
Citation: Bazinas, C.; Vrochidou, E.;

Kalampokas, T.; Karampatea, A.;

Kaburlasos, V.G. A Non-Destructive

Method for Grape Ripeness

Estimation Using Intervals’ Numbers

(INs) Techniques. Agronomy 2022, 12,

1564. https://doi.org/10.3390/

agronomy12071564

Academic Editor: Baohua Zhang

Received: 1 June 2022

Accepted: 27 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

A Non-Destructive Method for Grape Ripeness Estimation
Using Intervals’ Numbers (INs) Techniques
Christos Bazinas 1 , Eleni Vrochidou 1 , Theofanis Kalampokas 1, Aikaterini Karampatea 2

and Vassilis G. Kaburlasos 1,*

1 Human-Machines Interaction Laboratory (HUMAIN-Lab), Department of Computer Science, School of
Sciences, International Hellenic University (IHU), 65404 Kavala, Greece; chrbazi@cs.ihu.gr (C.B.);
evrochid@cs.ihu.gr (E.V.); theokala@cs.ihu.gr (T.K.)

2 Department of Agricultural Biotechnology and Oenology, International Hellenic University (IHU),
66100 Drama, Greece; katerina_karampatea@yahoo.gr

* Correspondence: vgkabs@cs.ihu.gr; Tel.: +30-2510-462-320

Abstract: Grape harvesting based on estimated in-field maturity indices can reduce the costs of
pre-harvest exhaustive sampling and chemical analysis, as well as the costs of post-harvest storage
and waste across the production chain due to the non-climacteric nature of grapes, meaning that they
are not able to reach desired maturity levels after being removed from the vine. Color imaging is
used extensively for intact maturity estimation of fruits. In this study, color imaging is combined
with Intervals’ Numbers (INs) technique to associate grape cluster images to maturity-related indices
such as the total soluble solids (TSSs), titratable acidity (TA), and pH. A neural network regressor is
employed to estimate the three indices for a given input of an IN representation of CIELAB color
space. The model is tested on one hundred Tempranillo cultivar images, and the mean-square error
(MSE) is calculated for the performance evaluation of the model. Results reveal the potential use
of the Ins’ NN regressor for TSS, TA, and pH assessment as a non-destructive, efficient, fast, and
cost-effective tool able to be integrated into an autonomous harvesting robot.

Keywords: grape ripeness estimation; total soluble solids (TSSs); titratable acidity (TA); pH;
Intervals’ Number (IN); regression; harvesting robot; precision agriculture

1. Introduction

Grapes are non-climacteric fruits, meaning that they do not ripen any further after
being removed from the vine. The latter may result in serious quality and quantity loss of
the harvested products, which tend to lose their fluids, dehydrate, and become sensitive to
microbial decay during post-harvest handling and storage [1] or thrown away if harvested
when immature. The accurate prediction of grape maturity would help determine the
exact quality of the yield, as well as the exact harvest dates and locations, so as to timely
engage resources, i.e., human labor, refrigerators, vehicles, etc., at specific maturity zones.
Traditional ripeness estimation is performed via visual assessment, manual sampling and
tasting, and chemical analysis. The latter is either subjective and prone to errors or cost-
effective and labor-intensive [2]. Therefore, automated grape ripeness estimation based on
quick, intact, and on-site methods, is desirable.

