
Citation: Abdelkader, M.; Zargar, M.;

Murtazova, K.M.-S.; Nakhaev, M.R.

Life Cycle Assessment of the

Cultivation Processes for the Main

Vegetable Crops in Southern Egypt.

Agronomy 2022, 12, 1527. https://

doi.org/10.3390/agronomy12071527

Academic Editor: Belen

Gallego-Elvira

Received: 20 May 2022

Accepted: 22 June 2022

Published: 25 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Life Cycle Assessment of the Cultivation Processes for the Main
Vegetable Crops in Southern Egypt
Mostafa Abdelkader 1,* , Meisam Zargar 2, Kheda Magomed-Salihovna Murtazova 3

and Magomed Ramzanovich Nakhaev 4

1 Horticulture Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt
2 Department of Agrobiotechnology, Agricultural-Technological Institute, RUDN University,

117198 Moscow, Russia; zargar_m@pfur.ru
3 Engineering Center of Carbon, Kadyrov Chechen State University, 364024 Grozny, Russia; fu.ggni@mail.ru
4 Applied Mathematics and Computer Technology, Kadyrov Chechen State University, 364024 Grozny, Russia;

mr-nakhaev@mail.ru
* Correspondence: m.abdelkader@agr.sohag.edu.eg

Abstract: Due to the increasing concern about climate change and environmental sustainability,
the investigation of energy consumption represents a very intriguing and undeniable subject. This
study was directed to investigate energy footprints, greenhouse gas (GHG) emissions and life cycle
assessment (LCA) of the main vegetable crops cultivated under open field conditions in southern
Egypt. Potato production required the maximum energy amount (112.3 GJ/ha) compared to 76 GJ
and 96 GJ for onion and tomato, respectively. Based on energy indices, potato gave (energy ratio > 1;
energy productivity > 1; energy profitability > 1; net energy > 0), while onion and tomato production
shared the same indicators (energy ratio < 1; energy productivity > 1; energy profitability < 0; net
energy < 0). However, GHG emissions generated for producing one ton of potato tubers registered
the least amount by 76.0 kg CO2 eq. The same GHG amount was produced by 834 kg of onion bulbs
and 940.6 kg of tomato fruits. The emission rates were more a consequence of diesel, followed by
inorganic fertilizer and manure. In addition to carbon emissions, every production process causes
several other environmental problems, thus a comprehensive analysis of environmental impact
categories is required. The openLCA program performed LCA and ten impact categories were
considered to transform the inventory data into several indicators. Producing one ton of potato
tubers has the least footprint on the environment and the ecosystem, such as global warming (GW)—
238.8 kg CO2 eq. t−1; human toxicity (HT)—288.3 kg 1,4-DB eq. t−1; fresh water aquatic ecotoxicity
(FAEF)—160.44 kg 1,4-DB eq. t−1; marine aquatic ecotoxicity (MAET)—365,636 kg 1,4-DB eq. t−1;
and terrestrial ecotoxicity (TE)—1.18 kg 1,4-DB eq. t−1. The analyses indicated that machinery and
diesel fuel had the highest impact on all the studied categories.

Keywords: energy balance; GHGs; LCA; onion; potato; tomato; sustainability

1. Introduction

The long-term struggle with nature led to critical degradation of the agricultural
environment, as evidenced by the altering erosion of fertile lands, deforestation activities,
chemical materials and air pollutants. On the other hand, the extraordinary increasing
population means an increase in food and water consumption and, consequently, energy
usage, leading to severe economic and environmental problems [1]. Currently, global
warming and climate change are the most crucial challenges facing the world. It represents
a fundamental danger to livelihoods, ecosystems, water resources, infrastructure and
the global economy. Policies makers collaborate with scientists to control global GHG
emissions, significantly reduce the extent of climate change in the future and avoid its
expected terrible impacts that would weaken developmental gains [2].
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Climate change has become a pressing alarm for Egypt, which recorded one of the
most severe heat waves in August 2021 with more than 40 ◦C. Egypt developed five clear
strategic goals that co-exist with the strategy for sustainable development, “Egypt’s Vision
2030”, which includes lowering GHG emissions. In 2019, Egypt generated 246.64 million
tons of carbon with a slight reduction compared to 2018 which saw 251.46 million tons
generated, representing 0.68% of global production at 2.46 tons of carbon per capita [3].
Despite Egypt having a low fingerprint of CO2 emissions per capita compared to the USA
(15.5 tons), Russia (11.4 tons) and China (7.4 tons) [4], reducing GHGs by heading towards
renewable energy resources and energy efficiency is consistent with Egypt’s long-term
development goals [5]. The Climate Change Risk Management Program asserts that Egypt
is moving towards a less GHG-intensive path mainly by becoming a more energy-efficient
economy and by increasing the usage of its sizeable renewable energy potential.

