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Abstract: Long-chain acyl-CoA synthases (LACSs) are a key factor in the formation of acyl-CoA
after fatty acid hydrolysis and play an important role in plant stress resistance. This gene family has
not been research in soybeans. In this study, the soybean (Glycine max (L.) Merr.) whole genome
was identified, the LACS family genes of soybean were screened, and the bioinformatics, tissue
expression, abiotic stress, drought stress and co-expression of transcription factors of the gene
family were analyzed to preliminarily clarify the function of the LACS family of soybean. A total
of 17 LACS genes were screened from soybean genome sequencing data. A bioinformatics analysis
of the GmLACS gene was carried out from the aspects of phylogeny, gene structure, conserved
sequence and promoter homeopathic element. The transcription spectra of GmLACSs in different
organs and abiotic stresses were used by qRT-PCR. The GmLACS genes, which co-expresses the
significant response of the analysis of drought stress and transcription factors. The results showed
that all soybean LACS have highly conserved AMP-binding domains, and all soybean LACS genes
were divided into 6 subfamilies. Transcriptome analysis indicated that the gene-encoding expression
profiles under alkali, low temperature, and drought stress. The expression of GmLACS9/15/17 were
significantly upregulated under alkali, low temperature and drought stress. Co-expression analysis
showed that there was a close correlation between transcription factors and genes that significantly
responded to LACS under drought stress. These results provide a theoretical and empirical basis for
clarifying the function of LACS family genes and abiotic stress response mechanism of soybean.

Keywords: soybean (Glycine max (L.) Merr.); long-chain acyl-CoA synthases (LACSs); bioinformatics;
expression analysis; drought stress; resistance

1. Introduction

Fatty acids (FAs) are an important component of oil. It is widely distributed in plant
cells and is essential for plant growth and development. In plants, FAs are combined
to from phospholipids, membrane glycerides, sphingolipids, and triacylglycerol (TAGs),
which become the main energy storage mode in plants [1–4]. It can also be the precursor
of cuticle, cork fat and surface wax, as a surface barrier against biological and abiotic
stresses [5–7]. The anabolic pathway of plant fatty acids is mainly accomplished in a variety
of organelles, involving synthesis in plastids, elongation in endoplasmic reticulum (ER),
and β-oxidative decomposition in peroxisomes [5,8,9]. In order to complete the process
of “entering the cell membrane, transporting between different organelles and leaving
the organelles”, fatty acids usually release free fatty acids through water interpretation,
which are activated by long chain acyl-CoA synthases (LACSs) to form acyl-CoA, and then

Agronomy 2022, 12, 1496. https://doi.org/10.3390/agronomy12071496 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12071496
https://doi.org/10.3390/agronomy12071496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://doi.org/10.3390/agronomy12071496
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12071496?type=check_update&version=1


Agronomy 2022, 12, 1496 2 of 18

generate TAG in the endoplasmic reticulum [10–12]. Therefore, LACS played an important
role in the FAs anabolic pathway [13,14].

FAs can be divided into three categories according to the length of their carbon chains,
namely long-chain fatty acids (LCFA), medium chain fatty acids (MCFA) and short chain
fatty acids (SCFA). The length of fatty acids in higher plants is usually between 14–20 carbon
long-chain fatty acids [15]. Acyl CoA synthase (ACS) is also known as fatty acid CoA ligase.
According to the difference of carbon chain length of specific fatty acid substrates, ACS
can be divided into the following four categories: super long chain (>C20), long chain
(C14–C18), medium chain (C10–C12) and short chain (C6–C8) acyl CoA synthetases [16].

Long-chain acyl-CoA synthase has a highly conserved AMP-binding domain [17,18].
LACS preferentially activate long-chain FAs (LCFAs; C16, C18) formation of acyl-CoA [17,19].
It is considered to be an intercellular fatty acid transporter and a key step necessary for the
utilization of fatty acids in plant metabolism [3,20,21]. LACS catalyzed the formation of acyl-
CoA mainly through two-step reaction, free fatty acids were broken down into adenosine
acid, binding to CoA to release AMP and acyl-CoA [8,13]. The spatial distribution of
LACS enzymes in cells is a factor that leads fatty acids to a specific metabolic fate [22,23].
Consistent with this, in most eukaryotes LACS is encoded by different gene subfamilies in
specific pathways, such as tissue-specific expression and subcellular location. However,
LACS activity often shows significant overlap in substrate specificity, such as human fatty
acid translocation, and this is also the case in Arabidopsis thaliana [20,23].