To this end, vision-based methods have been used extensively in grape ripeness
estimation applications [3], mainly by using external qualities of grapes such as colorimetric
and morphological attributes. Color and appearance are closely related to the chemical
and sensory properties of fruits. CIELAB color values are commonly used in food-related
research [4,5]. The CIELAB color space is an international standard for color measurements,
proposed in 1976 by the Commission International d’Eclairage (CIE). CIELAB is considered
uniform by the CIE, meaning that the Euclidean distance between two different color points
resembles the color difference perceived by the human eye [6].
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However, internal qualities for maturity grading can be more comprehensive. Ripen-
ing level monitoring is commonly based on sugar content and total acidity determination,
using refractometers and titration methods [7]. Chemical attributes such as soluble solids
content (SSC), titratable acidity (TA), and pH are widely used objective indicators to deter-
mine grape maturity [8]. Therefore, there has been extensive research for a rapid, reliable,
less expensive, and non-destructive way to determine SSC, TA, and pH of grapes, to quan-
tify their technological maturity level. Multispectral and remote sensing are used for the
estimation of spatial field variability; however, the determination of specific chemical com-
ponents that change their concentration during the ripening process is not yet accurate [7,9].
Smart chemometric technologies, based on visible, near-infrared, and mid-infrared spec-
troscopy, revealed their potential for grape quality monitoring, allowing the quick and
accurate determination of chemical components [10]. This technology has the benefit of
merging the features of both imaging and spectroscopy that, in the reflectance mode, allows
the collection of information about the intensity of the light reflected by grapes as a function
of their wavelengths [7,10,11].

Based on the above, in this study, a complete characterization of grape ripeness via
image analysis and Intervals’ Numbers (INs) technique is described. Ten grape bunches
were monitored during ripening. Images were captured for 11 maturity stages until harvest
time, accompanied by an equal number of sampling and chemical analyses to measure
SSC, TA, and pH values. The CIELAB color space component b* was extracted from
all images and represented by an IN. IN representations were associated with chemical
attributes, and both were used to train a neural network (NN) regressor, to predict the
maturity-related chemical indicators of any given in-field image. This study is the first, as
far as the authors’ knowledge, in which a method is proposed for grape ripeness estimation
through numerical estimation of the maturity-related chemical indices—SSC, TA, and
pH—from intact and on-site grape cluster images by using IN representations of CIELAB
color components. Moreover, it is the first time that INs are applied to a regression problem
for grape maturity estimation.

Many applications of INs have been reported in the recent literature regarding neural
networks, fuzzy inference systems, and machine learning [12–14]. In previous studies,
NN-based predictive models have been developed, to map a vector of past INs to a future
IN, where an IN represented a distribution of an RGB color channel [12,13]. In this research,
an NN model was employed to map a vector of INs representing a distribution of a CIELAB
channel to a vector of numbers corresponding to grape maturity indices regarding SSC,
TA, and pH. Such a model can operate in cascade with another model, which, based on
a vector of grape maturity indices, can take a binary decision regarding individual fruit
harvesting. The long-term objective was to develop a reliable (cascade) model that can
decide the maturity of an individual grape cluster from images instead of chemical analyses,
for homogenous harvesting, i.e., selective harvesting of grapes of the same maturity level,
and be integrated with an autonomous harvesting robot.

The rest of the paper is structured as follows: Section 2 reviews related research so as
to highlight the contribution of the proposed method. In Section 3, materials and methods
are presented—namely, the sampling process, chemical analyses, image acquisition, image
pre-processing, INs representation, and the proposed IN NN regressor are analyzed in
detail. Results are discussed in Section 4, while Section 5 concludes the paper.

2. Related Research

Red–green–blue (RGB) color imaging is the most cost-effective method to extract
color channel values. RGB cameras are very accessible to the user due to their low cost
and high availability, including smartphone digital cameras, which everyone owns today.
However, RGB color channels display a high degree of association resulting in a limited
range of colors than the range the eyes can perceive. For this reason, alternative color spaces
have been investigated in the literature, so as to provide effective images to image-based
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methodologies for grapes ripeness estimation, such as CIELAB, hue saturation intensity
(HSI), hue saturation value (HSV), etc.

Rodríguez-Pulido et al. [5] used image analysis to classify four different varieties of
berry seeds in the ripened or unripened stage. The seeds were photographed inside an
illumination box. CIELAB coordinates were used to obtain morphological and appearance
parameters of seeds. HSI color space was used for the segmentation process. Analysis of
variance was applied to classify the morphological data of all samples, while discriminant
analysis was applied to classify the samples based on the features of appearance of the seed,
into ripened or unripened. The same research team in [6] proposed a method to evaluate
the phenolic maturity stage of grape seeds based on computer vision. A set of phenolic
compounds was extracted in order to obtain reference values for the proposed model. Red
grape berries were collected in six stages of maturation and chemically analyzed. The
seeds were photographed in an illumination box, and the CIELAB coordinates were used
to obtain morphological and appearance parameters. Correlation studies were applied to
investigate correlations between appearance data and chemical compounds. A forward
stepwise multiple regression was finally applied to estimate the maturity stage of grape
seeds from features obtained via the image analysis.

