapid growth of the global population
has made irrigation water shortage a problem that cannot be ignored. Therefore, food
production must be based on improving water efficiency and developing new agricultural
water sources. Over the years, many countries have improved water management. How-
ever, there is still a prominent imbalance between the supply and demand of agricultural
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water, highlighting the need to continue to develop new water sources and improve water
use efficiency (WUE).

Around the world, one of the main factors of crop yield decline is irrigation deficit [9,10].
Cui et al. [11] found that deficit irrigation effectively saves water, improves the WUE, and
resolves the contradiction of water needs and supply in semi–arid regions. Bloch et al. [12]
indicated that deficit irrigation plays an essential role in improving the drought tolerance
of crops and affects the production and distribution of dry matter. It has been affirmed that
deficit irrigation successfully improved the WUE of maize [13] and the yield of wheat [14].
Research on tomatoes indicated that deficit irrigation (alternate partial root–zone irrigation)
significantly increased the WUEi (photosynthesis rate/transpiration rate) compared with
conventional irrigation [15]. At the same time, the research on sugar beet showed that
the yield was 9.0% and 11.0% lower in deficit irrigation of 75% and 50% evapotranspira-
tion than in normal irrigation [16]. Generally, water deficit mainly influences dry matter
allocation. Ma et al. [14] indicated that the photosynthetic products of grain crops are
directly transferred to the grains or stored in the vegetative parts, which helps increase
grain yield. The photosynthate translocation may be influenced, and the yield may be
reduced in unfavorable conditions.

Activated water is treated water using physical techniques. It significantly changes
the physical and chemical properties of water, thereby improving the activity of water
molecules. In recent years, magnetization, oxygenation, and other irrigation water ac-
tivation technologies have been widely researched as simple, low–energy, low–input,
non–polluting, and efficient water treatment technologies [17–20]. These methods improve
the physical and chemical characteristics of irrigation water, improve the physiological
efficacy of irrigation water and enhance the transmission of irrigation water from soil
to crops.

Over the last century, some research has focused on magnetized water, which is
obtained by passing ordinary water through a magnetic field [21]. When the liquid water
flows through a magnetic field, some of the physical and chemical properties of the water
are changed. The average distance between the water molecules increases and some
hydrogen bonds are weakened or even broken. This results in an increase in the number of
free monomer water molecules and dimer water molecules [22,23]. At the same time, the
chemical bond angle and the radius of the water–ion colloid decrease [19], surface tension
and viscosity coefficient decrease [24], pH, osmotic pressure and solubility increase, and
the dissolved oxygen increases [25]. Another method is a newly developed oxygenation
technique that can effectively increase the amount of oxygen dissolved in irrigation water.
Most current oxygenation methods mainly rely on hydrogen peroxide, Venturi tubes,
compressed air, and micro–nano bubble water oxygenation [26].

The application of magnetic fields plays an important role in altering crop growth.
Irrigation with magnetized water increased seeds germination [27]. Grewal et al. [28]
found that magnetic treatment of irrigation water supplied to snow pea and chickpea seeds
enhanced the early growth and nutrient contents of seedlings. Related studies indicated
that irrigation with magnetized water improved stomatal conductance, photosynthetic rate,
leaf area, specific leaf area, and plant chlorophyll content [29,30]. Magnetized water for
irrigation has been recommended to improve plant yield and productivity [31,32], save
irrigation water and increase WUE [33,34]. Compared with control plants, the gibberellin,
kinetin, nucleic acid, and transfer efficiency of photoassimilates in the bean plants irrigated
with magnetized water were significantly improved [31].

Adequate oxygen supply effectively alleviated the obstruction of root respiration
caused by soil hypoxia and promoted the absorption of water and nutrients by crop
roots [35–37]. Previous studies [38–41] have shown that supplying sufficient oxygen to the
soil had positive implications for crop growth and WUE. Many activated water irrigation
experiments were conducted on different crops. Research on chickpeas showed that aerated
subsurface drip irrigation had a higher yield and WUE than irrigation by other means [42].
Research on tomatoes showed that the fruit yield was 21% higher under aerated water
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irrigation than the control. Aerated irrigation improved the reproductive performance of
tomatoes through early flowering and fruiting [43]. Liu et al. [44] found that micro– and
nanobubble water oxidation significantly had higher yield, irrigation water use efficiency,
vitamin C, and soluble sugar of tomatoes by 16.9%, 16.9%, 17.7%, and 39.2%, and of
cucumbers by 22.1%, 22.1%, 16.7%, and 19.4%, than with no gas addition. Zhu et al. [45]
found that under the condition of oxygenated brackish water irrigation, the germination
rate, germination potential, germination index, vigor index, and plant height of wheat were
significantly higher than those of brackish water treatment.