In Arabidopsis thaliana, nine LACS isoforms were identified, which had different ex-
pression patterns and functions. In vitro enzyme activity analysis showed that all LACSs
can effectively activate a variety of substrates [24]. Meanwhile, most of the nine LACS
genes in Arabidopsis have been isolated and mutant. The identification of these mutants and
the analysis of subcellular localization of expression patterns revealed a complex LACS
activity network involving different aspects of lipid metabolism. Among them, several
LACS subtypes located in the endoplasmic reticulum can activate fatty acids to produce
surface lipids. Long chain specificity analysis and the phenotype of lacs1 mutant showed
that LACS1 played a major role in the production of long chain acyl-CoA, and LACS1 was
the precursor of cuticle wax. Together with LACS1, LACS2 activates VLCFAs to produce
wax components and to bind to keratin in C16 and C18 acyl groups [17,20]. LACS4 and
LACS1 are partially redundant in providing substrates for wax biosynthesis in stem and
leaf cuticle and lipid formation in pollen coat [21]. LACS3 may be strongly expressed in
stem epidermis, but it has not been studied so far [22]. LACS5 is expressed in anthers.
Similarly, the identification of lacs6 and lacs7 double mutants showed that, LACS6 and
LACS7 were involved in the degradation of fatty acids in peroxidase [25]. In addition,
LACS9 was considered to be the main LACS subtype involved in the formation of acyl-CoA.
Participate in TAG biosynthesis [17,18,20]. LACS9 and LACS4 overlap with LACS8 in
function. The destruction of LACS8 under the background of lacs9 and lacs4 may lead
to lethality [21]. LACS9 was a widely studied member of the AtLACS family and was
considered to be a major LACS subtype due to its location in the de novo and synthetic
plastids of plant fatty acids. Additionally, LACS genes have been found in many higher
plants including cash crops, such as rice, corn, cotton, castor, goat grass, rice, apple, and
brassica napus [26–31]. The above results show that LACS gene plays an important role in
lipid synthesis, catabolism, stress resistance and yield of cash crops. Although the biological
functions of LACS have been described in some of the model plants mentioned above, no
relevant study on the GmLACS gene family has been reported.

Soybean was a widely cultivated oil crop in the world [32]. The high-quality fatty acid
components of soybean determined edible oil and its nutritional value [33]. China was one
of the main production areas of soybean, and with the continuous increase in population,
the demand for soybean was also increasing. Studies have shown that the LACS gene family
plays an irreplaceable role in lipid synthesis and catabolism in plants, which is of great
significance for improving lipid yield in plants. Therefore, the study of soybean LACS gene
family was very urgent and important. Based on the whole genome sequencing data of
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soybean, this study used bioinformatics methods to identify the whole genome of soybean
LACS gene family, screened the genes of soybean LACS gene, and analyzed the physical
and chemical properties, phylogeny, gene structure, tissue expression, conserved motifs,
abiotic stress and co-expression of the gene family. In this study, 17 members of soybean
LACS gene family (GmLACS1-17) were screened. It was noteworthy that GmLACS9 and
GmLACS17 showed significant transcriptional responses to drought stress. These results
provide reference for future studies on LACS gene function in soybean.

2. Materials and Methods
2.1. Identification of the LACS Gene Family in Soybean

In order to obtain all LACSs from the whole soybean genome, a systematic BLASTP
search was performed on the Phytozome database (https://phytozome-next.jgi.doe.gov/)
(accessed on 7 October 2021) using published Arabidopsis LACSs as the query object. The
protein sequences of putative soybean LACS family members with an E-value (<10−10)
and a sequence identity threshold > 90% were downloaded. According to the protein
sequence of the screened gene, query in the genomic mode of the domain database (SMART)
(http://smart.embl-heidelberg.de/) (accessed on 15 October 2021) to show whether its
domain is AMP-binding domain (PF00501) to determine whether it is a candidate gene [34].
EMBL-PFAM (http://pfam.xfam.org/) (accessed on 15 October 2021) is a database of
protein families, including annotations and multiple sequence alignments generated using
hidden Markov models. Enter PF00501 into PFAM-A sub library, and the query results
show that its domain belongs to LACS family. It is further judged that the candidate genes
belong to LACSfamily genes [35]. IBS 2.0 [36] software was used to visualize the domain
distribution. All LACSs were obtained in the same manner in the whole soybean genome.

2.2. Analysis of Gene Sequence and Physicochemical Properties

The identification of the LACS gene family in soybean. The physical and the chemical
properties, including molecular formula, molecular weight, and isoelectric point, were obtained
from the ExPASy website (https://www.expasy.org/) (accessed on 18 October 2021) [37].
SOPMA (https://npsa-prabi.ibcp.fr/cgi) (accessed on 18 October 2021) predicts that en-
codes secondary structures of proteins. And the peptide was analyzed by SignalP 4.1
(https://services.healthtech.dtu.dk/service.php?SignalP-4.1) (accessed on 18 October 2021).
Protein trans-membrane regions were predicted by TMHMM Server.V.2.0 (https://services.
healthtech.dtu.dk/service.php?TMHMM-2.0) (accessed on 18 October 2021).

2.3. Phylogenetic Tree Construction and Protein Conserved Motif Analysis

The full-length LACSs amino acid sequences of soybean (Glycine max), Arabidopsis
(Arabidopsis thaliana), maize (Zea mays) and upland cotton (Gossypium hirsutum) [38] were
obtained from Phytozome database. The multiple sequence alignments of amino acid
sequences of the LACS were performed using MEGA 5.0 software, and the phylogenetic
trees were constructed separately for the LACS using the Neighbor-Joining (NJ) method
with the bootstrap values set at 1000 replicates [39].