Rahman et al. [15] developed a method in which first the grape bunches were seg-
mented from the background and then classified into mature or underdeveloped. HSV
color space was used for the segmentation process. Grape berries were identified from
their circular shape. Circles were grouped into clusters based on their spatial vicinity,
using a k-means clustering algorithm. Texture and color features were computed from the
grape cluster images from both RGB and HSV representations. A support vector machine
(SVM) classifier was trained to classify the bunches in either one of the two categories.
Avila et al. [16] developed maturity color scales of grape seeds. Images of seeds were
acquired during phenolic maturity by using a conventional scanner and a camera. The
images were transformed to the invariant illumination color model c1c2c3 (#c1c2c3 hex color
code). The hexadecimal color code #c1c2c3 expresses each color as a six-digits combination
of numbers and letters defined by its mixture of basic RGB colors. Segmentation was
performed with the Otsu method, and the representative color of each image was estimated.
A support vector regressor (SVR) was employed to create the color scale associated with
the degree of maturity of the fruit. Three stages of maturity were considered: mature,
immature, and overmature.

Pothen and Nukse [17] proposed an automated approach to evaluate grape maturity
based on spatial maps of grape clusters showing current and predicted distribution of color
development. First, berries were located by using three visual properties: color, shape, and
surface shading. Second, a measurement for color was extracted at each berry location,
using the HSV color space, and four maturity grades were determined. Finally, the rate
of color change in tandem with the current spatial map was used to predict future maps.
A non-invasive method for measuring SSC and pH from images was proposed in [18]. A
set of 52 color features were extracted for grape berry samples from multiple color spaces.
Partial least squared regression (PLSR) and multiple linear regression (MLR) were used
to predict the chemical attributes from the alternative color spaces, revealing RGB color
features as the most important for the prediction.

In [19], a method for ripeness estimation based on grape seed images was introduced
by Hernandez et al. The authors proposed a Dirichlet mixture (DMM) as a generative model
for clustering grape seeds. The DMM model directly used the color histograms of RGB
and HSV color spaces to probabilistically assign the grape seed images to different clusters
(two and three classes were tested) using a cluster membership indicator. Cavallo et al. [20]
developed a method to classify grape bunches into different quality grades. The acquired
images were segmented and then used to extract grape bunch features in the CIELAB
color space. A random forest classifier was used to predict the quality grade of grapes in
the images. Kangune et al. [21] collected a dataset of images of ripening and unripened
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grape bunches and extracted color features such as RGB and HSV using histograms. A
convolutional neural network (CNN) and an SVM were used to classify the images.

Kaburlasos et al. [22] used INs representations of RGB color histograms to predict
the future maturity of grapes using past maturity data. More specifically, an IN-based
feed-forward neural network (NN) architecture was used, taking two past INs as inputs in
order to predict a future IN, related to different maturity stages. The same research team
proposed a recursive IN NN scheme in [12], where the inputs of the NN were three—two
past INs and the prediction of a third IN, leading to improved prediction performance.

Ramos et al. [23] proposed a CNN model for image classification based on their matu-
rity stage. Maturity classes were established through analysis of TSS, total anthocyanins,
and flavonoids. Two CNN architectures were comparatively tested to classify the images in
the correct class. More recently, Wie et al. [24] developed a method for maturity prediction
in greenhouse grapes. RGB images during ripening were acquired, and color values were
determined. Factors such as the diameter of grape berries, compactness, SSC, TA, and
SSC/TA were measured and evaluated. A back-propagation NN (BPNN) was employed to
predict grape maturity coefficients.