Agriculture is still a crucial pillar of the Egyptian economy. The Egyptian economy
depends heavily on the agricultural sector to save food, fiber and other products. It provides
livelihoods for more than half the population and employs 27.5% of the labor force [6]. The
sector formed 12% of the Egyptian economy in 2015. The current primary goal is enhancing
GHG inventory data, sources and capacity building to design sustainable systems and
mitigation actions that promote reforms in policies and investments that indirectly decrease
vulnerability to climate change [3].

Understanding the behavior of energy consumption and greenhouse gas (GHGs)
emissions in crops production is the key to deeply analyzing the structure of the agricultural
environment [7] due to the fact that energy is the impulsive power of existence and is
necessitated for all agricultural production systems [8]. Agriculture activities are considered
one of the principal global emitters of GHGs. Fertilizers, pesticides, machinery, manure and
irrigation water are the most sources of GHGs in farming [9]. The production process is the
main category for evaluating energy consumption and GHG emissions from agricultural
systems [10]. In the studied area that belongs to arid zones conditions, which cover 40%
of the land area in the planet [11,12], energy balances, GHG emissions and life cycle
assessment (LCA) in agricultural production systems have never been studied before.

This work aims to measure energy use efficiency and GHG emissions from the main
vegetable crops (onion, potato and tomato) in Sohag Governorate, southern Egypt, and then
computes the potential impact on the ecosystem. This study also aims to define the impact
generated by the cultivation of the three crops in the referred area and to provide sector
operators with the potential impact of each crop to achieve sustainability in this region.
On the other hand, the aim is to make consumers aware of how much impact one unit of the
product consumes and generates. These data can provide essential information for pursuing
low-carbon agriculture and adjusting vegetable production systems in southern Egypt.

2. Materials and Methods
2.1. Crop Selection

This study was conducted in Sohag Governorate, located in the southern region of
Egypt, and covered a stretch of the Nile Valley. The majority of residents (79%) of this
governorate lives in the rural areas and work in the agricultural sector [13]. Onion, potato
and tomato are essential cash crops in Egypt that generate high income [14]. Tomato
is ranked as the first crop among vegetables in the cultivated area and total production
with approximately 160 thousand hectares representing 28% of the total vegetable area,
producing 6.75 million tons in 2019. Egypt is the fifth-biggest tomato producer globally after
China, India, Turkey and the USA [15]. Tomato fruits provide beneficial effects through their
high content of minerals such as potassium and antioxidants such as vitamin C, vitamin
A, lycopene and tocopherol [16]. Tomato originated in America and was then introduced
to Europe and Mediterranean countries at the beginning of the sixteenth century [17].
According to the environmental conditions, Egypt has the ability to produce tomatoes in
all governorates and all seasons, which leads to the availability of tomatoes all year round.
In Sothern Egypt, tomato is often cultivated in September and the crop is then harvested
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from January to March. Hybrids such as super strain B, G.S 12 and C. L 150 are usually
cultivated in this region.

Onion is considered one of the most cultivated vegetable crops after tomato, with an
estimated 5.2 million hectares of the harvested area, producing 100 million tons world-
wide [15]. Onion is an important export crop in the Egyptian trade, with more than
65 thousand hectares of cultivated area and 120.25% as a self-sufficiency rate of onion
production. Saudi Arabia, Russia and the Netherlands came to the forefront of import-
ing Egyptian onions [18]. Onions are rich in phosphorus, calcium and carbohydrates in
addition to playing a role in preventing heart disease [19]. Onion is a winter-season crop
cultivated in September and the bulb is harvested in April. Giza 6 Mohassan, Giza 20 and
Shandaweel 1 represent all cultivars sowed in the Sohag Governorate. Potato (Solanum
tuberosum L.) belongs to the family Solanaceae, which originated in Southern America [20].
Potato consumption provides the human body with essential nutrients that include car-
bohydrates, protein, vitamin C, vitamin B6, magnesium, potassium and fiber, making it a
healthy nutrient with low calories [21]. Additionally, potato tuber is used as an industrial
crop to produce starch [22].

Potatoes are Egypt’s largest horticultural export, with 734 thousand tons exported
in 2018 to European countries such as Greece, Italy, Germany and England [13]. The
cultivated area of potatoes in Egypt is about 175.2 thousand hectares, with a production of
5.1 million tons [15], with a self-sufficiency rate reached for potatoes 111.4% in 2018 [23].
Potato in this region is cultivated in October and its crop is given in February, and it is
basically produced for early export to European countries. Spunta and Diamant are the
most cultivated varieties. For receiving a more objective perspective, we present the first
calculation of the environmental impacts of the main vegetable cultivation systems in
this region using a life cycle assessment method (LCA). We specify standard measurable
values of resource depletion, acidification, eutrophication hazards and global warming
potential. This helps to identify which crop is in the critical status of intervention to mitigate
the impacts.