Previous experiments about the effects of magnetized and oxygenated water irrigation
on crop growth have been conducted under full irrigation conditions [31,32,42–46]. How-
ever, irrigation water is lacking in arid and semi–arid areas of the world, fewer observations
have been reported on the effects of magnetized and oxygenated water irrigation on crop
growth under irrigation amount. Zhao et al. [47] investigated the three irrigation levels of
magnetized water and oxygenated water on winter wheat growth and found that 96 mm
magnetized water irrigation was the optimal measure to save water and increase irrigation
efficiency on the Guanzhong Plain, China. Further study is required to better understand
how activated water irrigation influences crop growth, yield, and WUE in different water
resource conditions.

The objectives of the current study were to (i) determine the effects of activated
water on wheat growth and yield under different irrigation amounts, and (ii) propose the
most suitable type of activated water for wheat growth in different irrigation amounts.
Accordingly, we conducted a pot experiment in an artificial climate chamber with four
irrigation water types and three irrigation amounts, aimed at providing a reference for
alleviating the shortage of irrigation water in arid and semi-arid areas.

2. Materials and Methods
2.1. Experimental Site

The pot experiment was conducted from November 2018 to May 2019 in an artificial
climate chamber at the Institute of Soil and Water Conservation, Chinese Academy of
Sciences (34◦16′ N, 108◦4′ E). The indoor relative humidity and CO2 concentration were
maintained at 70% and 400 ppm. The temperature during the day and night were 25 ◦C
and 20 ◦C. LED light was used in this study and the light intensity was controlled at 6000 lx;
the photo period was 12 h d−1 (from 7 a.m. to 7 p.m.).

The soil in the pot experiment was farmland soil collected from the top 20 cm in Yan-
gling, Shaanxi. The collected soil was air–dried and passed through a 2 mm sieve to remove
visible roots and organic residues and was mixed thoroughly before use. The soil had a pH
of 8.2, total N of 1.06 g kg−1, total P of 0.19 g kg−1, and organic matter of 8.28 g kg−1, field
capacity of 24.0% (gravimetric), permanent wilting point of 8.5% (gravimetric), soil bulk
density of 1.44 g cm−3. The soil texture is medium loam.

2.2. Experimental Design and Management
2.2.1. Experimental Design

Twelve irrigation treatments (Table 1) were tested during the winter wheat jointing,
heading, filling, and maturity stages. There were three irrigation amounts: (1) 80% of
the field capacity (FC), (2) 65%FC, and (3) 50%FC. There were four irrigation water types:
tap water (TW), magnetized water (MW), oxygenated water (OW), and magnetized and
oxygenated water (M&OW). There were five pots for each treatment type defined in Table 1.
The 60 cylindrical PVC pots (40 cm height, 20 cm diameter, without drainage holes) were
randomly placed in the artificial climate chamber. Each pot was filled with air–dried soil at
an initial bulk density of 1.35 g cm−3. The same three cutting rings (volume 100 cm3, inner
diameter 5.05 cm) were used to collect undisturbed soil to determine the field capacity of
the soil.
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Table 1. Design of the activated water irrigation experiment.

Treatment Irrigation Water Type Irrigation Amount

TW80 Tap water 80%FC
TW65 Tap water 65%FC
TW50 Tap water 50%FC
MW80 Magnetized water 80%FC
MW65 Magnetized water 65%FC
MW50 Magnetized water 50%FC
OW80 Oxygenated water 80%FC
OW65 Oxygenated water 65%FC
OW50 Oxygenated water 50%FC

M&OW80 Magnetized and oxygenated water 80%FC
M&OW65 Magnetized and oxygenated water 65%FC
M&OW50 Magnetized and oxygenated water 50%FC

Notes: TW80, TW65, and TW50 represent irrigation with tap water with the irrigation amounts 80%FC, 65%FC,
and 50%FC, respectively. MW80, MW65, and MW50 represent magnetized irrigation water with the irrigation
amounts 80%FC, 65%FC, and 50%FC, respectively. OW80, OW65, and OW50 represent oxygenated irrigation
water with the irrigation amounts 80%FC, 65%FC, and 50%FC, respectively. M&OW80, M&OW65, and M&OW50
represent magnetized and oxygenated irrigation water with the irrigation amounts 80%FC, 65%FC, and 50%FC,
respectively. FC, field capacity.

The details of field capacity measures were as follows. Connecting the cutting ring
full of fully saturated field soil with the cutting ring full of quartz sand, the cutting ring
with soil was on the top, the quartz sand cutting ring was on the bottom, and the upper
cutting ring was pressed with a brick. After 8 h, 15.0–20.0 g of soil was taken out from the
cutting ring to determine the soil moisture content, which was determined to be the field
capacity [45]. The field capacity of the soil was 24.2% and the standard deviation of the
three repeats was 1.30%.