Table 1 includes comparative information regarding the referenced literature on grape
ripeness estimation methods of the last decade (2012–2022) and of the proposed method
(PM) so as to comparatively highlight its contribution. Non-destructive methods refer to
methods that keep the grape bunch intact. On-site application refers to methods that have
been tested in the vineyards for real-time ripeness estimation.

Table 1. Comparative table of grape ripeness estimation methods of the literature and the proposed
method (PM), based on color imaging.

Ref. Ripeness
Attribute

Color
Space

No.
of

Images

Prediction
Model Method Evaluation Applied

to
Non-

Destructive
On-
Site

[5] Visual
assessment

CIELAB
HSI 100

Analysis of
variance,

Discriminant
analysis

Classification
(ripened–

unripened)

57.15–100%
Class. Acc. Seeds - -

[6] 21 Phenolic
compounds CIELAB 100

Forward
stepwise
multiple

regressors

Regression Up to 0.97 R2 Seeds - -

[15] Visual
assessment

HSV
RGB 31 SVM

Classification
(ripened–

unripened)

59.38–96.88%
Class. Acc. Bunch � �

[16] Visual
assessment c1c2c3 250 SVR Regression 22.64 MSE Seeds - -

[17] Visual
assessment HSV - Grading

scheme Prediction 0.42–0.56 R2 Bunch � �

[18] SSC
pH

HIS, NTSC,
YCbCr, HSV,

CMY
180 MLR

PLSR Regression

SSC: 0.79–0.92
MSE

pH: 0.098–0.12
MSE

Berries - -

[19] Visual
assessment

RGB
HSV 289 DMM Classification

(2 and 3 classes) 125.04 perplexity Seeds - -

[20] Visual
assessment

HSV
CIELAB 800 RF

Classification
(5, 3 and 2

classes)

60–100%
Class. Acc. Bunch � -

[21] Visual
assessment

RGB
HSV 4000 CNN

SVM

Classification
(ripened–

unripened)

69–79%
Class. Acc. Bunch � �

[22] Visual
assessment RGB 13 IN NN

feed-forward Prediction Up to 13.68
average error Bunch � �
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Table 1. Cont.

[12] Visual
assessment RGB 13 IN NN

recursive Prediction Up to 6.65
average error Bunch � �

[23]
TSS

Anthocyanins
Flavonoids

RGB 5040 CNN
Classification
(3, 4, 6, and 8

classes)

72.66–93.41%
Class. Acc. Berries - -

[24]

Diameter,
compactness,

SSC, TA,
SSC/TA

RGB - BPNN Prediction 0.36–0.65 R2 Bunch � �

PM
SSC
TA
pH

CIELAB 100
IN NN

regressor
Regression

SSC: 6.62 MSE,
TA: 8.02 MSE, pH:

0.28 MSE Bunch � �

Classification *
SSC: 71%, TA:
82%, pH: 73%

Class. Acc.

* Classification results are indicative and refer to Case 1 (details provided in Section 4). Different cases (selected
thresholds) would result in different (higher/lower) classification accuracies.

As can be observed from Table 1, the proposed method is the only one, as far as the
authors’ knowledge, to predict numerical values of maturity-related chemical indices SSC,
TA, and pH from intact and on-site grape cluster images.

3. Materials and Methods

In what follows, the sampling process, chemical analyses, image acquisition, image
pre-processing, INs representation, and the proposed IN NN regressor are analyzed in
detail. The image dataset, the corresponding SSC, TA, and pH values, and the source code
of the proposed methodology presented in this section are publicly available [25].

3.1. Samples

Tempranillo red grapes that grow on Pavlidis Estate and Winery [26] in Drama,
northern Greece, were collected in 2020, at 11 different growing stages, from veraison
to ripeness. Sampling was carried out during the morning period, to limit the impact
of high temperatures on the physical sampling of grapes and the relevant compositional
quality attributes. In the case of recent rain, sampling was postponed. Sampling was
carried out by following a specific protocol for 10 consecutive vine trees: approximately
100 berries were collected from both sides of each vine tree.

