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Abstract: A breeder can select a visually appealing phenotype, whether for ornamentation or land-
scaping. However, the organic vision is not accurate and objective, making it challenging to bring a
reliable phenotyping intervention into implementation. Therefore, the objective of this study was
to develop an innovative solution to predict the intensity of the flower’s color upon the external
shape of the crop. We merged the single linear iterative clustering (SLIC) algorithm and box-counting
method (BCM) into a framework to extract useful imagery data for biophysical modeling. Then,
we validated our approach by fitting Gompertz function to data on intensity of flower’s color and
fractal dimension (SD) of the architecture of white-flower, yellow-flower, and red-flower varieties of
Portulaca umbraticola. The SLIC algorithm segmented the images into uniform superpixels, enabling
the BCM to precisely capture the SD of the architecture. The SD ranged from 1.938315 to 1.941630,
which corresponded to pixel-wise intensities of 220.85 and 47.15. Thus, the more compact the ar-
chitecture the more intensive the color of the flower. The sigmoid Gompertz function predicted
such a relationship at radj

2 > 0.80. This study can provide further knowledge to progress the field’s
prominence in developing breakthrough strategies toward improving the control of visual quality
and breeding of ornamentals.

Keywords: box-counting method; fractal geometry theory; imagery processing; Portulaca umbraticola;
superpixel segmentation

1. Introduction

Experts prospect that both thinking and making in agriculture will not be easy in the
near future [1–4]. Climate change (e.g., heat waves, droughts, and flooding), economic
crises, and civil conflicts (e.g., wars) will make it harder for farmers to produce goods
and services in a sustainable way [5–7]. Therefore, stakeholders (e.g., the scientific com-
munity, policymakers, and civil society) in the global agriculture system must be aware
of the commitment, cooperation, and coordination they need to elaborate to effectively
strengthen the production and distribution of sufficient quantities of affordable goods
and services to all [8,9]. They need to take a proactive and stringent stance to promote
and perpetuate transformative agriculture via strategic, catalytic, and resilience-building
interventions [10,11]. For instance, a breakthrough solution to farming in a challenging
world would be genetic breeding, whether for developing future-ready genotypes or highly
valuable special crops such as ornamentals [12–14].

The action of genetically breeding a plant can enable stakeholders to either maximize
yield and quality or minimize losses and costs. thereby, leveling up the agronomic return
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on infrastructural investments. However, it can be costly, time-consuming, and labor-
intensive [12]. A genetic breeding program often demands a professional staff to operate or
proceed in a successful way [14]. An analyst can visually inspect an outstanding plant and
select it phenotypically. However, the organic vision is not precise and objective, making
it challenging to bring a reliable phenotyping intervention into implementation [12,14].
Furthermore, the staff may need to invasively intervene in the breeding facility by touching
the object [12,14]. Therefore, our timely study will develop and demonstrate the potential
of a cutting-edge imagery protocol to accurately and realistically model the intensity of
a flower’s color upon the architectural complexity of an ornamental commodity, namely
Portulaca umbraticola.

P. umbraticola is a member of Portulacaceae [15]. It is an herb and often produces showy
(vibrant) flowers, which are a wealth of natural beauty and visually appealing to attract
stakeholders (e.g., commodity sellers and buyers) at markets of ornamentation and land-
scaping [13]. Research and biotechnological development into large-scale high-throughput
genotyping/phenotyping for mainstream ornamental crops are mature [13,16]. In contrast,
the scientific community is not likely to place an adequate emphasis on P. umbraticola.
Insufficient literature on conventional and high-throughput phenotyping for P. umbraticola
can make it challenging to ground our study on a consistent base of research into actionable
state-of-the-art techniques of particular relevance to such a crop. However, by reviewing
full-text articles on high-throughput phenotyping, we can identify the processing of images
as an enabler for computationally measuring the external shape of Yucca spp. [17], detect-
ing the physiological maturation of Passiflora spp. upon spectral imagery data [18], and
predicting the quality of Actinidia spp. upon high-resolution hyperspectral data [19]. The
authors underline the importance of the processing of the digital image to provide useful
data in order to bring accurate and reliable biophysical models into implementation. They
also stress the relevance of elaborating a sequence of instructions capable of working on the
space of analysis, without bias and computational unfeasibility. Furthermore, they point
out the importance of caring about the choice of suitable descriptors to prevent algorithms
from underfitting or overfitting imagery data.