Each pot contained 8.5 kg of air–dried soil. Urea (containing 40% N), superphosphate
(containing 16% P2O5), and potassium sulfate (containing 60% K2O) were used as base
fertilizer and mixed with the soil before potting. The dosages of the three fertilizers were
4.3 g pot−1, 18.1 g pot−1, and 5.5 g pot−1, respectively, and fertilizers were applied once
before sowing. A plastic tube (50 cm height, 2 cm diameter) was inserted into the pot, and
the irrigation water entered the soil through the plastic tube in the growth period. We
called the irrigation way “bottom–up irrigation”.

2.2.2. Experimental Management

The test crop was a commonly used local winter wheat variety (Xiaoyan 22), and the
wheat was sown on 5 November 2018 and harvested on 20 May 2019. From sowing to the
three–leaf stage, the winter wheat was irrigated with different water types, but soil water
content was maintained at nearly 80%FC (approximate 19.4% soil water content) to ensure
the normal growth of wheat in the early stage. Surface-to-bottom irrigation and bottom-up
irrigation were combined to ensure the growth of the wheat and to promote root growth.
At the three–leaf stage, taking into account the diameter of pot and to ensure normal plant
growth, superfluous plants were pulled out to leave nine plants with uniform growth in
each pot. After entering the jointing stage, the wheat was treated with different irrigation
amounts, and the irrigation frequency was every two days using bottom–up irrigation. The
irrigation volume of each pot was obtained by subtracting the current soil moisture content
from the pre-determined treatment soil moisture. The current soil moisture content was
obtained by weighing (0.1 g), and the plant weights were neglected.

2.2.3. Irrigation Water

The tap water was local tap water from Yangling, Shaanxi. Magnetized water was
obtained by cyclic magnetization of tap water through a 3000 Gs magnetic field. Details
were as follows. The 3000 Gs custom magnetic ring (3.0 cm inner diameter, 3.4 cm outer
diameter, 3.2 cm height) was placed on the inlet pipe of the peristaltic pump. Moreover, the
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inlet and outlet pipes (2.7 cm inner diameter, 0.3 cm thickness) of the peristaltic pump were
placed in the same container filled with tap water. The cyclical movement of the tap water
in the container was driven by the operation of the peristaltic pump. The rotational speed
of the peristaltic pump was 400 r min−1, and 45 L tap water was circulated for 1 h.

The water obtained by passing tap water through the micro–nano bubble generator to
increase the oxygen content in the water was called oxygenated water. The inlet and outlet
pipes (2.7 cm inner diameter, 0.3 cm thickness) of the micro–nano bubble generator were
placed in the same container filled with tap water, and 45 L tap water was also circulated
for 1 h.

The magnetized and oxygenated water was obtained by magnetizing the water first
and then oxygenating. The rate and parameter settings were the same as magnetized water
and oxygenated water. The preparation of magnetized water and oxygenated water is
shown in Figure 1. The preparation methods here were similar to Yang et al. [48].
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2.3. Sampling and Measurements

In the jointing stage, heading stage, filling stage, and maturity stage, the growth and
physiological indexes of the wheat were measured.

2.3.1. Growth Characteristics

Plant height, aboveground biomass, and leaf area were measured at different growth
stages. The same three plants per pot were selected to measure plant height at different
stages. Plant height was measured with a ruler. One wheat plant per pot was randomly
harvested at different growth stages to measure leaf area and aboveground biomass. The
total leaf area was determined by a leaf area instrument (LI–3100A, Li–Cor, Lincoln, NE,
USA). The aboveground biomass was measured by drying wheat plants at 65 ◦C to a
constant weight.

2.3.2. Physiological Characteristics

The same three plants were selected in each pot, and the photosynthetic rate (Pn),
stomatal conductance (Gs), and transpiration rate (Tr) of the winter wheat were measured
using the LI–6400 Portable Photosynthesis System (LI–Cor, Lincoln, NE, USA) at different
growth stages. SPAD–502 Minolta chlorophyll meter (Spectrum Technologies, Plainfield,
IL, USA) was used to measure the SPAD values of the flag leaves at different stages. These
physiological characteristics were measured in–vivo without harvesting the plants.

2.3.3. Yield Components, Total Water Consumption (TWC), and WUE

After four periods of sampling and measurements, the remaining five wheat plants
in each pot were harvested. The number of spikes and kernels per pot were estimated by
manual counting. The grain yield per pot was determined by threshing, air-drying, and
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then weighing. Soil water mass at harvest (Wh) was measured with the gravity method,
and the soil sample was collected at 0–20 cm in each pot.