In order to collect representative samples for each of the 10 vine trees, berries were
removed from the top, middle front, middle back, and bottom of each cluster of the vine
tree, leaving intact a representative grape cluster in each vine tree in order to photograph
its growing evolution. External grape berries from the same vine tree were removed to
measure SSC, TA, and pH values, and correlate them with the reference image of the
representative cluster of the tree. The representative cluster of each vine tree remained
intact throughout the entire procedure, and the camera captured each sampling date and,
thus, its ripeness progress.

The samples were immediately transported to the chemical department of the winery
and were subjected to analyses. Quick transportation is critical since the time between
collection and measurement can cause post-harvest changes in compositional parameters
such as total acidity, pH, and color.

Table 2 includes the sampling dates and the weight of the samples for each of the
10 vine trees involved in the experiment. Missing values on the table result due to the
representative grape cluster being removed (defected/rotten/malnourished); thus, the
corresponding vine tree was excluded from further sampling and analyses. In total,
100 samples were collected.
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Table 2. Sampling dates. Weights (gr) of collected samples for 10 vines for 11 sampling dates.

Vine Tree 1 2 3 4 5 6 7 8 9 10

Day 1—27 July 2020 57 44 37 46 50 50 47 45 47 44
Day 2—3 August 2020 59 50 46 54 51 52 53 51 54 44

Day 3—10 August 2020 69 65 60 69 76 55 77 77 73 87
Day 4—17 August 2020 80 55 51 63 72 85 52 74 56 73
Day 5—20 August 2020 62 55 59 61 68 44 55 56 62 55
Day 6—24 August 2020 64 54 50 60 49 49 51 51 53 62
Day 7—27 August 2020 85 47 76 - 65 60 83 65 - 62
Day 8—31 August 2020 79 89 93 - 99 64 93 63 - 65

Day 9—3 September 2020 72 80 64 - 64 82 103 67 - 68
Day 10—7 September 2020 14.1 118 143 - 123 127 158 127 - 135

Day 11—10 September 2020 12.7 132 133 - 109 127 134 111 - 99

3.2. Image Acquisition

A representative grape cluster was selected in each of the 10 vines, and its growing
evolution was photographed at each sampling date, resulting in an image dataset of
100 images. Images were captured with a ZED Mini 3D camera, under natural daylight,
including disturbances of varying levels of illumination and shadows. All images were
captured at the same time of the day so as to ensure similar brightness by the sun hitting
the vines from the same side each time. However, on each day, the weather could be either
sunny or cloudy, and the foliage could introduce alternating shadows on the cluster images.
Ideally, the same consistent illumination in all images would result in better results for the
proposed regressor. Nevertheless, the proposed model is trained with images of varying
illumination so as to give diversity to the training process and robustness to the final
result. Moreover, the method is designated for in-field real-time maturity assessment by an
autonomous harvesting robot; the latter implies that realistic scenarios must be tested, so
images with varying illumination need to be used. The camera was mounted on a robotic
arm of an autonomous harvester robot [27]. The camera captured the images facing the
grape clusters vertically at a fixed distance from the vine tree so as to ensure consistency
in the result—at a distance of about 50 cm from the grape cluster and a height of about
70 cm from the ground. Figure 1 illustrates indicative images of three different sampling
dates—days 1, 5, and 11—for the representative cluster of the 7th vine tree.
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3.3. Chemical Analysis

Grape samples were destemmed and crushed by hand. Reference SSC, TA, and pH
values were measured. Analytical methods for determination of total and active acidity were
based on OIV’s International Methods of Analysis of Wines and Musts [28]: (1) total acidity:
OIV MA-AS313-01 (titration with bromothymol blue), and (2) pH: OIV –MA-AS313-15-PH
(pHmeter Titrator ATT1222 Hach). For the evaluation of sugar concentration in grapes, musts
were employed via pycnometry (a Baume hydrometer divided into 1/10Dujardin–Salleron
and a calibrated alcohol thermometer scale −20–100 ◦C Brannan).