For instance, flowers are diverse both genotypically and phenotypically. They display
a wide range of colors, shapes, and sizes. Particularly for ornamental commodities, such
reproductive structures are crucial to determine the price and acceptance of the product
in the market [20]. The color of the flower and degree of architectural compactness can
interact with another flower and control the visual quality of ornamentals through the
transportation and allocation of photo-assimilates [21–24]. However, these morphophys-
iological descriptors are subjective to the organic vision [17]. Thus, employing them as
botanical descriptors in the conventional selection of an outstanding phenotype, whether
for ornamentation or landscaping, can bias the breeding intervention and so the analyst
will not be likely to succeed in positioning a trustworthy solution in the real world [25].
Even though the processing of the image is a powerful movement towards transforming the
representation of a fractal pattern into a higher level of abstraction, an unsuitable descriptor,
such as the architecture in the volumetric modeling for apple [26], prediction of biomass
for rice [27] and microstructural characterization of leaves for Anacardium occidentale [28],
can make it challenging for cutting-edge algorithms to effectively map a set of inputs to
an output.

Therefore, considering the research and development of high-throughput phenotyping,
the primary objective of our explanatory study was to develop an imagery protocol to
predict the pixel-wise intensity of flower’s color upon the fractality of the architecture of
P. umbraticola. A secondary objective was to analyze whether the color of the flower can
impact the modeling and the effectiveness of superpixel segmentation in isolating potential
botanical confounders.
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2. Materials and Methods
2.1. Acquisition of Imagery Data

We set up our “photography studio” in a place with the greatest possible source of
nature, since this is key to acquiring useful imagery data [17]. Once we have decided which
had the best natural light to take pictures, we set up the best backdrop for our photographic
style and theme. The backdrop consisted of a dark stretchy fabric, which does not reflect
light when shooting and can add more excitement to images. Once we had wondered
what shooting device we might need for our study, we employed a professional camera
(Canon EOS Rebel T6i), which has technical specifications of 3:2 horizontal/vertical ratio,
6000 × 4000 pixels, and 10.6 diagonal inches at 8.78” width × 5.86” length and can provide
up to 600 dpi resolution; however, once we had set the size of the digital representation of
an image to 8.27” width × 11.69” length (A4 format), we acquired 24-bit-color photos at the
maximum pixel density of 484 dpi. An RBG display system (8 bits for each red, blue and
green subpixel) with at least 300 dpi can provide useful imagery data for processing and
modeling [17]. We set up the camera onto a tripod, positioned the samples of P. umbraticola
in the work-up zone, then photographed them from varying angles to capture the qualities
of the subject of study at eye level, overhead, and from lower positions. We uploaded
the photos to a personal computer, then saved them as a PNG, which is a raster-graphic
format file supporting lossless data compression. To acquire imagery data, we organized
the samples by the color of the flower into groups, namely white, yellow, and red. Every
group consisted of ten samples to control for any systematic error. We grew the varieties of
P. umbraticola in pots in a glasshouse, managing them with the best agronomic practices,
including irrigation, fertilization, and weeding. Thereby, we selected the most visually
appealing individuals to prepare samples for taking photos without any interference from
environmental degradation or noise.