The TWC (mm) during the growing period was calculated as:

TWC = (Ws + Wi −Wh)/(ρw × S) (1)

where Ws is the soil water mass before sowing (kg), Wi is the sum of the water mass
irrigated to each pot during the whole growth period (kg), and Wh is the soil water mass
at harvest (kg). ρw is the density of water, 1.0 g cm−3. S is the surface area of the pot,
3.14 × 10−2 m2.

The WUE (kg ha−1 mm−1) was calculated as:

WUE = (Y× 10)/(S× TWC) (2)

where Y (kg) is the grain yield of the remaining five plants per pot, S is the surface area
of the pot, 3.14 × 10−2 m2. TWC is the total water consumption during the whole growth
period (mm).

The harvest index (HI) was calculated as [49]:

HI = Y/Yb (3)

where Y (kg) and Yb (kg) are the grain yield and the biomass yield of the remaining five
plants per pot.

2.4. Statistical Analysis

Data were analyzed with SPSS 19.0 software (SPSS Inc., Chicago, IL, USA) at p < 0.05.
One–way ANOVA and Duncan’s multiple comparisons were used to determine significant
differences between the treatments. The figures were plotted with Origin 9.3 (OriginLab
Corporation, Northampton, MA, USA).

3. Results
3.1. Growth Characteristics
3.1.1. Plant Height

Activated water irrigation significantly increased the plant height in the jointing
stage over tap water irrigation with 50%FC (TW50) (p < 0.05), as shown in Figure 2. The
plant height of magnetized water irrigation with 50%FC (MW50), oxygenated water irriga-
tion with 50%FC (OW50), and magnetized and oxygenated water irrigation with 50%FC
(M&OW50) significantly higher by 29.5%, 65.1%, and 29.2%, respectively, over TW50 in
the jointing stage. Oxygenated water irrigation (OW) had a higher plant height in each
growth stage than tap water irrigation (TW) at three irrigation amounts. The plant height
of magnetized water irrigation with 80%FC (MW80) were 13.1%, 1.2%, and 1.0% higher
than tap water in 80%FC (TW80) in the jointing stage, heading stage, and filling stage,
respectively. However, compared with TW50, M&OW50 had a lower plant height in each
growth stage. Both magnetized water irrigation with 65%FC (MW65) and magnetized and
oxygenated water irrigation with 65%FC (M&OW65) had a higher plant height at each
growth stage compared with tap water with 65%FC (TW65).

3.1.2. Leaf Area

Activated water irrigation produced a greater total leaf area at different growth stages
than TW. The total leaf area of winter wheat decreased gradually with the decrease of
irrigation amount and was highest in the filling stage, as shown in Figure 3. In the
filling stage, the leaf area of MW80, oxygenated water irrigation with 80%FC (OW80), and
magnetized and oxygenated water irrigation with 80%FC (M&OW80) were 1.1%, 39.3%,
and 4.6% higher than TW80, respectively.
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The leaf area of MW65, oxygenated water irrigation with 65%FC (OW65), and M&OW65
were 12.2%, 58.3%, and 50.7% higher than TW65 in the filling stage, respectively. The leaf
area of MW50, OW50, and M&OW50 were 54.6%, 82.9%, and 64.2% higher over TW50 in the
filling stage, respectively.

3.1.3. Aboveground Biomass

Activated water irrigation produced a greater aboveground biomass of winter than
TW, and the aboveground biomass was influenced by irrigation amount in each growth
stage, as shown in Figure 4. In the filling stage, the aboveground biomass of OW80 and
M&OW80 were 27.9% and 17.1% higher over TW80. In addition, the aboveground biomass
of MW65, OW65, and M&OW65 in the filling stage were 28.0%, 69.7%, and 33.0% higher
over TW65, respectively. The aboveground biomass of MW50, OW50, and M&OW50 in the
filling stage were 88.0%, 114.1%, and 112.3% higher over TW50, respectively.
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Figure 4. Effect of tap water (TW), magnetized water (MW), oxygenated water (OW), and magnetized
and oxygenated water (M&OW) irrigation on aboveground biomass of winter wheat with 80%FC,
65%FC, and 50%FC irrigation amounts in the different growth stages. The error bars indicate
standard deviations.