We took of MEME Version 5.1.1 (http://meme-Suite.Org/tools/meme) (accessed on
4 November 2021) for identification of protein conserved motifs. The maximum number of
motifs was 10, and the optimal motifs width was limited between 6 and 100 residues [40].
TBtools software was used for visualization [41].

2.4. Gene Location on Chromosome and Gene Structure of GmLACSs

The chromosome location data of soybean were downloaded from Phytozome database,
and the LACS gene location on soybean chromosomes was analyzed by MG2C (http:
//mg2c.iask.in/mg2c_v2.1/) (accessed on 4 November 2021). The exon/intron structures
of GmLACSs were unveiled at the GSDS (http://gsds.cbi.pku.edu.cn/index.php) (accessed
on 13 November 2021) [42]. The position information of soybean AMP-binding domain
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was downloaded from Phytozome database. IBS 2.0 software was used to visualize the
domain distribution.

2.5. Collinearity Analysis of GmLACSs

According to the Ensembl Plants database (https://plants.ensembl.org/index.html)
(accessed on 27 October 2021), the DNA sequences and annotated file GFF3 of soybean,
Arabidopsis, maize, and upland cotton are found, and the linear relationships within
soybean species and between soybean and other species were generated by using TBtools
software (TBtools_windows-x64_1_098667; Chengjie Chen; China).

2.6. Promoter Analysis of GmLACSs

The soybean genome sequence data were downloaded from the Phytozome database,
and the 2.0 kb upstream of the start codon of GmLACS gene was intercepted. The
plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (accessed on
6 November 2021) was used to analyze cis-acting elements related to plant growth and
development, plant hormones, and abiotic and biotic stresses.

2.7. Expression Profiles of GmLACSs in Diverse Tissues

The expression data of soybean GmLACSs at different tissues and developmental
stages were acquired from the Phytozome database. The heat maps representing the gene
expression intensities were generated, and cluster analysis was completed by TBtools
software (TBtools_windows-x64_1_098667; Chengjie Chen; China).

2.8. Quantitative Real-Time RT-PCR Analysis

To analyze transcriptional profiles of GmLACSs during development, total RNA was
extracted from soybean seeds at different development stages (10, 20, 30, 40 days, DAF).
The expression level of GmLACSs in developing seeds at 10 DAF was used as a calibrator. To
examine the transcriptional profiling of GmLACSs under various abiotic stresses, soybean
seedlings at the second trifoliolate stage were subjected to alkali stress induced by 100 mM
NaHCO3, low temperature stress induce by 4 ◦C, and osmotic stress induce by 20% (w/v)
PEG (with a molecular weight of 6000 g/M). Total RNA was extracted from leaf samples
at 0, 6, 12 and 24 h after the above treatments. The transcripts of GmLACSs in soybean
leaf under normal environment condition were used as a calibrator. Each quantitative real
time-polymerase chain reaction (qRT-PCR) reaction was performed in triplicate (technical
replicates) on three biological replicates and the transcriptional level of GmLACSs was
calculated based on the 2−∆∆ct method, and all of the primers used for qRT-PCR analysis
were shown in Supplementary Table S1.

2.9. Co-Expression of GmLACSs and Transcription Factors under Drought Stresses

All of the transcription factors for drought stress response were screened in the Plant
Transcription Factor Database (http://planttfdb.gao-lab.org/) (accessed on 26 February 2022)
in combination with drought transcriptome data. (GSE57252) [43]. We named the strong
drought response genes as guide genes and explored their co-expression relationship with
corresponding transcription factors. Correlation coefficients were calculated from the
expression data of guide genes and transcription factors. When Pearson correlation was
higher than 0.90, co-expression network was constructed. Using Cytoscape to achieve
co-expression network visualization.

2.10. Statistical Analysis

All of the experiments were performed with at least three biological replicates. Values
are presented as mean± SD. The significance of the data was evaluated using Student’s t-test
with SPSS statistics 22.0 software. The significance level was set at p < 0.05 and p < 0.01.

https://plants.ensembl.org/index.html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://planttfdb.gao-lab.org/
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3. Results
3.1. Identification Sequence Analysis and Physicochemical Properties Analysis of LACS Gene
Family in Soybean

Based on 9 AtLACS genes (AtLACS1-9) in Arabidopsis, BLASTP was used to search
for soybean LACS protein sequences in Phytozome database, and then the redundant
sequences were compared. Pfam and SMART domain search were used to verify whether
LACS candidate genes contained AMP-binding domain. Finally, a total of 17 GmLACS can-
didate genes were identified in soybean genome, which were named GmLACS1-17 (Table 1)
according to domain information and location in the genome. Different from the 19 Gm-
LACS candidate genes identified by Ayaz et al. [44], the 3 candidate genes (Glyma.10G249700,
Glyma.15G220900, Glyma.20G143900) containing other domains outside the AMP-binding
domain were removed. A newly identified candidate gene (Glyma.20G060100) was added.
Similarly, 9 ZmLACS (ZmLACS1-9) and 17 GhLACS (GhLACS1-17) candidate genes were
identified in genome (Supplementary Table S2) according to domain information and
location in genome. We compared this with the protein sequences of GmLACS, AtLACS,
ZmLACS and GhLACSs to remove redundancy.