2.2. Data Collection

In this step, all inputs and outputs parameters were gathered, specified and separated
into two groups [24]. The first group contains data from the foreground system repre-
senting how many materials and energy carriers were used in the farming activities. The
second group contains data from the background system linked to the extraction of raw
materials and production [25]. A number of agricultural inputs used in farming, including
agricultural machinery, fertilizers, human labor, fuel and obtained yield, were collected
through surveys [26]. Data were collected from the producers by using a face-to-face
questionnaire. The collected data belonged to the 2020/2021 seasons. Sample farms were
randomly chosen using a stratified random sampling technique. The permissible sample
size error was defined as 5% and the sample size was estimated as 120 farmers [27,28].

The collected information from the farmers included crop type, sowing date for each
crop, the number of seeds used and the cultivated variety, type and rate of fertilizers used,
amount of physical work for the whole crop period, number of pesticides and fungicides
used, fuel consumption and machinery used and yield of the crop.

Farmers in southern Egypt often irrigate their crops using furrow and flood methods.
Due to the difficulty of perfectly determining the amount of irrigation water for these
methods, CROPWAT 8.0 program (CROPWAT is a decision support tool developed by
FAO, Rome, Italy) was used to accurately compute the total water amount per hectare (m3).
Metrological information such as stations, station longitude and latitude, altitude, tem-
perature, humidity, wind speed and solar radiation were included in the model using
CLIMWAT 2.0 (a climatic database to be used in combination with the computer program
CROPWAT, Rome, Italy) to calculate reference evapotranspiration in CROPWAT software.
Crop characteristics include the length of each developmental stage (initial, mid-season,
late), depletion coefficient, root depth, crop coefficient and yield response factor. Soil types
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and planting dates of each crop are also adjusted in the program [29]. During surface (fur-
row) irrigation, low irrigation efficiency is caused by water losses by runoff, evaporation
from water in the furrow channels, evaporation from the soil surface and percolation below
the root zone. Runoff losses can be substantial if not reused. Furrow irrigation efficiency is
between 45–65% [30]. In our case, irrigation efficiency in CROPWAT was set at 60%.

2.3. Data Calculation and Method Conversion

The underlying principle is the calculation of total energy for the production process
by converting the individual inputs and outputs into units of mega joule (e.g., ha) and
evaluating based on energy consumed and GHGs emitted per unit by the adding the partial
energies of each input or output referenced to the process of crop production. Energy
inputs were human labor, diesel fuel, machinery, farmyard manure, water irrigation,
synthetic fertilizers (nitrogen, phosphorous and potassium) and chemicals (herbicide,
fungicide and insecticide). The average input use was recorded to assess inputs energy
(MJ/ha). All inputs were calculated per hectare basis. The amount of each input is
multiplied by their relevant energy equivalent coefficient [28]. The energy equivalent
coefficient showed the amount of generated energy from one unit of input such as 1.96 MJ/h
human labor [31,32], 62.7 MJ/h machinery [33], 43.5 MJ/l diesel, 92.1 MJ/kg nitrogen,
13.4 MJ/kg phosphorus, 9.2 MJ/kg potassium [32], 0.3 MJ/tonne manure [34], 102.1 MJ/kg
chemicals [35], 1.02 MJ/m3 water [36,37], 1 MJ/kg onion [19] and tomato [34] seeds and
3.6 MJ/kg potato seeds [38]. Output energy was calculated by multiplying the total
production of the specific crop by its energy equivalent, such as 1.85 MJ/kg onion bulbs [25],
3.6 MJ/kg potato tubers [38] and 0.8 MJ/kg tomato fruits [34].

Based on obtained energy equivalents, we evaluate the performance of energy utilized
in the production of onion, potato, and tomato by creating relevant indices: energy ratio,
energy productivity, specific energy, energy profitability, and net energy gain. The energy
ratio (ER), also called Energy Use Efficiency (EUE), is the ratio of outputs energy to inputs
energy in production factors. This index indicates the influence of inputs expressed in
the energy unit of energy output. ER can be ameliorated in the production processes by
reducing the sequestered energy of inputs and/or increasing crop yields [32]. Energy
productivity (EP) measures the ratio of produced yield of the unit (hectare) and the total
consumed energies for this process and expressed in kg/MJ. ER (EUE) and EP were
calculated [33] as follows:

ER =
outputs energy

(
MJ·ha−1

)
inputs energy

(
MJ·ha−1

) (1)

EP
(

kg·MJ−1
)
=

Crop yield (kg·ha−1)

Consumed energy (MJ·ha−1)
(2)

Specific energy (SE) measures the inputs’ energy amount required for producing one
unit of output and expressed in MJ/kg. SE was calculated [39], it is also the inverse of (EP).