3.2. Physiological Characteristics

The SPAD value of winter wheat was significantly affected by irrigation amount, water
type, as well as the interaction between irrigation amount and water type (p < 0.01), as
shown in Figure 5. In different growth stages, the SPAD value was highest in the filling
stage and lowest in the maturity stage, and decreased with the decreasing of irrigation
amount. The SPAD value of winter wheat was higher in activated water irrigation than
TW in each irrigation amount. Moreover, the effect of activated water irrigation on SPAD
value with 50%FC was more obvious than with 80%FC and 65%FC. At the jointing stage,
the SPAD value of MW50, OW50, and M&OW50 were 7.5%, 14.6%, and 10.8% higher over
TW50 (p < 0.05). At the heading stage, the SPAD value with MW50, OW50, and M&OW50
was significantly greater by 8.8%, 13.6%, and 10.3% than with TW50 (p < 0.05). At the filling
stage, the SPAD value with MW50, OW50, and M&OW50 was significantly greater by 5.9%,
10.2%, and 8.2% than with TW50 (p < 0.05).
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Figure 5. Effect of tap water (TW), magnetized water (MW), oxygenated water (OW), and magnetized
and oxygenated water (M&OW) irrigation on SPAD value of winter wheat with 80%FC, 65%FC,
and 50%FC irrigation amounts in the different growth stages. Different letters above the bars
indicate significant differences among treatments in the different growth stages at p < 0.05. Irrigation
amount × water type represents the effect of interaction between irrigation amount and water type.
** identifies significant differences at p < 0.01, respectively, and ns identifies no significant differences.
The error bars indicate standard deviations.

Net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr)
of winter wheat were significantly affected by irrigation amount and water type, but the
interaction between irrigation amount and water type had no significant influence on Pn,
Gs, and Tr of wheat (p < 0.05), as shown in Figures 6–8. In general, increasing the irrigation
amounts and irrigation with activated water effectively improved the Pn, Gs, and Tr of
wheat. At the heading stage, the Pn, Gs, and Tr were 14.5%, 17.7%, and 40.8% higher with
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OW50 than with TW50. The Pn, Gs, and Tr were 25.7%, 53.3%, and 32.1% higher with OW65
than with TW65. The Pn, Gs, and Tr were 24.1%, 57.1%, and 45.8% higher with OW50 than
with TW50.
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Figure 6. Effect of tap water (TW), magnetized water (MW), oxygenated water (OW), and magnetized
and oxygenated water (M&OW) irrigation on net photosynthetic rate of winter wheat with 80%FC,
65%FC, and 50%FC irrigation amounts in the different growth stages. Irrigation amount × water
type represents the effect of interaction between irrigation amount and water type. * and ** identify
significant differences at p < 0.05 and p < 0.01, respectively, and ns identifies no significant differences.
The error bars indicate standard deviations.
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Figure 7. Effect of tap water (TW), magnetized water (MW), oxygenated water (OW), and magnetized
and oxygenated water (M&OW) irrigation on stomatal conductance of winter wheat with 80%FC,
65%FC, and 50%FC irrigation amounts in the different growth stages. Irrigation amount×water type
represents the effect of interaction between irrigation amount and water type. * identifies significant
differences at p < 0.05, respectively, and ns identifies no significant differences. The error bars indicate
standard deviations.
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Figure 8. Effect of tap water (TW), magnetized water (MW), oxygenated water (OW), and magnetized
and oxygenated water (M&OW) irrigation on the transpiration rate of winter wheat with 80%FC,
65%FC, and 50%FC irrigation amounts in the different growth stages. Irrigation amount×water type
represents the effect of interaction between irrigation amount and water type. ** identifies significant
differences at p < 0.01, respectively, and ns identifies no significant differences. The error bars indicate
standard deviations.
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3.3. TWC, Wheat Yield, and WUE

Activated water irrigation produced lower TWC with 80%FC, and higher TWC with
65%FC and 50%FC, as shown in Figure 9. The TWC with MW80, OW80, and M&OW80
were lower by 10.4%, 10.3%, and 12.8% than with TW80. The TWC with MW65, OW65, and
M&OW65 were greater by 4.5%, 8.2%, and 3.2% than with TW65. The TWC with MW50,
OW50, and M&OW50 were greater by 10.9%, 26.7%, and 27.1% than with TW50.
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Figure 9. Effect of tap water (TW), magnetized water (MW), oxygenated water (OW), and magnetized
and oxygenated water (M&OW) irrigation on total water consumption with 80%FC, 65%FC, and
50%FC irrigation amount. Different letters above the bars indicate significant differences among
treatments at p < 0.05. The error bars indicate standard deviations.