Table 1. Basic information of the seventeen soybean LACS genes (GmLACSs).

Gene Name Gene ID CDS Length
(bp)

Protein
Length (aa)

Isoelectric
Point (pI)

Molecular
Weight (Da)

GmLACS1 Glyma.01G225200 2016 672 6.88 75,365.95
GmLACS2 Glyma.02G010300 1983 661 6.54 74,382.04
GmLACS3 Glyma.03G221400 1989 663 6.78 74,409.94
GmLACS4 Glyma.05G216600 1998 666 6.10 74,670.93
GmLACS5 Glyma.06G112900 2085 695 8.24 76,017.50
GmLACS6 Glyma.07G161900 1983 661 6.20 73,852.74
GmLACS7 Glyma.10G010800 1983 661 6.73 74,516.20
GmLACS8 Glyma.11G017900 1992 664 7.76 74,031.44
GmLACS9 Glyma.11G122500 1971 657 6.23 73,788.63

GmLACS10 Glyma.12G047400 1971 657 5.58 73,843.48
GmLACS11 Glyma.13G010100 2178 726 7.83 79,550.53
GmLACS12 Glyma.13G079900 2091 697 5.91 76,131.58
GmLACS13 Glyma.14G149700 1944 648 5.90 70,974.48
GmLACS14 Glyma.19G218300 1989 663 6.50 74,643.20
GmLACS15 Glyma.20G007900 1983 661 6.39 73,831.71
GmLACS16 Glyma.20G060100 2178 726 6.87 79,700.80
GmLACS17 Glyma.20G060300 2025 675 6.53 74,317.36

All of the GmLACS gene sequences were analyzed in Phytozome database and Expasy
database for structural analysis and prediction of physicochemical properties of protein
sequences. The results showed (Table 1) that the CDS sequence length of GmLACS1-17
was 1944–2178 bp, and the amino acid length was 648–726 aa. The isoelectric point of the
proteins ranged from 5.58–8.24, and the relative molecular weight of the protein molecule
ranged from 70,974.48–79,550.53 Da, suggesting that most of the proteins were neutral.
In the total mean hydrophobic index, 17 genes were all negative hydrophilic proteins
(Supplementary Table S3).

SOPMA predicted the protein secondary structure of GmLACS gene family, and the
results showed (Supplementary Table S3) that the protein secondary structure of GmLACS
family members consisted of α-helix, β-rotation, extended chain and random curl. Online
SignalP 5.0 analysis found that 17 members of GmLACS family had no signal peptide
characteristics. The online website TMHMM Server V. 2.0 found that GmLACS11/16 had
transmembrane structures, while none of the other family members had transmembrane
structures (Supplementary Table S3). It was speculated that GmLACS11/16 were membrane
proteins, and all of the other family members were non-membrane proteins.
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3.2. Phylogenetic, Protein Domain and Protein Conserved Motifs Analysis of GmLACSs

The full-length LACSs amino acid sequences of soybean (Glycine max, GmLACSs),
Arabidopsis (Arabidopsis thaliana, AtLACSs), maize (Zea mays, ZmLACSs) and upland cotton
(Gossypium hirsutum, GhLACSs) were obtained from Phytozome database and were used
to construct the phylogenetic tree of LACSs. As shown in Figure 1A, the GmLACS protein
family was divided into six subfamilies (Cluster i–Cluster vi); then, they were placed in
different branches of Arabidopsis thaliana, maize and upland cotton, and each branch
contained different numbers of genes. AtLACS1 was a subbranch with GmLACS2/3/7/14,
and AtLACS2 branch contains GmLACS6/9/10/15. AtLACS3-5 with the distribution of
GmLACS1/4/8. AtLACS8 is subbranch of GmLACS11/16/17. AtLACS9 was a branch of
GmLACS5/12/13. GmLACSs was not present in particular AtLACS6-7 branches. Signifi-
cantly, LACS homologous genes were significantly amplified in soybean compared with
Arabidopsis.
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Figure 1. Phylogenetic, protein domain and protein conserved motifs analysis of GmLACSs.
(A) Phylogenetic tree of LACS proteins from GmLACSs (red squares), AtLACSs (green circles),
ZmLACSs (yellow triangles), and GhLACSs (purple diamonds). (B) The protein domain was se-
quenced and analyzed by subfamily. The blue circle was the protein sequence length (5′-3′), the
yellow circle was GmLACS-AMP, and the red circle was GmLACS-AMP-C. Each protein sequence
is proportional in length. (C) The conserved motifs were identified by MEME program. Each motif
is indicated by a colored box that displays a number and gray lines represent the non-conserved
sequences. The length of motifs in each protein is proportional.