2.2. Processing of Imagery Data

The processing of 24-bit-color images consisted of the following major steps: labeling
(A), equalization (B), quantization (C), segmentation (D), and binarization (E). The objective
of labeling was to assign the digital representation of an image to a variety or group by the
color of the flower. The role of equalization was to improve the contrast of an image by
effectively spreading out the most frequent values or intensity or stretching out the range
of luminance in a histogram [29]. The objective of quantization was to compress distinctive
discrete symbols into a single quantum value, providing sufficient information in a new
representation visually similar to the original [30] for the measuring of the intensity values
of pixels within superpixels; we programmatically performed the partitioning of images
through the SLIC algorithm, which can group pixels by color similarity or topological
proximity merely as a result of processing low-intensity regions in the space of analysis
without any computational unfeasibility [31]. The binarization consisted of computationally
transforming the entire 24-bit-color graphics into a collection of pixels into black and white
corresponding to the subject of study and the background [32], thereby separating the
region of interest for further processing. We performed the binarization to determine the
fractal dimension of the external shape of P. umbraticola through the box-counting method
(BCM) (Figure 1).
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the binarization is defined automatically between 5–95% of the highest intensity values of pixels, 
with an interval of 5% for standardization. The best output of binarization becomes the input for 
the determination of the fractal dimension of the external shape of P. umbraticola through BCM. The 
box-counting algorithm processes the image iteratively (iter) until it completely covers the pattern 
at the border or region of interest to precisely describe the external shape, as opposed to global 
measures to describe the entire subject of analysis. 

The standard operating mode of BCM is to scan the image in a non-overlapping and 
lattice pattern. However, the algorithm is flexible and can be readjusted to lay boxes over a 
digital representation concentrically focused on a region of interest, such as a visually irreg-
ular external shape of P. umbraticola. Thereby, we binarized the image at varying thresholds 
between 5–95% of the highest intensity values of pixels with an interval of 5% for standard-
ization; then, we selected the best binary contours to capture the fractal dimension at local 
regions to precisely assess the external shape of the subject of study, as opposed to global 
measures to describe the entire pattern. As original photos were two-dimensional color 
graphics, values of fractal dimension (SD) should range from 1 to 2. The closer to 1 the value 
of SD the smoother or less fractal the contour, and thus the P. umbraticola becomes architec-
turally less complex or more regular in external shape. In contrast, the closer to 2 the value 
of SD the rougher or more fractal the contour, as the number of boxes of finer grids necessary 
for assessing the local variation increases, and thus the P. umbraticola becomes architectur-
ally more complex or irregular in external shape. The BCM determines the SD of the pattern 
iteratively by covering it and then quantifying the number of boxes touching it at the border 
or region of interest in the topological space of a 2D image. Graphically, the SD is the slope 
of the curve when we plot the number of boxes (Ns) on the y-axis against the size of the box 
(s) on the x-axis. By shrinking the size of boxes, we can more accurately capture the SD of the 
pattern at decreasing multiple scales [33]. We can describe the SD by an equation (Equation 
(1)) involving the natural logarithm of both Ns and s. 𝑆 = lim→ஶ ቈ𝑙𝑛(𝑁௦)𝑙𝑛(𝑠)   (1)

Figure 1. Example of binarizing a 24-bit-color image into a collection of pixels in black and white
to determine the fractal dimension of the architecture of P. umbraticola. The set of thresholds (thr)
for the binarization is defined automatically between 5–95% of the highest intensity values of pixels,
with an interval of 5% for standardization. The best output of binarization becomes the input for
the determination of the fractal dimension of the external shape of P. umbraticola through BCM. The
box-counting algorithm processes the image iteratively (iter) until it completely covers the pattern at
the border or region of interest to precisely describe the external shape, as opposed to global measures
to describe the entire subject of analysis.