The yield, yield components, and WUE of winter wheat were significantly affected by
irrigation amount and water type (p < 0.01), as shown in Table 2. Spikes per pot of MW80,
OW80, and M&OW80 were greater by 16.4%, 23.6%, and 19.3% than TW80, respectively,
while there was no significant difference among them (p < 0.05). The yield of MW80 and
OW80 were greater by 35.7% (p < 0.05) and 11.4% (p > 0.05) than TW80, while the yield of
M&OW80 was significantly less by 27.1% (p < 0.05). WUE of MW80 and OW80 were greater
by 53.9% and 23.1% than TW80, while M&OW80 was less by 15.4%.

Table 2. The yield, yield components, water use efficiency (WUE), and harvest index (HI) of winter
wheat with different water irrigation.

Irrigation Amount Treatment Spikes per Pot Kernels per Pot Yield (×10−3 kg pot−1) WUE (kg ha−1 mm−1) HI (%)

80%FC

TW80 14.0 ± 1.0 a 304.0 ± 29.1 b 7.0 ± 1.3 b 2.6 bc 23.0 a
MW80 16.3 ± 2.5 a 417.7 ± 15.7 a 9.5 ± 0.9 a 4.0 a 22.9 a
OW80 17.3 ± 0.6 a 354.7 ± 40.0 b 7.8 ± 0.5 ab 3.2 ab 22.9 a

M&OW80 16.7 ± 2.3 a 144.7 ± 19.1 c 5.1 ± 1.0 c 2.2 c 13.9 b

65%FC

TW65 12.0 ± 1.7 b 123.3 ± 7.6 c 4.1 ± 0.1 b 2.7 b 15.9 b
MW65 13.0 ± 1.0 ab 262.0 ± 21.5 a 5.9 ± 0.3 a 3.7 a 22.0 a
OW65 15.7 ± 1.5 a 167.0 ± 2.7 b 6.0 ± 0.7 a 3.7 a 23.7 a

M&OW65 13.3 ± 1.5 ab 187.7 ± 16.0 b 4.7 ± 0.2 b 3.0 b 15.8 b

50%FC

TW50 7.3 ± 0.6 b 114.3 ± 5.1 b 2.2 ± 0.2 b 2.9 c 17.9 c
MW50 7.3 ± 0.6 b 84.3 ± 3.1 c 1.8 ± 0.2 b 2.2 c 17.0 c
OW50 8.3 ± 0.6 b 117.0 ± 9.5 b 3.9 ± 0.8 a 4.1 b 21.9 b

M&OW3 10.7 ± 0.6 a 181.3 ± 27.6 a 4.9 ± 0.7 a 5.1 a 24.7 a

Irrigation amount ** ** ** ** ns
Water type ** ** ** ** **

Irrigation amount ×Water type ns ** ** ** **

Notes: Irrigation amount × water type represents the effect of interaction between irrigation amount and water
type. The number following ± is the standard deviation. Values followed by different letters within a column
are significantly different among treatments in the same irrigation amount (p < 0.05). ** identifies significant
differences at p < 0.01, respectively, and ns identifies no significant differences.

With 65%FC, irrigation with activated water had more spikes and high yield and WUE.
Spikes per pot, yield, and WUE of OW65 were significantly higher, by 30.8%, 46.3%, and
37.0%, than TW65, respectively (p < 0.05). The yield and WUE of MW65 were significantly
greater, by 43.9% and 37.0%, respectively, than TW65 (p < 0.05).
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Yield and WUE of OW50 were significantly greater, by 77.3% and 41.4% than TW50
(p < 0.05). Yield and WUE of M&OW50 were significantly greater, by 122.7% and 75.9%, than
TW50 (p < 0.05). However, kernels per pot, yield, and WUE of MW50 were lower, by 26.2%,
18.2%, and 24.1%, respectively, than with TW50, and kernels per pot were significantly
lower (p < 0.05).

The HI ranged from 14.9% to 24.7%, and was affected by water type and an interac-
tion effect between irrigation amount and water type (Table 2). With M&OW80, HI was
significantly lower, by 59.9%, than with TW80. HI with MW65 and OW65 was significantly
higher, by 37.5% and 50.0%, than with TW65. HI with OW50 and M&OW50 were 22.2% and
38.9% higher than with TW50, whereas there was no significant difference between MW50
and TW50 (p < 0.05).