3.4. Image Pre-Processing

In the image pre-processing step, grape cluster segmentation was accomplished so
as to identify the grape cluster to be further processed. All input RGB images were
annotated so that their pixels belong to either grape cluster or background, by using the
LabelMe annotation tool [29]. CIELAB color coordinates were obtained from the RGB
segmented images.

Color in CIELAB color space is expressed in terms of a psychometric index of lightness,
L*, and two cartesian color mixture coordinates a* (from green to red) and b* (from blue to
yellow), related to the visual appreciation of color. After experimentation, the distribution
of the b* channel was selected in this study, due to the fact that it demonstrated a greater
association with color maturity than the other channel histograms. As the chemical indices
under study varied along the different grape maturation stages, related to polymerization
reactions occurring during this period, the color distribution in histograms also changed.
Figure 2 illustrates the distribution of the b* channel in grape samples of the 7th vine tree
on days 1, 5, and 11.
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Histograms emphasized the existence of outliers. Isolated bars outside the histogram
distribution, as the far bars on the right of Figure 1a–c, were identified as outliers and
had to be removed in the pre-processing step. For this reason, a thresholding method was
applied. In order to apply thresholding, two conditions had to be met: (1) the thresholding
had to be applicable after 1/3 of the total histogram color values, and (2) after that point,
when a value was less than the 0.5% of the maximum distribution value, all values after
that were ignored.

3.5. INs Representation

Histograms of the b* channel were represented by INs, by using the algorithm dis-
tIN [30]. For all 100 images depicting grape ripeness stages, the corresponding INs were
extracted. The main advantage of the induced INs is that they can represent all order
data statistics by using a finite number of L intervals. The raw histogram data correspond
to a probability density function, while an IN corresponds to a probability distribution
function. Probability and possibility distributions have been studied comparatively in
the past [31]. An Intervals’ Number (IN) is a mathematical object that can be interpreted
either probabilistically or possibilistically [32]. Recently, an IN has been interpreted as a
cumulative possibility distribution [33].

From a technical point of view, an IN is rigorously defined by a 3-level hierarchy of
lattices as follows: Level 0 includes the chain (R, ≤) of real numbers; Level 1 includes the
lattice (I, ⊆) of conventional intervals in (R, ≤); Level 2 includes the lattice (F, ≤) of INs,
where an IN E is a function E: [0,1]→I that satisfies the following conditions:

h1 ≥ h2 ⇒ Eh1 ⊆ Eh2
∀X ⊆ [0, 1] : ∩

h∈X
Eh = E∨X

(1)

Defining addition and multiplication in (I, ⊆) as [a,b] + [c,d] = [a+c,b+d] and λ[a,b] =
[λa,λb], it follows that (F, ≤) is a cone, where addition and multiplication (by a nonnegative
number λ ∈ R) are defined as (E + G)h = Eh + Gh and (λE)h = λEh, respectively, ∀h∈ [0,1]. A
metric distance: dF: F × F→ R+

0 is defined as

dF(E, F) =
∫ 1

0
dI(Eh, Gh)dh (2)

where dI : I× I→ R+
0 is a metric distance in (I, ⊆) given by dI([a,b],[c,e]) = v(θ(a∧c)) −

v(θ(a∨c)) + v(b∨e)− v(b∧e), where v : R→ R is a strictly increasing real function; moreover,
θ : R→ R is a strictly decreasing real function.

IN-based models process data distributions potentially toward improving effective-
ness comparatively to conventional (arithmetic) models. There are two, equivalent IN
representations; the membership-function representation and the interval representation.
Figure 3 illustrates the interval representation corresponding to the histograms of Figure 2,
for L = 32 intervals. The finite number of intervals may result in significant data compres-
sion in the case of large input data. Moreover, no feature extraction occurs since an IN can
be implicitly employed as a set of features. It should be noted that the proposed method
can also introduce an arbitrarily large number of parameters via parametric functions v (.)
and θ (.) per constituent lattice.