The protein domain of GmLACSs was visually analyzed according to the classification
order of 6 subfamilies, and the result was shown in Figure 1B. GmLACSs only contained
AMP-binding domain (PF00501), and the AMP-binding domain was in the same position
in the same branch. The positions of AMP-binding domains in different branches were
basically the same, which proved that GmLACSs protein was highly conserved. We also
used MEME to predict 17 GmLACSs protein conserved motifs, the number of conserved
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mods in each subfamily was basically consistent with the classification. As shown in
Figure 1C, all 17 GmLACS protein family members contained 10 conserved motifs, and the
number and category of conserved motifs of different subfamily members were basically
consistent, with little difference, which may be related to the same location of each subfamily
member in the cell, that is, GmLACS protein is highly conserved.

3.3. Gene Location Analysis and Gene Structure Analysis of GmLACSs

The chromosome localization of 17 GmLACS gene family members was analyzed
based on soybean genome data and MG2C website. According to the analysis results
(Supplementary Figure S1), GmLACS genes were unevenly distributed on 13 chromosomes,
among which 20 chromosomes were the most distributed (3 genes, GmLACS15-GmLACS17).
To understand the diversity of GmLACS gene structure, we compared the localization and
size of exons and introns in GmLACS. As shown in Figure 2, most GmLACS genes have
similar gene structure, which consists of coding region and non-specific coding region. The
number of exons ranged from 11–19, and there was no intron deletion. Some GmLACS
genes have only a coding region, and all of them have AMP-binding domain. Genes in the
same branch have similar exon and intron structure and number of exons. For example,
4 genes, GmLACS6/9/10/15 are located in the same branch with 19 exons and basically the
same length of exons. These results further indicate that GmLACS gene is highly conserved
in the gene sequence and the exon intron structure.
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3.4. Collinearity Relation of GmLACSs

To further understand the potential function of GmLACSs, an intraspecific homolinear-
ity analysis was performed on 17 GmLACSs. As shown in the Figure 3A, 17 GmLACSs were
distributed on 13 out of 20 soybean chromosomes, and each chromosome was composed of
1-3 GmLACS. A total of 20 GmLACS homologous gene pairs were found (Supplementary
Table S4), among which the GmLACS gene on chromosome 11 had more homologous gene
pairs. Besides, the interspecies homolinearity of soybean, Arabidopsis, maize and upland
cotton was analyzed. Based on the relative distance between species, we paired the four
species and compared the collinearity of each combination to determine the species order-
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ing problem. Finally, we analyzed the collinearity of species in the order of Arabidopsis,
soybean, upland cotton and maize. As shown in the Figure 3B, there were many homolo-
gous gene pairs between Arabidopsis and soybean. In addition to the fact that Arabidopsis
was a model plant and there are more and more in-depth studies on Arabidopsis, all the
LACS genes of Arabidopsis have been excavated, 17 GmLACSs were derived from BLASP
based on AtLACSs, so there were many homologous gene pairs. The results also showed
that there were the most homologous gene pairs between soybean and upland cotton, but
fewer homologous gene pairs between upland cotton and maize.
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in Mb, the black highlighted curve shows the GmLACS collinearity region, and the gray curve shows
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gray curve represents the genome-wide collinearity of the above-mentioned species.
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3.5. Identification of Cis-Acting Regulatory Elements in the Promoter of GmLACS Genes

To explore the regulation of GmLACS family members, analysis of the cis-acting regu-
latory elements in the 2 kb region upstream of the initiation codon of all GmLACS family
members was conducted using the PlantCARE online portal. We identified 23 cis-acting
elements related to plant growth and development, plant hormones, abiotic and biolog-
ical stress. As shown in the Figure 4A, among them, there were five kinds of elements
related to plant growth and development, which were endosperm expression (GCN4-
Motif) [45], the gliadin metabolic (O2-site), meristem expression and specific activation
elements (CCGTCC-box and CTA-box), the regulation of circadian rhythms (circadian) [46].
There were eleven components associated with plant hormones; they included: STRE,
methyl jasmonate response elements (CGTCA-motif and TGACG-motif) [47], ABA re-
sponse element (ABRE) [48], gibberellin response elements (GARE-motif and P-box) [49],
auxin response elements (TGA- element and AuxRR-core) [50], ERE, the SA response
element (TCA-element) [51], TATC-box. There were 7 elements related to abiotic and bio-
logical stress, which were: ARE, LTR, MBS, WRE3, TC-rich repeats, GC-Motif, mechanical
injury response (WUN-motif). Notably, the components involved in circadian rhythm
regulation were detected only in the promoter region of GmLACS4, the regulation of ERE
elements were detected only in the promoter region of GmLACS15. Regulation of TATC-Box
and ARE elements was detected in all of the GmLACS promoter sequences, regulation
of the STRE, ABRE, MBS, and WRE3 components was detected in almost all GmLACS
promoter sequences with few exceptions. A large number of biotic and abiotic stress-related
elements are found in the GmLACS promoter sequence, indicating that these elements play
a crucial role in regulating the function of GmLACS gene in plant growth and development
(Figure 4B).