SE
(

MJ·kg−1
)
=

Consumed energy (MJ·ha−1)

total crop yield (kg·ha−1)
=

1
EP

(3)

Net energy (NE) is the difference between the energy used in producing output to the
total energy necessitated in producing output (inputs), expressed in MJ/ha:

NE
(

MJ·ha−1
)
= Total produced energy

(
MJ·ha−1

)
− Total consumed energy

(
MJ·ha−1

)
(4)
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Energy profitability (EPB) is a relative number that measures the efficiency of the
production process, determined as follows [25]:

EPB =
NE

(
MJ·ha−1

)
Consumed energy (MJ·ha−1)

(5)

The distribution of consumed energy was divided to direct (labor, diesel and water)
and indirect (machines, fertilizers, pesticides, manure and seeds). It also was sorted
as renewable (labor, manure, seeds and water) and non-renewable (machinery, diesel,
chemicals and fertilizers).

2.4. Greenhouse Gas Emissions (GHGs)

Carbon dioxide (CO2) is the primary source of global warming [40]. CO2 emis-
sion coefficients were applied to quantify GHG emissions from the different cultiva-
tion processes. The amount of each input during the cultivation was multiplied with
respective emission coefficients. Applied coefficients of carbon emissions of inputs in
this research were as follows: human labor (0.11 kg CO2 eq. h−1) according to Yan
et al., 2014 [41]; diesel (2.76 kg CO2 eq. L−1) and machinery (0.071 kg CO2 eq. MJ−1)
according to Dyer and Desjardins, 2006 [42]; chemicals (5.1 kg CO2 eq. kg−1), nitro-
gen fertilizers (1.3 kg CO2 eq. kg−1), phosphorus (0.2 kg CO2 eq. kg−1) and potassium
(0.2 kg CO2 eq. kg−1) according to Lal, 2004 [43]; and manure (0.126 kg CO2 eq. kg−1)
according to Wang et al., 2020 [44]. According to Ilahi et al., 2019 [45], the amount of
each input used during the cultivation process was multiplied with equivalent emission
coefficients and GHG emissions (kg CO2 equivalent) per unit area (hectare) were calculated.
Then, the results were tabulated by taking into consideration the inputs and input–output
values of each studied crop.

2.5. Life Cycle Assessment

Life cycle assessment (LCA) is used to investigate the impact of a product on the
environment [46]. LCA is utilized in LCA to set up the relation between the elementary
flows inventory of the product system and its potential impacts on the environment and
the ecosystem. Selection of impact categories and classification are the first two mandatory
steps of LCA [47]. The “cradle-to-farm gate” system boundary was selected for this study
because such a system boundary covered all stages associated with LCA of production
processes. The term “cradle” refers to the upstream processes such as the production
of fertilizers, chemicals and other auxiliaries applied within the system boundary, while
the term “farm gate” refers to the harvesting stage. Figure 1 shows the adopted system
boundary. Machinery, irrigation, fuels, fertilizers and chemicals are within the scope of the
study. The openLCA 1.10.3 software (open-source and free software, Green Delta, GmbH,
Berlin, Germany) was employed to compute LCIA and obtain the impact assessment results.
Characterization factors were extracted from agriballyse database, which is incorporated
into the openLCA software. Inventory data were imported to the openLCA software to
perform LCA. The CML2 baseline V3.04/EU25 method was applied, while ReCiPe 2016
Midpoint (H) was applied for the impact assessment method.

Regarding the system boundary, a study “from cradle-to-farm gate” (Figure 1) was
carried out in agreement with ISO 14040 [48]. In fact, the LCA study does not often cover
the whole production process but can be determined to be a part of it [49]. In harmony
with the guidelines of ISO 14040 [48] and ISO 14044 [50], selecting impact categories and
categorization is a mandatory step in the life cycle impact assessment [51]. The selection of
a proper system boundary helps to precisely estimate emissions from direct and indirect
inputs and even downstream processes [52]. The mandatory steps achieve the aims of this
work. In such a way, ten impact categories were selected as the most influential impact
categories and the data were analyzed to calculate the index of the determined categories.
The functional unit (a ton of production) was specified [53] and the goal was adjusted to
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measure the environmental impacts of vegetable cultivation processes in southern Egypt,
determine the highest input contribution and establish potential improvements to decrease
such negative impacts.
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3. Results and Discussion
3.1. Inputs, Outputs and Energy Equivalents

The number of inputs and outputs of production processes for the three studied crops
(onion, potato and tomato) and energy equivalents (MJ/ton) are given in Tables 1 and 2.
The results showed significant differences among the three crops. Compared to onion
and potato, tomato is one of the most physically demanding (1474 h/ha) crops in the
studied region.