The standard operating mode of BCM is to scan the image in a non-overlapping and
lattice pattern. However, the algorithm is flexible and can be readjusted to lay boxes over
a digital representation concentrically focused on a region of interest, such as a visually
irregular external shape of P. umbraticola. Thereby, we binarized the image at varying
thresholds between 5–95% of the highest intensity values of pixels with an interval of
5% for standardization; then, we selected the best binary contours to capture the fractal
dimension at local regions to precisely assess the external shape of the subject of study,
as opposed to global measures to describe the entire pattern. As original photos were
two-dimensional color graphics, values of fractal dimension (SD) should range from 1 to
2. The closer to 1 the value of SD the smoother or less fractal the contour, and thus the
P. umbraticola becomes architecturally less complex or more regular in external shape. In
contrast, the closer to 2 the value of SD the rougher or more fractal the contour, as the
number of boxes of finer grids necessary for assessing the local variation increases, and
thus the P. umbraticola becomes architecturally more complex or irregular in external shape.
The BCM determines the SD of the pattern iteratively by covering it and then quantifying
the number of boxes touching it at the border or region of interest in the topological space
of a 2D image. Graphically, the SD is the slope of the curve when we plot the number
of boxes (Ns) on the y-axis against the size of the box (s) on the x-axis. By shrinking the
size of boxes, we can more accurately capture the SD of the pattern at decreasing multiple
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scales [33]. We can describe the SD by an equation (Equation (1)) involving the natural
logarithm of both Ns and s.

SD = lim
n→∞

[
ln(Ns)

ln(s)

]
(1)

The intensity value of each pixel in the image is a single value for a grey-level image
or a set of values for a color image [34], such as a 24-bit-color or binary digital represen-
tation for P. umbraticola. Thereby, we decided to include the linear filter method in the
programmatic measurement of intensity values of pixels within superpixels, with features
similar to those of the original photos. To the best of our knowledge, the linear filter is the
simplest method of averaging an image by itself, by which the intensity values of pixels can
be determined merely as a result of processing their neighboring pixels within a specific
region [35]. We can describe the linear filter by an equation (Equation (2)) involving the
intensity value of pixel, size, and weighting of the filter. By analyzing the equation, the
default behavior of the linear filter method is to measure the total intensity of the target
region in the image by summing all pixel-wise intensities and then dividing all pixels by
the maximum possible intensity value. The user can measure all pixels in the entire image,
or restrict the processing within specific regions, as we carried out within superpixels. If
the image is segmented, only superpixels will be measured computationally from an area
of interest centered on the pixel, improving the process [34,35].

f ′(x, y) = ∑+M
i=−M ∑+M

j=−M wi,j f (x + i, y + j)
/

∑+M
i=−M ∑+M

j=−M wi,j (2)

where f (x, y) is the intensity value of pixel (x, y), while M is the size of the filter and w
represents the weighting of the filter.

2.3. Data Analytics

We ran PCA as a multi-dimensional statistical approach to establish a functional
relationship between the pixel-wise intensity of the color of the botanical descriptors,
namely corolla, sepal, petal, and filament, and the fractal dimension of the architecture.
Another objective of applying PCA was to capture graphically the effect of potentially
confounding features of anatomy in the quality of data without adequate processing, and
how this could bias the outcome of multivariate data analytics. Furthermore, we fitted
the sigmoid Gompertz function (Equation (2)) to imagery data with and without over-
segmentation to more precisely and realistically model the intensity-fractality nexus and
validate the importance of the SLIC algorithm to our cutting-edge approach; the metric to
analyze the adequacy was the adjusted coefficient of determination (radj

2). We performed
all analyzes in the environment of the R-project for statistical computing and graphics [36].

fx = αe−βe−kx
(3)

where fx is the dependent variable, x is the independent variable, α is the asymptote, β is
the inflection point, k is the exponential decay of specific-growth rate, and e is the Euler
constant [37].

3. Results
3.1. The Anatomy of Flower and Architecture of P. umbraticola

The portable shooting device allowed for capturing high-resolution photographs
from individuals of P. umbraticola (Figure 2); hence, it produced useful imagery data for
processing and biophysical modeling.
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Figure 2. High-resolution digital representation of the anatomy of flowers and architecture of white-
flower (A), yellow-flower (B), and red-flower (C) varieties of P. umbraticola. Arrows in the diagram 
visually assign the sources of confounding (non-random variability or unrealistic structural output-
to-input dependency) to the processing of images. 