4. Discussion
4.1. Response of Wheat Growth Traits to Irrigation Water Type and Irrigation Amount

In this study, irrigation with MW had a positive effect on plant height, leaf area, SPAD
value, photosynthetic rate, stomatal conductance, and transpiration rate. These results
indicated that MW promoted the growth of winter wheat. Similar results were obtained
in previous studies. It was found that MW effectively increased plant height and specific
leaf area of cowpea [30], increased each part biomass of a plant (straw yield and grain
yield) [29], increased the chlorophyll content of soybeans and two varieties of peppers [50],
and significantly improved the photosynthetic rate of plants [30]. The probable reasons
were as follows. On the one hand, the hydrogen bonds between the water molecules
treated by a magnetic field were broken and free monomer small molecules were formed.
These small free monomer molecules had a hexagonal structure, which easily penetrated
biological cell walls and entered plant cell membrane channels, thereby promoting crop
growth [23,51]. On the other hand, the magnetic field increased the synthesis of gibberellin,
indole acetic acid, and cytokinin, and decreased abscisic acid in plant cells, which in
turn promoted the division and enlargement of crop cells, and promoted crop growth.
Furthermore, with MW irrigation, the wheat leaf area increased. Larger area leaves had the
ability to absorb and capture more light energy, and the increasing leaf chlorophyll content
had a positive effect on increasing photosynthetic rate and material synthesis [52–55].

The results of our study showed that irrigation with OW at three irrigation amounts
promoted the growth of wheat plant height, leaf area, leaf SPAD value, net photosynthetic
rate, stomatal conductance, and transpiration rate, as well as aboveground biomass at
different growth stages, especially in 50%FC. The results were consistent with previous
studies on irrigation with aerated water [56,57]. Bhattarai et al. [43] found that the tran-
spiration rate of tomato leaves was significantly increased using subsurface aeration drip
irrigation. Zhao et al. [58] indicated that aeration treatment on “Red Globe” grape had a
positive effect on the net photosynthetic rate, stomatal conductance, and transpiration rate
of the leaves in the same growth stage. The possible reasons were as follows. Firstly, OW
increased oxygen content in the root zone, improved the soil respiration, and promoted
the activity and reproduction of aerobic microorganisms [58], which rapidly decompose
soil organic matter and accelerate the mineralization rate, thus promoting the uptake and
utilization by crops [59]. Secondly, the higher leaf areas and SPAD value found using OW,
enhanced the ability to absorb and convert light energy, and increased the photosynthetic
rate, which in turn promoted the accumulation of dry matter [60]. Thirdly, the size of
the oxygenated water complex was 50 µm or less, which is smaller than the traditional
water complex, and the bubbles can stay in the water for a long time, thereby changing the
absorption characteristics of the root surface and improving the absorption of nutrients by
plants [61,62].

M&OW irrigation promoted the growth of wheat plant height with 65%FC and 50%FC
(Figure 2), but it had an inhibitory effect with 80%FC (Figure 2). The possible reason was
that the M&OW irrigation promoted the formation of wheat tillers, especially at 80%FC.



Agronomy 2022, 12, 1315 12 of 16

The number of wheat tillers was higher than with TW, and a large amount of water was
used for wheat tiller formation. As a result, the plant height reduced (Table 2).

4.2. Response of Yield, TWC, Biomass, and WUE to Irrigation Water Type and Irrigation Amount

Wheat yield and yield components were significantly affected by irrigation amount,
water type and the interaction between the two factors (Table 2). With 80%FC, MW and
OW produced higher wheat yields, more spikes per pot, and more kernels per pot than TW.
These results were similar to the results of Du et al. [63] on potatoes with MW irrigation,
and the meta–analysis of Du et al. [64] about OW irrigation. These searchers mainly
attributed the improvements to the effect of MW and OW on crop growth. However, the
kernels per pot and yield of M&OW80 treatment were 52.4% and 27.1% lower than TW80.
In the present study, wheat from all pots were harvested at the same time to make sure
the growth time per pot was the same. When harvested uniformly, the wheat leaves of
M&OW80 had not been entirely yellowed, and the grain had not matured, which probably
was the main reason for the lower yields in this treatment. This phenomenon indicated that
M&OW80 prolonged the wheat growth period. With 65%FC, the three types of activated
water significantly improved wheat yield and its components. However, with 50%FC,
only OW and M&OW significantly increased kernel numbers and yield, while MW had a
negative effect on yield. The possible explanations for these results are as follows. On the
one hand, sufficient water supply during the winter wheat growth period was beneficial to
production increase. However, with 50%FC, wheat had a higher water requirement during
the filling stage, and water supplied during irrigation was mainly used for vegetative
growth, which hindered grain filling. On the other hand, OW had the ability to increase
water absorption and utilization, so a higher yield than obtained with TW was found with
OW and M&OW. In addition, although MW increased the number of free monomer water
molecules and dimer water molecules, which was more conducive to crop absorption
and utilization, lower irrigation water was mainly used for vegetative growth rather than
reproductive growth. This hindered the grain filling of MW. Although there were more
spikes using MW3 than with TW3, most of them were not full or not formed, resulting in a
yield reduction [23,51].