Table 1. Number of inputs and outputs of production processes for onion, potato and tomato.

Process Onion Potato Tomato LSD0.05

Human labor (h/ha) 1253 ± 32.1 1224 ± 57.2 1474 ± 28 57.3
Machinery (h/ha) 81.4 ± 3.8 72.2 ± 4.7 88.0 ± 3.9 3.2

Diesel (L/ha) 366.3 ± 12.8 327.4 ± 10.4 422.6 ± 15.6 14.4
Nitrogen (Kg/ha) 380.5 ± 20.4 576.0 ± 29.2 513.8 ± 18.8 39.1

Phosphorus (Kg/ha) 226 ± 5.7 312 ± 18.6 284.2 ± 37.8 21.2
Potassium (Kg/ha) 97.6 ± 7.6 124.5 ± 19.4 199.8 ± 13.2 23.8

Manure (t/ha) 6.90 ± 0.43 7.91 ± 0.45 8.01 ± 0.69 0.4
Chemicals (kg/ha) 39.78 ± 1.63 33.10 ± 2.40 48.69 ± 2.80 4.1

Water (m3/ha) 7441 ± 184 7783 ± 248 8762 ± 226 371
Seed (kg/ha) 25.4 ± 1.49 5304.2 ± 438 0.78 ± 0.05 425

Yield (ton/ha) 35.7 ± 2.6 44.2 ± 4.2 48.4 ± 3.8 5.7

The three main mineral elements in crop nutrition are nitrogen (N), phosphorus (P)
and potassium (K). Together they make up the trio known as NPK. In accordance with
FAO data, the consumption of the trio elements dramatically increased by more than 550%
in the last 60 years in Egypt (Figure 2). Despite fertilizers providing crops with essential
nutrients for producing more food, non-controlled application of fertilizers leads to more
release of greenhouse gas emissions and eutrophication.
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Figure 2. The total consumed fertilizers for the main three nutrients in Egypt from 1961 to 2019
according to FAO data [54].

The highest applied amount of fertilizers (1012.5 kg/ha) was observed in potato farms
with more than 65% contribution of mineral nitrogen fertilizer. Onion and tomato fields
were applied by 704.1 and 997.8 kg/ha with 60% nitrogen fertilization. Average machinery
and burned diesel fuel used in tomato fields were 88.0 h/ha and 422.6 L/ha, respectively,
while potatoes fields required the least hours (1124 h) of manual work, 72.2 h for machinery
and 327 L of diesel per hectare. The number of organic fertilizers used decreased by 15%
on onion fields compared to potato and tomato farms which consumed about 8.0 tons/ha.
Again, in the same table, tomatoes consumed the highest irrigation water rate (8762 m3/ha)
and chemical materials (48.7 kg/ha). These amounts significantly decreased to 7783 m3

and 33.1 kg in potatoes. Potato and tomato yields are significantly no different with more
than 44 tons/ha compared to 35.7 of onion bulbs.

Table 2. Energy equivalent (MJ/ton) of inputs of the cultivation processes of vegetable crops.

Inputs Onion % Potato % Tomato %

Human labor 68.8 3.2 54.3 2.1 59.8 3.0
Machinery 143.0 6.7 102.5 4.0 114.1 5.7

Diesel 446.4 20.9 322.5 12.7 380.0 19.1
Nitrogen 981.6 46.0 1200.3 47.2 978.5 49.3

Phosphorus 84.6 4.0 94.6 3.7 78.7 4.0
Potassium 24.9 1.2 25.9 1.0 38.0 1.9

Manure 58.0 2.7 53.7 2.1 49.7 2.5
Chemicals 113.8 5.3 76.5 3.0 102.8 5.2

Water 212.6 10.0 179.8 7.1 184.8 9.3
Seed 0.71 0.0 432.4 17.0 0.016 0.0

Energy/ton 2134.5 2542.5 100.0 1986.4
Energy/ha 76,202.3 112,276.9 96,061.9

Based on the energy equivalences, we can notice that producing one ton of potato
consumed the maximum number of inputs (2542.5 MJ), which increased more than 400 MJ
than onion and tomato. The highest consumed item was nitrogen fertilizer, which registered
46.0, 47.2 and 49.3% of the total consumed energy for producing one ton of potato, onion
and tomato. Energy eq. per ton in tomato farms gave the least mega joules (1986.4)
compared to onion and potato.