By analyzing the high-resolution digital photos, flowers were readily recognizable 
from the top of the plant, irrespective of the variety. By contrast, sepals, petals, filaments, 
and anthers as the prominent constitutive features of the flower were not easily identifia-
ble from the representation of an image, although they were accessible in the vision of the 

Figure 2. High-resolution digital representation of the anatomy of flowers and architecture of
white-flower (A), yellow-flower (B), and red-flower (C) varieties of P. umbraticola. Arrows in the
diagram visually assign the sources of confounding (non-random variability or unrealistic structural
output-to-input dependency) to the processing of images.
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By analyzing the high-resolution digital photos, flowers were readily recognizable
from the top of the plant, irrespective of the variety. By contrast, sepals, petals, filaments,
and anthers as the prominent constitutive features of the flower were not easily identifiable
from the representation of an image, although they were accessible in the vision of the
observer. Furthermore, leaves and stems (purplish in red-flower and yellow-flower varieties
and greenish in the white-flower variety) did influence the vegetative portion of samples,
making it possible to characterize them architecturally by processing imagery data on BCM.
Values of SD ranged from 1.938315 to 1.941630, supporting the irregular character of the
architecture.

3.2. Mapping the Flower’s Color to Canopy’s Architecture over a Pixel-Wise
Intensity-Fractality Nexus

The PCA reduced the dimensionality of original image data while exporting only
useful statistics into the orthogonal subsets, namely PCI and PCII. Such latent hits together
explained 83.40% (Table S1, Supplementary Materials) of the total variability in the intensity–
fractality nexus, thereby, supporting a reliable multivariate analysis.

The primary component had positive linear relationships with corolla (r = 0.95;
p-value < 0.05), petal (r = 0.90; p-value < 0.05), filament (r = 0.80; p-value < 0.05) and
anther (r = 0.80; p-value < 0.05). In contrast, it had a negative correlation with the SD

(r = 0.70; p-value < 0.05), making it attributable to the architecture’s compactness (Table S1,
Supplementary Materials). Therefore, by analyzing the structure of PCI, the larger the SD

the more irregular the plant and thus it does not relate to high-intensity pixels correspond-
ing to parts of the flower. The antagonistic relationship between SD and both corolla and
petal in the second dimension of the factorial map (Figures 3–5) further supported the role
of architecture in determining the intensity of the flower’s color. The PCII had positive
correlations with corolla (r = 0.85; p-value < 0.05) and petal (r = 0.75; p-value < 0.05). In
contrast, it had negative linear relationships with the SD (r = 0.75; p-value < 0.05), anther
(r = 0.65; p-value < 0.05) and filament (r = 0.70; p-value < 0.05) (Table S1, Supplementary
Materials), thereby, making it attributable to intensity of color. Corolla, petal, and SD

proved to be the most reliable botanical and computational descriptors for flower’s color
and canopy’s architecture. Such eigenvectors respectively represented 25.1%, 14.5%, and
12% of the total variance in PCI, and 20.5%, 11.2%, and 9.3% of the total variance in PCII
(Table S1, Supplementary Materials).