The correlation of INs with maturity can be observed clearly in interval representations
presented in Figure 3. In these representations, a further clustering of data can be observed,
which occurs to the right in the case of immature grapes (day 1), and as the phenolic
maturity progresses, INs become narrower and move gradually to the left. Thus, the
generated INs allow for an effective representation of the maturity of grapes in which color
is the influential factor in determining the optimal harvesting point.
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3.6. IN NN Regressor

The neural network shown in Figure 4 was trained to estimate SSC, TA, and pH values.
In this section, details regarding the setup of the NN are listed.
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Figure 4. The proposed IN neural network regressor.

The proposed IN NN regressor scheme is a 4-layer (1× k× n× 3) feed-forward
NN. For each of the 100 samples, a training phase was set, using the leave-one-out cross-
validation method. The dataset was split into a training set and a testing set, using all
but one sample as part of the training set. The model was built using only data from the
training set, and it was used to predict the response values of the one sample left out of the
training model. The process was repeated 100 times, equal to the number of samples in
the dataset.

Keras Python library [34] was used to build and train the proposed NN. Rectified
linear unit (ReLU) activation function was used for the transitions of each layer as follows:

R(z) =
{

z, z > 0
0, z ≤ 0

(3)
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where k = 10 and n = 20 neurons for the hidden layers 2 and 3 were selected, respectively,
by trial and error. For each training phase, 1000 training epochs occurred. The built model
was then used for the testing phase, and the results were recorded.

In the experiments, the neural network received the bunch’s image histogram IN (F1)
as input. Three outputs represented the estimation of values SSC, TA, and pH (F2, F3, F4),
as depicted in Figure 4.

4. Results and Discussion

Results are summarized in Table 3. The model was evaluated for two different input
representations—the raw histogram (1 input of 255 color values) and the induced IN
(1 input of 32 IN values), for comparative reasons. The evaluation of the models was
performed in terms of the mean-square error (MSE).

Table 3. Comparative results (MSE) for two input representations: raw histogram and induced
INs (PM).

Input
Representation TA pH SSC

INs (PM) 8.0280 0.2884 6.6259
Histogram 24.8294 3.1216 9.2671

It is obvious from the results in Table 3 that the proposed method reported higher
performance than the raw histogram for the estimation of all three indices, by using IN
representation as input to the NN regressor. Therefore, INs were proven as effective
representations of the distribution of the selected CIELAB channel corresponding to grape
maturity indices SSC, TA, and pH. This can be attributed to the finite number of L intervals,
equal to 32, compared with the 255 values of the histogram. The IN representation may
compress the initial distribution; however, the induced IN included all order statistics of
the initial data, resulting in no loss of valuable inherent information. It should be noted
that the latter can be extremely advantageous in the case of large input data.

Moreover, most of the methods included in Table 1 involved feature extraction and
training of a machine learning model. However, current approaches to feature extraction
are ad hoc; in contrast, in the proposed method, no feature extraction occurred since an
IN could be implicitly employed as a set of features. This is the reason why the proposed
method was directly compared with histograms’ input representation (Table 3): in both
cases, no feature extraction was performed.

In order to provide a direct comparison to other ripeness methods reported in the
literature, based on color imaging of those included in Table 1, the regression results were
translated to classification accuracies. Two classes were defined based on the values of the
chemical indices: ripened and unripened, as presented in Table 4. The boundaries of the
two classes emerged from [3]; for SSC, TA, and pH, regardless of the grape variety, the
limits that collectively indicated a ripened grape were defined (Table 4). Two cases were
examined; in the first, the boundary of the two classes was selected in the middle of the
proposed maturity range (Case 1), while in the second, the boundary of the two classes was
selected to be the lower limit of the proposed maturity range (Case 2).
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Table 4. Indicative limits of basic chemical attributes SSC, TA, and pH in ripened wine grapes [3],
and identification of two classes (ripened and unripened) based on a selected threshold (middle value
and lower value).