The energy used from diesel came in second place by 21% and 19% in onion and tomato
fields. While in potato, true seed energy ranked second with 432.4 MJ/ton representing
17%, and diesel energy representing 12.7%. Energy equivalent shared from seeds of onion
and tomato represents the minimum amount (less than 0.6 MJ/ton). The least chemical rate
in potato produced 80 MJ/ton represents 3.0% of total energy eq. At the same time, this
percentage increased to 5.25 in onion and tomato. Khoshnevisan et al. [55] reported that
input energy was calculated at 3644 MJ ton−1 of potato. While Jadidi et al. [56] showed
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that tomato production consumed 65,238.9 MJ/ha, of which mineral fertilizers represented
51%. Manure, seeds and diesel were observed as the most energy-consuming inputs in
potato fields by 49, 24 and 12% [57]. Potato seeds’ energy ranked second in the potato
cropping system. This is due to the fact that potato cultivation needs a considerable amount
of potato tubers per hectare. Additionally, potato tuber (seeds) produces 3.6 MJ/kg as
energy equivalent.

Collected data of each input per hectare (Figure 3) showed that the average energy
amount realized from nitrogen fertilization represented the highest energy input with more
than 35 GJ/ha. Diesel occupied the second position with more than 14 GJ/ha. All other
inputs produced less than 10 GJ/ha and potassium fertilization generated the least amount
(<4 GJ/ha).
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3.2. Energy Forms and Measurement Indices

Table 3 displays indices of consumed and emitted energy (MJ/ha) for the studied
vegetable crops in southern Egypt. During production, potatoes consumed (102 GJ) and
generated (158 GJ) the highest energy rates compared to onion and tomato. Generally, in
potato fields, the generated energy is estimated to be one and a half times more compared
to the consumed energy, and vice versa in onion and tomato farms, whereas consumed
energy (76 GJ and 95 GJ) was more than the produced (66 and 88 GJ), respectively.

As identified, ER of potato farms (1.42) was significantly higher than that calculated in
onion and tomato farms (0.87 and 0.40), respectively. Since energy productivity measures
the ratio of hectare yield divided by consumed energy, we found that potato fields have the
minimum EP (0.39 kg/MJ) compared to onion (0.47 kg/MJ) and tomatoes (0.50 kg/MJ).
Specific energy measures the amount of consumed energy required to produce one kg of
the specific crop. In our case, the minor SE was obtained from tomato farms (1.98 MJ/kg),
followed by onion (2.13 MJ/kg) and potato (2.54 MJ/kg).

Considerable differences were observed in the amount of net energy among the
studied crops. NE in potato fields was more than 45 GJ. On the contrary, negative NE
values were calculated from onion and tomato fields, showing 10 and 57 GJ for one hectare.
The distribution of consumed energy as direct (labor, diesel and water), indirect (machines,
fertilizers, pesticides, manure and seeds), renewable (labor, manure, seeds and water) and
non-renewable (machinery, diesel, chemicals and fertilizers) forms is shown in Table 3.
It can be illustrated that 34, 22 and 31% of total energy input resulted from direct energy,
and 16, 28 and 15% from renewable energy for onion, potato and tomato, respectively
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(Figure 4). The high percentage of non-renewable energy consumed in vegetable production
in this region revealed that these production processes depend primarily on fossil fuels.
Our finding agrees with Mohammadi et al. 2008 [33], with the research results confirming
that direct, indirect, renewable and non-renewable accounted for 18, 82, 26 and 74% in
potato production. Hamedani et al. [58] found similar results of potato production’s direct
and indirect energy use percentages. In other studies, ER located between 0.5–0.8, and
EP ranged from 0.7 to 0.9 kg/MJ [34,59,60]. This inefficiency is due to the conventional
farming systems of vegetable crops and the shortage of management of consumed inputs,
especially synthetic fertilizers.

Table 3. Energy forms and indices of production processes of vegetable crops.

Indicator Unit Onion Potato Tomato Mean

Total inputs (MJ) MJ·ha−1 76,202.3 112,276.9 96,061.9 94,847.03
Total output (MJ) MJ·ha−1 66,029.6 158,970.0 38,687.3 87,895.64

Yield (kg/ha) kg·ha−1 35,700 44,200 48,400 42,766.67
Energy productivity kg·MJ−1 0.47 0.39 0.50 0.46

Specific energy MJ·kg−1 2.1345 2.5402 1.9848 2.22
Net energy MJ·ha−1 −10,172.7 46,693.1 −57,374.6 −6951.39

Energy ratio 0.87 1.42 0.40 0.90
Energy profitability −0.13 0.42 −0.60 −0.10

Direct energy MJ·ha−1 25,984 24,581 30,203 26,923
Indirect energy kg·ha−1 50,218.0 87,696.1 65,859.0 67,924.36