Another significant computational descriptor for the modeling refers to pixel intensity.
By analyzing the factorial map for white-flower samples (Figure 3), the larger the proportion
of high-intensity pixels in the upper right quadrant, the more compact the architecture
and the more intensive the flower’s color. In contrast, low-intensity pixels describe the
proportion of either background or vegetative organs in the digital representation of an
image. For instance, photogrammetric reconstruction of white-flower samples in the right
lower sublevel map of the “eye-catching” panel (Figure 3D) consisted of a larger proportion
of low-intensity pixels, because they produced less showy flowers and were structured via
the most irregular external shape. In contrast, the photogrammetric reconstruction of white-
flower samples in the left upper sublevel map (Figure 3A) consisted of a lower proportion
of low-intensity pixels, since they produced the largest quantity of showy flowers and
structured via the most uniform architecture.
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Figure 3. Mapping the botanical and computational features of flower and the architecture of white-
flower samples of P. umbraticola. The sequence of alphanumerical symbols, from (A–D), relates to the
increasing fractality of the pattern in the representation of the digital image.
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The PCA allowed for the establishment of functional relationships between features
of botany and image for white-flower samples, where the stems visually were not uncom-
monly greenish (Figure 2A). However, it did not work properly in discretizing imagery
data on yellow-flower (Figure 2B) and red-flower (Figure 2C) samples. The stems of yellow-
flower and red-flower individuals of P. umbraticola were glossy and purplish, making them
“confounding” eigenvectors for the biophysical modeling. A graphical characteristic of
such confounders in the process of orthogonalization referred to a larger proportion of
low-intensity pixels in the right upper quadrant of all sublevel bi-plot diagrams on yellow-
flower (Figure 4) and red-flower (Figure 5) samples, even though yellow-flower samples
were visually distinctive in the proportion of leaves and stem in the image, and realistically
they were graphically similar. Therefore, purplish stems introduced non-random variability
into the dataset, “confounding” the algorithm in photogrammetrically reconstructing the
spectral signatures of yellow-flower samples. The misinformation-to-information overlap
was clearer in red-flower samples (Figure 5). Other than the purplish stems, the bright
yellowish pattern consisting of anthers and filaments in the central region of the reddish
flower (Figure 2C) also created or masked the true pixel’s intensity, making such parts
potential sources of confounding; hence, mapping the inputs to the output became rather
complex. Once we have visualized through PCA the negative impact of confounders on
the quality of the raw dataset, we decided to segment the representation of an image into
something more meaningful and easier to analyze than the parent photo, namely a super-
pixel. Thereby, we fitted a sigmoid Gompertz function to data with and without pixel-wise
over-segmentation through the SLIC algorithm to illustrate and convey the importance of
isolating the confounder from the dataset to address biophysical modeling with greater
accuracy.

3.3. Predicting in the Gompertz Model for the Superpixel-Wise Intensity of Flower’s Color upon the
Fractal Dimension of Architecture

The SLIC algorithm segmented the high-resolution photos (Figure 6A) into a set of
compact and uniform superpixels (Figure 6D). The cutting-edge image-processing solution
grouped the pixels by chromatic similarity and topological proximity merely as a result of
processing low-intensity features, without computational unfeasibility. Thus, it assisted the
sigmoid Gompertz function in statistically describing the functional relationship between
the intensity of the flower’s color and the fractal dimension of the plant’s architecture with
greater accuracy (radj

2~0.80) than what would be possible in dealing with data without
segmentation (Figure 7).
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By analyzing the breakthrough curves (Figure 7), the relationship between fractal
architecture’s compactness and the intensity of the flower’s color was positive. Therefore,
the more compact or visually smoother the architecture (SD closer to 1), the more intensive
the color of the flowering structure. In contrast, an architecturally more complex or rougher
(SD closer to 2) canopy is not likely to produce vibrant flowers, and thus the intensity of
pixel can decrease in the digital representation of an image. Comparatively, raw imagery
data (solid line) were likely to introduce a larger proportion of systematic errors into
the biophysical modeling than imagery data with superpixel segmentation (dotted line).
Thereby, the Gompertz approach was likely to either underfit to data on white-flower
samples or overfit to data on yellow-color and red-flower samples.