3.6. Expression Profiles of GmLACSs in Different Tissues and Developmental Phases

Using the transcription patterns of GmLACSs in multiple tissues in Phytozome database,
high-throughput sequencing data including flower, leaves, nodules, pod, root, root hairs,
seed, shoot apical meristem, stem were analyzed. As shown in the Figure 5A, the transcripts
of seventeen GmLACSs could be observed in all the tissues tested, but the expression pattern
of GmLACS gene was significantly different in different tissues or developmental stages.
In general, the expression level of GmLACSs in vegetative growth stage was lower than
that in reproductive growth stage. Among them, the transcription level of the GmLACS1
was relatively high in all 9 tissues, the GmLACS15 was strongly expressed in roots, and
GmLACS12 was strongly expressed in leaves. The transcription levels of GmLACS3/13/14
genes in 9 tissues were relatively low. The tissue-specific expression characteristics of these
genes reflect their multifunctional characteristics in many aspects of soybean growth and
development and prove that these genes play an important role in plant morphogenesis.

Further experiments, in order to explore the potential role of GmLACS gene in soybean
seed development, we further confirmed the transcription patterns of GmLACS gene at
different stages of soybean seed development by qRT-PCR (Figure 5B). All of the tested
genes had different expression levels at different stages of seed development (10, 20, 30,
and 40 DAF). GmLACS1/5/9/12 maintained high expression levels at the later stages of seed
development (30, 40 DAF). GmLACS8/10/11/16/17 maintained high expression levels in the
early stage of seed development (20 DAF). GmLACS4 maintained a low level during the
whole process of seed development. The transcriptional abundance of GmLACS1 gene was
highest at several stages of seed development (10, 20, 30, 40 DAF).
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3.7. Transcript Level of GmLACSs under Abiotic Stress

The LACS gene was known to be important for stress adaptation in several model
plants. An analysis of the GmLACSs promoter revealed that many potential homeopathic
elements and transcription-binding motifs (ABRE, TCA-element, ARE, MBS) were involved
in response to abiotic stress, such as, northeast China often experiences low temperature and
drought stress. Therefore, in order to further understand the response of GmLACSs to abiotic
stress, we analyzed the transcription profile of GmLACSs under low temperature (4 ◦C),
alkali (100 mM NaHCO3), osmotic (20% PEG or 200 mM mannitol) and drought stress. As
shown in the Figure 6, different GmLACS gene were significantly different under different
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stress conditions. The expression levels of GmLACS genes (GmLACS1/4/5/8/9/10/15/16/17)
were increased under all three stresses. The transcriptional expression of GmLACS9 was
over 75 times under alkali stress for 24 h, drought stress for 12 h, and over 50 times
under low temperature stress for 12 h. The transcriptional expression of GmLACS15 was
more than 20 times under alkaline stress and drought stress for 6 h. The transcriptional
expression of GmLACS17 was more than 160 times under 12 h alkali stress. The expression
levels of a few GmLACS genes (GmLACS3/11/12/13/14) were low under alkali stress and
low temperature stress without significant change, and GmLACS13 even showed negative
regulation at all time periods. In addition, the expression levels of most GmLACS genes
were significantly upregulated in drought stress, especially GmLACS9 and GmLACS17,
which were significantly increased at 12 h. However, the expression level of GmLACSs gene
was significantly upregulated under 6h drought stress and was higher than that under
alkali and low temperature stress under the same gene (Figure 6).
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the bar chart indicate statistically significant differences in Student’s t-test (* p < 0.05, ** p < 0.01).