Renewable energy kg·MJ−1 12,142.4 31,806.4 14,231.8 19,393.53
Non-renewable energy MJ·kg−1 64,059.9 80,470.5 81,830.1 75,453.50
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3.3. Greenhouse Gas Emissions

Global warming is a significant struggle in the 21st century and represents one of
the significant environmental challenges in the future. The continuing rise in the atmo-
sphere and ocean temperatures was caused by increased concentrations of greenhouse
gases ensuing from human activities such as deforestation and the burning of fossil fuels.
Under the low GHG emission scenarios, the sea level will rise in the present century by
0.28–0.55 m [61]. Global warming exhibits the GHG contribution to climate change [62].
Agricultural GHGs ranged between 10–12% of total GHG emissions [63]. Total GHG
emissions in vegetable crops in southern Egypt were determined using carbon emission
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coefficients for each consumed indicator. The amount of each input is multiplied by their
coefficient of GHG emissions to calculate the total GHG emissions.

GHG results of each crop are shown in Table 4. Onion produced the lowest rate of
GHG emissions (3143 kg CO2 eq.) per hectare, while tomato produced the highest amount
of GHG emission (3742 kg CO2 eq.) compared to both onion and potato. In onion fields, the
highest rate of GHG emissions belonged to manure with a share of 29.7 of total emissions,
followed by diesel (27%). Application of mineral nitrogen generates 70% of total mineral
fertilization emissions in all cultivation processes. In potato farms, fertilizers (organic and
inorganic) share more than 45% of total GHGs. As shown in Table 4, diesel and inorganic
fertilizers produced 52% of the total GHG emissions of tomato fields. The main portion
of GHGs was generated from fuel consumption [64,65]. GHG emissions of cultivation
processes in southern Egypt varied from less than 200 kg CO2 eq. ha−1 in human labor,
phosphorus and potassium and ranged between 200–700 kg CO2 eq. ha−1 in machinery,
nitrogen and chemicals as a medium footprint, while diesel and manure produced more
than 700 kg CO2 eq. ha−1.

Table 4. The amount of GHG (kg CO2 eq. ha−1) emissions concerning production inputs.

Inputs Onion % Potato % Tomato %

Human labor 137.9 4.4 134.7 4.0 162.2 4.3
Machinery 362.4 11.5 321.4 9.6 391.7 10.5

Diesel 1011.2 32.2 903.6 26.9 1165.8 31.2
Nitrogen 494.7 15.7 748.2 22.3 667.9 17.8

Phosphorus 45.1 1.4 62.3 1.9 56.8 1.5
Potassium 19.4 0.6 24.8 0.7 40.0 1.1

Manure 869.4 27.7 996.5 29.7 1009.1 27.0
Chemicals 202.9 6.5 168.8 5.0 248.3 6.6

Total GHGs 3142.9 3360.3 3741.9
GHGs ratio

kg CO2 eq. ton−1 88.0 76.0 77.3

Nitrogen fertilization produced the highest portion of GHG emissions compared to
phosphorus and potassium [66]. GHG emission ratio measures the amount of CO2 eq.
generated by producing one ton of material. In our case, the production of one ton of
potato, tomato and onion emitted 76, 88 and 77.3 kg CO2 eq., respectively.

3.4. Life Cycle Assessment (LCA)

System boundary identity means setting criteria to define which unit processes are part
of a product system. The selected system boundaries must be dependent on the aim of the
life cycle study. The system boundaries are specified to include the activities contributing to
the environmental consequences, regardless of whether they are inside or outside the cradle-
to-grave system of the product [67]. The system boundary used in this study includes field
preparation, crop management, crops product, pesticides and fertilizers.

The summarized results of the studied impact categories are presented in Table 5. LCA
results provide comprehensive information on the environmental impacts of vegetable
production on the ecosystem. GW impact generated from vegetable cultivation systems
in southern Egypt was estimated to be between 238 kg CO2 eq. in potato, as the lowest
impact, to 283 kg CO2 eq. t−1 from onion farms, as the highest obtained GW value. For
example, GW’s impact on onion in Iran was 324 kg CO2 eq. t−1 [20]. Our research study
indicated that agricultural machinery had the highest contribution to GW, with 45% of total
emissions in onion and potato and 53% in tomato (Figure 5). Diesel contributes 17.5 % in
potato and tomato and 23% in onion production. A similar study showed that agricultural
machinery was the primary source of CO2 emissions [68].
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Table 5. Life cycle impact indicators per ton of crop product.