Scatter dots corresponding to white-flower samples closest to the solid line supported
the biasing role of botanical confounders in biophysical modeling. In contrast, scatter dots
graphically representing yellow-flower and red-flower samples farthest from the solid
line supported the introduction of non-random variability in the process by botanical con-
founders. Furthermore, the dotted line closer to observations than the solid line supported
the importance of superpixel segmentation to bring more accurate and reliable predictive
data analytics into implementation. Generally, the sigmoid Gompertz function proved
to be useful in predicting the superpixel-wise intensity of the flower’s color upon the
architectural fractality, and the application of the SLIC algorithm notably updated both
parametrization and adequacy of the biophysical model (Table 1).

Table 1. Parametrization and adequacy of predicting in the sigmoid Gompertz function for the
superpixel-intensity of flower’s color upon the architecture’s fractality.

Parameter No Segmentation Segmentation

α 1.923799685 * 1.937848515 **
β 0.002972565 * 0.002972670 *
k −0.220573050 ** −0.228367205 **

radj
2 0.725 0.80

Significant code: ** p-value < 0.01; * p-value < 0.05.

4. Discussion
4.1. Insights into Biophysical Modeling

Even though P. umbraticola was architecturally complex, the SLIC algorithm and
BCM proved to be a breakthrough merger for extracting useful imagery data to predict the
intensity of a flower’s color upon the fractal dimension of a plant’s architecture and describe
how the variety of inflorescence can impact the biophysical modeling. By analyzing the P.
umbraticola botanically, we see that it is a not uncommonly fleshy graceful herb. Every leaf
is visually simple, alternate or opposite, subsessile, and exstipulate. Every inflorescence is
an axillary cyme or panicle, comprising actinomorphic and often showy (vibrant) flowers
(Figure 1). The calyx consists of twin sepals and the corolla consists of 4–6 ephemeral petals.
The stems are smooth, glossy, and purplish, making them a source of confounding features
in the processing of creating the digital image.

“Confounder” is any variable capable of creating or masking interactions with an
outcome [38]. Because it can induce a dependency structure between input and output,
diagnosing it from the original dataset is not easy. Even though an artefactual variable
does not typically impact the performance of an algorithm, ignoring it can produce an
unrealistic outcome. Furthermore, the model cannot perform as we might expect on data
without a confounding input–output relationship. The PCA in this study can capture the
confounding role of purplish stems in the photogrammetric reconstruction of red-flower
samples (Figure 5D). The introduction of non-random variability into the biophysical
modeling by confounders can make it challenging for the algorithm to calculate true
relationships between the vectorial inputs, namely corolla, petal, filament, and anther, and
the pixel’s intensity as the output.
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Even though PCA was capable of summarizing the structure of high-dimensional data
into latent hits, it was not sufficient to effectively discretize the confounding effect of pur-
plish stems on the quality of imagery data on red-flower samples. Thus, the data-reduction
multivariate technique did relate imprecisely low-intensity pixels to high-intensity pixels
corresponding to vibrant inflorescences in the multifactorial biophysical model, making
it challenging to attribute the dependence of the intensity of the flower’s color on the
canopy’s architecture. This subtle pitfall becomes harder to handle on architecturally more
complex samples, where absent vegetative structures further contributed to the proportion
of low-intensity pixels, creating unrealistic interactions, or rather masking true relationships
between botanical and computational features.

By segmenting the representation of an image into a set of superpixels, we can analyze
particular objects and boundaries with greater accuracy than would be possible in dealing
with raw data (without segmentation). A set of pixels in a region of the image is similar
regarding topological proximity and color intensity, making it distinctive from another
adjacent set. The powerfulness of the SLIC algorithm towards segmenting the image into
k-connection superpixels can isolate the confounding effect of the bright yellow region in
the red flower. Hence, it can enable the Gompertz function to more accurately predict the
color’s intensity upon the canopy’s architecture. However, it is not likely to be effective in
improving the quality of imagery data on white-flower and yellow-flower samples since the
colors of the anther and the whole reproductive organ are the same. Such botanical features
can make it easier for the data-rotating algorithm to discretize high-intensity pixels towards
flowers in parts of the plant where the distribution of stems and leaves is nearly uniform.