3.8. Co-Expression Analysis of Transcription Factors and GmLACSs in Soybean

The significant responses of some soybean GmLACS genes aroused our interest and
necessity to explore their regulation at the transcriptional level. Co-expression analysis of
transcription factors (TFs) and highly responsive LACSs was performed using Cytoscape V
3.6.0. We used plants PlanTFDB TF database (http://planttfdb.cbi.pku.edu.cn/) (accessed
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on 26 February 2022) from the drought transcriptome data screening of transcription factors.
There are about 2700 transcription factors in the drought transcriptome of soybean, among
which the most abundant TF families are bHLH, MYB, ERF, C2H2 and WRKY. We named
the genes GmLACS2/3/8/9/11/17 that strongly respond to drought as “guide” and described
the co-expression relationship with corresponding transcription factors. As shown in
Figure 7A, a total of 22 transcription factors were involved in the regulation of 6 guide
genes, including bHLH (3), MYB (7), ERF (1), C2H2 (1) and WRKY (2), and a co-expression
network was established between guide gene and corresponding transcription factors.
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Meanwhile, we also constructed the co-expression network of individual guide genes
(Figure 7B). One transcription factor was found to be significantly associated with the
expression of GmLACS2, namely g2-like (Glyma.12G089100, r = 0.903). A total of 5 transcrip-
tion factors were found to be significantly correlated with GmLACS3 expression, including
ERF (Glyma.10G187000, r = 0.964), MYB (Glyma.10G059000, r = 0.905; Glyma.13G145800,
r = 0.905; Glyma.20G158100, r = 0.944), C2H2 (Glyma.13G095500, r = 0.905). Moreover, 1 tran-
scription factor was found to be significantly associated with GmLACS8 expression, namely
gATA (Glyma.06G098000, r = 0.920). A total of 7 transcription factors were found to be signifi-
cantly associated with GmLACS9 expression, including G2-like (Glyma.12G117700, r = 0.935),
bHLH (Glyma.03G130600, r = 0.923; Glyma.03G105700, r = 0.911), MYB (Glyma.05G013000,
r = 0.910; Glyma.05G070200, r = 0.910; Glyma.17G121000, r = 0.914), C3H (Glyma.10G170800,
r = 0.909). Furthermore, 6 transcription factors were found to be significantly asso-
ciated with GmLACS11 expression, including MYB (Glyma.11G009400, r =0.947), AP2
(Glyma.17G062600, r = −0.933), bHLH (Glyma.08G239500, r = 0.930), GRF (Glyma.17G232600,
r = −0.907), WRKY (Glyma.09G080000, r = 0.903), HSF (Glyma.02G278400, r = −0.900).
Finally, 3 transcription factors were found to be significantly associated with GmLACS17
expression, including HD-ZIP (Glyma.07G052100, r = 0.942), WRKY (Glyma.18G056600,
r = 0.911), MYB (Glyma.11G009400, r = 0.947). Therefore, these transcription factors may
regulate the response of six strongly responsive genes to drought stress.
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4. Discussion

Soybean is a major source of plant proteins and oils, providing more than a quarter
of the world’s protein for food and animal feed [52–54]. LACS genes recently have been
obtained from Arabidopsis, apricot, upland cotton, and brassica napus, and their structure
and functional roles have been preliminarily studied [20,31]. Although LACS genes played
an important role in oil synthesis and stress resistance of plants. So far, no detailed identi-
fication and functional studies of this family of genes have been reported in soybean. In
this study, the LACS family genes of soybean were studied in detail. The expression char-
acteristics of LACS family genes in different tissues of soybean and in response to abiotic
stress were quantitatively verified. The drought-responsive gene GmLACS2/3/8/911/17
of this gene family was co-expressed. This study provides a new direction and idea for
understanding the role of soybean LACS in plant growth and development.

In this study, the GmLACS gene family was identified and analyzed based on the
annotated information of the genome and the comparison results of LACS homologous
genes in Arabidopsis thaliana. A total of 17 members of soybean LACS gene family were
screened from the online database and named GmLACS1-17, respectively (Table 1). This
result is higher than of Arabidopsis (9), rape (12) and cabbage (16), but less than that of
Brassica napus (34) [20,38]. These differences indicate that the number of genes in plants
is related to genome size and gene replication events [3]. Similarly to the LACS results of
the studied plants including Arabidopsis thaliana, all of the GmLACS proteins contain AMP-
binding domain (PF00501) (Figure 1B). The predicted number and sequence of conservative
motifs of all GmLACS proteins are basically the same (Figure 1C), so GmLACSs are highly
conserved amino acid sequences [55]. In order to further clarify the relationship between
members of soybean LACS family and LACS family coding genes from other plants, the
screened LACS proteins of soybean, Arabidopsis, maize and upland cotton were analyzed.
The results show (Figure 1A) that all of the LACS involved in the comparison originated
from a common ancestor. In combination with the classification of the existing nine
Arabidopsis LACS [21,24], all of the LACS involved in the comparison are also divided into
subfamilies, and the GmLACS gene structure of each subfamily is the same (Figure 2).

Compared with Arabidopsis thaliana, the homologous genes of all species have been
widely extended. Among them, GmLACS5/12/13 and AtLACS9 are the same subfamily
(Figure 1A). AtLACS9 is a widely studied member of the AtLACS family. Since it is
located in the de novo synthesis and plastid of plant fatty acids, it is considered to be
the main LACS subtype formed by acyl-CoA and participates in tag biosynthesis [21,24].
Therefore, GmLACS5/12/13, which is homologous to AtLACS9, may be the main gene
of soybean LACS gene family that produces tag in the long-chain fatty acid synthesis
pathway. Similarly, GmLACS 6/9/10/15 and AtLACS2 are the same subfamily (Figure 1A).
Ayaz et al. [44] found that AtLACS2 has a high similarity with the four GmLACS (the same
as the genes in this study). Arabidopsis homologous gene AtLACS2 plays a key role in cutin
and wax synthesis, and its transcripts are highly accumulated in elongated tissues. The
rape homologous gene BnLACS2 participates in seed growth and accumulates during seed
development, during which tag will be actively produced [35]. The apple homologous gene
MdLACS2 has been proved to be involved in the synthesis of epidermal wax and is highly
expressed in the peel [56]. Therefore, GmLACS6/9/10/15 is also considered to be involved
in the synthesis of soybean cuticle. GmLACS1/4/8 and AtLACS3/4/5 are the same
subfamily (Figure 1A). In Arabidopsis, AtLACS4 and AtLACS1 are partially redundant
in providing substrates for stem and leaf cuticle wax biosynthesis and pollen coat lipid
formation [20]. AtLACS3 may be strongly expressed in the stem epidermis [22]. AtLACS5
is expressed in anthers. MdLACS4, an apple homologous gene, induced early flowering
of Arabidopsis thaliana and enhanced its ability to resist abiotic stresses [56]. Therefore,
GmLACS1/4/8 may be related to soybean flowering. Combined with other related studies,
it is speculated that other soybean LACS also have similar physiological functions with
other homologous LACS genes. These results provide a direction for the detailed study of
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the mechanism of soybean LACS gene participating in fatty acid metabolism in different
organelles and provide a basis for the functional overlap among the members of the family.