Limits for Ripened Grapes
Identification of Two Classes

Case 1: Threshold on Middle Value
Identification of Two Classes

Case 2: Threshold on Lower Value

Ripened Unripened Ripened Unripened

3.2 < pH < 3.5 pH > 3.35 pH < 3.35 pH > 3.2 pH < 3.2
11.1 < SSC < 12.8 (Baume) SSC > 11.95 SSC < 11.95 SSC > 11.1 SSC < 11.1

4 < TA < 7 (g L−1) TA > 5.5 TA < 5.5 TA > 4 TA < 4

Actual values of the chemical attributes and estimated values were assigned to the
two classes. The interpretation of regression results to classification accuracies, for both
examined cases, are included in Table 5.

Table 5. Interpretation of regression results of classification accuracies in two classes, based on
selected thresholds, for all three chemical attributes.

Classification: Case 1
(Threshold on Middle Value)

Classification: Case 2
(Threshold on Lower Value)

pH: 73% pH: 69%
SSC: 71% SSC: 62%
TA: 82% TA: 75%

Selecting the threshold in the middle of the maturity range resulted in better classifica-
tion results. The conversion of estimated values into classes is useful for real-time decision
making in order for an autonomous harvesting robot to perform selective harvesting [35].
The value of the selected threshold is not fixed, since it is decided by the user depending
on the degree of maturity of the grapes he wishes to collect. It is obvious that optimal
maturity is not related to a standard threshold value but to the desired value depending on
the user and the intended post-harvest use of grapes [3]. For example, in the wine industry,
the maturity level of harvested grapes determines the procedure, diffusional, enzymatic,
or biochemical processes that would be subsequently applied, while for table grapes, the
refractometric index is considered along with the sugar/acid ratio so as to determine
grape maturity that reflects consumers’ acceptability [8]. Therefore, a different selection of
thresholds would result in different classification accuracies, higher or lower. The latter
is considered an additional advantage of the proposed method, since it allows users to
determine the desired maturity level of grapes they wish to harvest based on three different
chemical indices, revealing a useful flexible tool for on-site grape quality assessment.

Classification results (%) of the proposed method are included, along with regression
results, (MSE) in Table 1, for comparative reasons. Even if the results are indicative and
refer to a specifically selected threshold (Case 1), they are comparable and better in some
cases. Results indicate that it is possible to estimate the maturity of grape clusters by
applying a NN regression model to IN data. Moreover, the results of this study proved that
CIELAB color space is representative enough to be used for the SSC, TA, and pH prediction
of grapes. The proposed method is not a substitute for conventional chemical analysis;
however, it is an attractive and objective alternative for the estimation of grape maturity
due to its simplicity, versatility, and low computational and economical costs. Furthermore,
as can be observed from Table 1, the proposed method is the only one, as far as the authors’
knowledge, to predict numerical values of maturity-related chemical indices SSC, TA, and
pH from intact and on-site grape-cluster images. Finally, the proposed method can consider
the user’s feedback to translate estimation values in grape quality classes for on-the-spot
decision making, toward automated selective harvesting.
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Future research involves the application of the proposed model to other grape cultivars
to evaluate its robustness. The long-term objective is to develop a reliable model able to
determine the maturity of grape clusters from images in real time instead of relying on
chemical analyses, and one that is integrated with a harvester robot for selective harvesting.

5. Conclusions

In this study, an IN NN regressor was proposed for the estimation of the ripeness
level of grapes from color images using the CIELAB color space. Ripeness level was
measured in terms of three well-known maturity-related chemical indices—SSC, TA, and
pH. Results indicated the reliable performance of the proposed method in estimating the
maturity indices.

The proposed method can be used as a reliable tool to assess the chemical attributes of
grape clusters during maturation, saving time and chemical reagents and, thus, allowing
wine growers to make fast decisions regarding the exact time and location of harvesting.
Moreover, the proposed method can be integrated with an autonomous harvesting robot as
an on-the-spot decision-making algorithm for harvesting grape bunches, as producers are
interested in collecting bunches of similar degrees of maturity intended for specific uses,
e.g., eating, wine production, etc.
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