The TWC was less with activated water irrigation than with TM80, while TWC was
higher with activated water irrigation than with TM65 and TM50 (Figure 9). This was
probably because sufficient water supply promoted the growth of plants, especially with
activated water irrigation, and the higher canopy obtained with MW, OW, and M&OW
effectively reduced the soil evaporation (Figure 3) and decreased the TWC. However, under
65%FC and 50%FC conditions, the water supply was insufficient, but activated water
had the ability to promote root growth and increase the water absorption efficiency [47].
As a result, the higher canopies were found using MW, OW, and M&OW than with TW
(Figure 3). Although a higher canopy can effectively reduce soil evaporation, higher crop
transpiration also should not be ignored. The higher TWC of activated water irrigation
may have attributed the higher crop transpiration than with TW under 65%FC and 50%FC
conditions [65,66].

WUE was significantly affected by irrigation amount, water type, and the interaction
between the two factors (Table 2). Under 80%FC conditions, WUE with MW and OW was
larger by 53.9% and 23.1% than with TW, while WUE with M&OW was less by 15.4% than
TW. Under 65%FC condition, the WUE with MW, OW, and M&OW were greater, by 37.0%,
37.0%, and 11.1%, respectively, than TW. Under 50%FC condition, the WUE using OW and
M&OW were significantly greater, by 36.7% and 70.0% (p < 0.05), than using TW, while
the WUE using MW was 26.7% less than with TW. Zhao et al. [67] found that magnetized
water irrigation with 120 mm had the highest water use efficiency in the field condition.
The results of this study were similar to the studies of others [28,66–68]. The lower WUE
reduction using M&OW with 80%FC and using MW with 50%FC might be attributed to
the uneven distribution of photosynthetic products and reduction of yield. In addition, the
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WUE in our study only took into account yield and neglected the biomass of wheat stalks;
this may underestimate the water use efficiency.

Moreover, there was no research on oxygenated water and magnetized and oxygenated
water irrigation under different irrigation amounts, further field experiment research should
also be conducted in these aspects.

4.3. Applicability Evaluation

In arid and semi–arid areas, the current water–saving measures commonly used in
farmland mainly include mulching [69–71] and no–tillage [72,73]. A meta–analysis con-
ducted on non–plastic–film mulching on maize in the Loess Plateau of China showed
that plastic–film mulching produces significantly higher maize grain yield, by 56.1% than
no–mulching [74]. A recent meta–analysis of the soil tillage practices in Northern China indi-
cated that subsoiling and mulching increased the wheat yield by 16.3± 3.2 and 14.9± 2.9%,
respectively [75]. Previous research showed that plastic mulching significantly increased
crop yield and WUE by 24.3% and 27.6%, respectively. However, it left residual plastic in
the soil. Residual plastic concentrations between 0 and 240 kg ha−1 have limited influence
on crop yields, but at residual plastic film >240 kg ha−1, yield decreases [76]. Although
no–tillage treatments increased WUE by 16.5–29.1%, continuous no–tillage decreased
yields [72].

In our study, compared with TW50, the yield and WUE of OW50 were greater by
77.3% and 41.4% (Table 2), respectively. These results indicated that compared with other
water–saving measures, irrigation with activated water not only avoided the introduction
of contaminants into the soil, but also improved crop yield and WUE.

At present, the preparation equipment of magnetized water and oxygenated water
used in field experiments are permanent magnet and Venturi tube [67,77]. The methods
were as follows. A permanent magnet was installed on the outer wall of the irrigation
water pipe, and the water was magnetized as it passed through the pipe. The Venturi tube
was installed on the pipe of the drip irrigation system, the air was sucked through the
Venturi tube of the Mazzei injector following Bernoulli’s principles, and the air volume
in the irrigation water was controlled by the pressure differences for the inlet and outlet.
Furthermore, the input of permanent magnet and Venturi tube are very low because these
instruments could be used for a long time, for example, 20 years. Activated water irrigation
could be considered an effective water-saving measure to increase crop yield.

This study provided a new research idea regarding activated water irrigation research
in the field condition, and we recommend to prepare the activated water with permanent
magnet and Venturi tube in field conditions. In addition, we will also conduct relevant
experiments to verify our current experimental results under field conditions.

5. Conclusions

Activated water promoted the growth of winter wheat under different irrigation
conditions. Its use increased wheat plant height, leaf area, aboveground biomass, SPAD
value and photosynthetic indicators. The yield and WUE varied with irrigation amounts.
With 80%FC, MW and OW produced a higher yield and WUE than TW. With 65%FC, MW,
OW, and M&OW had a higher yield and WUE than TW. With 50%FC, OW and M&OW
had significantly higher yield and WUE than TW. Overall, activated water irrigation could
be considered an effective water–saving measure to increase crop yield.
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