Indicator Unit Onion Potato Tomato

Abiotic depletion (AD) kg Sb eq. 0.006 0.005 0.006
Acidification (AC) kg SO2 eq. 1.65 1.38 1.64

Eutrophication (EU) kg PO4— eq. 0.66 0.56 0.67
Fresh water aquatic ecotoxicity (FAEF) kg 1,4-DB eq. 190.1 160.39 198.59

Global warming (GW) kg CO2 eq. 283.0 238.80 282.43
Human toxicity (HT) kg 1,4-DB eq. 342.5 288.31 363.11

Marine aquatic ecotoxicity (MAET) kg 1,4-DB eq. 433,226 365,636 454,463
Ozone layer depletion (OLD) kg CFC-11 eq. 0.00006 0.00005 0.00006
Photochemical oxidation (PO) kg C2H4 eq. 0.1 0.09 0.11

Terrestrial ecotoxicity (TE) kg 1,4-DB eq. 1.35 1.18 1.36
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Brentrup et al. [62] indicated that HT, FAEF, TE and MAET are toxic categories that are
harming the ecosystem. As set out, vegetable production emissions ranged from 288–363 kg
1,4-dichlorobenzene eq. per ton as the HT category. With more than 62%, agricultural
machinery had the most significant impact. Previous studies refer to larger amounts observed
in the values of HT equivalent to 1092 kg of 1,4-DCB per ton of wheat [69,70], and were 484
and 215 kg of 1,4-DCB per ton of olive [71,72].

Agricultural machinery, with a contribution of 64.8 and 78.6%, had the highest impact
on FAEF and TE, followed by diesel fuel with 12 and 8.1%, respectively. FAEF and MAET
of tomato production registered the highest values (189.6 and 433,487 kg 1,4-DB eq) per ton
compared to onion and potato production. Onion production had the highest TE by 1.33 kg
1,4-DB eq per ton compared to 1.16 kg 1,4-DB eq per ton in potato fields. Comparing the
results on a global scale, vegetable production in southern Egypt was more environmentally
friendly in toxicity impact categories. In contrast, globally, as reported in the ecoinvent
database [26], onion production resulted in 221, 571,000, 137 and 10.1 kg 1.4-DB in the
impact categories of HT, MAET FAEF and TE, respectively [26,46].
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Abiotic resources depleted 0.0055 kg Sb eq per ton of vegetables. Agricultural machin-
ery, with 38% in onion and potato and 47% in tomato, had the most considerable impact in
this category. AC, EU and PO of onion production generated the highest results compared
to potato and tomato, producing 1.58 kg SO2 eq, 0.56 kg PO4−q and 0.109 kg C2H4 eq,
respectively. Acidification impact is mainly due to the release of SO2, NO2 and NH3 into the
air [62]. Khoshnevisan et al. 2014 [73] noticed that the production of one ton of cucumber
and tomato cultivated in a greenhouse generates 0.63 and 0.37 kg SO2 eq. EU potential
for potato production was 1.0 kg PO4 3-eq in England [74]. Our results are still lower
than the impact of onion production in the ecoinvent database, which registered 3.21 kg
PO4 [26], indicating that vegetable production in southern Egypt was environmentally
friendly in this category. The obtained data for ozone layer depletion (OLD) showed an im-
pact of 0.000055 kg CFC-11 eq per ton of vegetable product, which caused ozone depletion.
Agricultural machinery, diesel and chemicals had the highest share of ozone-depleting
pollutants. Production of one ton of tomato emitted 1.01 × 10−6 kg CFC-11 eq to the
ecosystem [46].

4. Conclusions

Onion, potato and tomato are considered essential cash crops in Egypt that generate
high income, representing the main vegetable cultivated crops in the country.

The study aimed to evaluate the energy balance and potential environmental impact
of the main vegetable crop production processes in southern Egypt. The results showed
that the generated energy is more than the consumed energy in potato fields (140%) and
vice versa in onion and tomato farms (87 and 40%, respectively). The highest percentages
of energy input came from inorganic fertilizers, followed by diesel, water, chemicals and
machinery. Onion production emitted 3143 kg CO2 eq. ha−1 while tomato produced the
highest amount of GHGs, recording 3742 kg CO2 eq. ha−1. Reducing diesel fuel, chemical
fertilizer and irrigation water (and seeds for potatoes) are the most crucial methods for
improving the energy management of agricultural systems in the study region. This
goal recommends determining soil fertility to optimize chemical fertilizer application,
reducing GHG emissions and potential environmental impacts. It is also vital to integrate
pest management to reduce chemical usage and reduce abiotic resource depletion. The
transformation to modern irrigation methods instead of traditional methods, such as
furrows and floods, will reduce water loss, increase water use efficiency and decrease FAEF
and marine MAET in arid zones.
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