In addition, Xiao et al. [31] found that the length of LACS protein in brassica napus
was 129–960 aa, and the theoretical isoelectric point was 5.11–9.15. Zhang et al. [30]
found that the length of LACS protein in apple was 596–730 aa, the molecular weight
was 64.96–79.44 KDa, and the theoretical isoelectric point was 5.56–8.12. In this study, the
length of GmLACS protein was 648–726 aa, the theoretical isoelectric point was 5.58–8.24,
and the molecular weight was 70,974.48–79,550.53 Da (Table 1). Compared with apple and
brassica napus, the protein length and molecular weight of GmLACS showed no significant
difference and were neutral. It was confirmed that LACS proteins from different plants
had similar physical and chemical properties, and also verified the hypothesis that LACS
proteins had similar functions in this respect.

The expression patterns of LACS gene in Arabidopsis thaliana and soybean showed
different expression patterns. In Arabidopsis thaliana, the expression levels of most
AtLACS greatly genes vary during flower development, and the expression levels of
AtLACS1/2/4/6/8/9 were higher than those of AtLACS3/5/7 [20]. In this study, GmLACSs
also showed different expression patterns in different tissues. It was noteworthy that the
transcription level of GmLACS1 in all tissues was relatively high (Figure 5), which was
similar to the corresponding gene AtLACS4 in Arabidopsis and the apple homologous gene
MdLACS4 [20]. The expression level of GmLACS7 was relatively high in apex meristem
and leaf, so the expression level of their homologous gene AtLACS1 was also relatively
high in apex meristem and leaf [20]. These results suggested that LACS gene functions
conserved in organs of different species. Therefore, we speculated that GmLACS5/12/13
might play an important role in lipid metabolism, similarly to AtLACS9, a homolog of
Arabidopsis thaliana [24,57].

In addition to different differential expressions affecting plant growth, the important
role of LACS gene in the stress response mechanism had also been widely confirmed [58–60].
We identified 23 cis acting elements related to plant growth and development, plant
hormones, abiotic and biological stresses. As shown in Figure 4A, seven of them are related
to abiotic and biological stresses. These elements may be involved in the response of plants
to drought, osmotic, alkaline, low temperature and other stresses (Figure 4). In order to
further determine the significant difference of GmLACS under low temperature, drought
and alkali stress, we conducted a transcription analysis (Figure 6). The results showed
that the expression of GmLACS9/15/17 was significantly increased under drought stress,
which was consistent with the reported hypersensitivity to drought of several Arabidopsis
homologous single mutant atlacs2 and double mutant atlacs1 atlacs2. In addition, due
to functional redundancy, higher-order Arabidopsis atlacs mutants often show higher
sensitivity to drought. For example, the three mutants atlacs1 atlacs2 atlacs4 are a good
example. In apples, the expression of MdLACS2 and MdLACS4 can reduce epidermal
permeability, reduce water loss, and enhance the resistance to drought and salt stress [25].
Finally, in order to understand the role of transcription factors in the regulation of gene
expression under drought stress, we analyzed the co expression of transcription factors
of the most sensitive lacs gene. Under drought stress, the expression of bHLH, MYB, ERF,
C2H2 and WRKY were significantly correlated with the expressions of GmLACS2/3/8/9/11/17
under drought stress (Figure 7), revealing the regulatory role of soybean LACS gene at the
transcription level. The co-expression analysis of transcription factors and soybean LACS
genes provided preliminary information for understanding the regulatory mechanism of
soybean LACS under drought stress, but the transcriptional regulatory network needs to
be further studied. These results show that LACSs are indispensable in the process of plant
drought resistance.

5. Conclusions

In summary, a total of 17 soybean LACS genes were categorized into 6 distinct clusters.
According to the correlation between these genes and the corresponding transcription
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factors, six of the genes of the drought reflected strong results of the drought, and the
network was established. However, a clearer picture of the molecular function requires
further research.
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