4.2. The Value of This Study to Develop High-Throughput Phenotyping and the Ways Forward

While we cannot still prove whether our imagery protocol is feasible at an indus-
trial scale, our experimental study can provide further knowledge to progress the field’s
prominence in developing high-throughput phenotyping technologies. Even though values
of SD tightly ranged from 1.938315 to 1.941630, the box-counting algorithm proved to
be useful in extracting an indicator for the “architectural complexity” of the object from
its high-resolution digital representation, straightforwardly, accurately and objectively,
which would not be possible with traditional analytical approaches. Most importantly, it
allowed for predicting using sigmoid Gompertz function for the intensity of a flower’s
color upon the fractal dimension of the architecture with great accuracy, even greater by
processing superpixel-wise data. As SD came closer to 2, the BCM validated the irregular
architecture of P. umbraticola, which is challenging and would not be possible to assess by
applying Euclidian theory geometry. Such a mathematical approach does apply strictly
to regular patterns and so would not measure the dimension of a plant’s architecture as
BCM did precisely, without any computational unfeasibility. Therefore, BCM was key to
bringing our breakthrough imagery protocol to implementation in a successful way. An
explanatory relationship between the superpixel-wise intensity of flower’s color and fractal
dimension of plant’s architecture will likely enable stakeholders (e.g., breeders) not to
spend resources investigating meaningless and subjective features, so they would better
understand both process and product in order to reach a higher level of performance and
ensure the reliable application of the technology. As plant breeding programs become more
data-driven, our framework would make it better for evolving these without obscuring
insightful relationships, or rather with greater objectiveness and accuracy than would be
possible with traditional phenotyping interventions.

This study is an important part of transdisciplinary research, elaborating conceptual,
theoretical, methodological, and translational innovations toward high-throughput phe-
notyping. Our imagery protocol is still at an early stage of research and development.
However, it proved to be useful in establishing a functional relationship between the
superpixel-wise intensity of the flower’s color and the fractal dimension of the architec-
ture of P. umbraticola, which we grew in a protected environment to isolate the negative
impact of any stressing agent on the quality of image data and predictive performance
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of the framework. We set out the P. umbraticola as a model for ornamentals, because of
its characteristic showy inflorescence and irregular external shape. These outstanding
features opened the possibility of developing an accurate and reliable biophysical model,
supporting the hypothesis of this study. Therefore, further in-depth investigations that
integrate and move beyond discipline-specific approaches will concentrate on analyzing
field-level imagery data on oilseed crops (e.g., soybean and sunflower) to cross-validate
and position our innovative solution for high-throughput phenotyping in the real world.
We will pay an adequate emphasis to the environment and how it can interact with the
subject of analysis to determine morphophysiological features, in order to improve the
soundness of our breakthrough strategy for improving the control of the visual quality and
breeding of economically valuable crops.

5. Conclusions

This explanatory study demonstrated the possibility of predicting the intensity of the
flower’s color upon the fractal dimension of architecture from high-resolution imagery
data on P. umbraticola. The more compact the herbaceous structure of the crop, the more
intensive the color of the flower. The fractal dimension of architecture and intensity of the
flower’s color are reliable descriptors for the botanical–computational nexus, making them
drivers to bring accurate biophysical models into implementation. Morphophysiological
features, such as purplish glossy stems in yellow-flower individuals and bright yellowish
anthers in red-flower individuals, can act as confounders for the processing of images
and modeling. However, the SLIC algorithm can isolate them from the dataset, making
it possible for mapping the superpixel-wise intensity of a flower’s color to the fractal
dimension of architecture with greater accuracy. Therefore, insights into the conceptual and
technical ramifications of this paper will likely provide further knowledge to progress the
field’s prominence in developing high-throughput phenotyping, whether for improving
the control of the visual quality or breeding of P. umbraticola.
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