Pointing Out Opportunities to Increase Grassland Pastures Productivity via Microbial Inoculants: Attending the Society’s Demands for Meat Production with Sustainability
Abstract
:1. Introduction
2. Microbial Inoculants
3. Plant Growth-Promoting Microorganisms
4. Plant Growth-Promoting Bacteria (PGPB)
4.1. Azospirillum spp.
4.2. Pseudomonas spp.
4.3. Bacillus spp.
4.4. Rhizobium spp., Bradyrhizobium spp., and Other “Rhizobia”
5. Plant Growth-Promoting Fungi
Arbuscular Mycorrhizal Fungi (AMF)
6. Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme. Annual Evaluation Report Evaluation and Oversight Unit; United Nations Environment Programme: Nairobi, Kenya, 2000; Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/356/UNEP_Annual_Evaluation_Report_2004.pdf?sequence=1&isAllowed=y (accessed on 2 July 2021).
- Ritchie, H.; Roses, M. Land Use. 2013. Available online: https://ourworldindata.org/land-use?fbclid=IwAR1OnVSd1Rhj7PKzA4xCejkIPKfiKJf84AXumZ2KvC4FXUBi7aLVzDwgbY4#citation (accessed on 1 April 2022).
- Cang, C.G.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, Z.; Qi, J.; Odeh, I. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- MAPA, Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio: Brasil 2019/20 a 2029/30, Projeções de Longo Prazo; Secretaria de Política Agrícola: Brasília, Brazil, 2020. Available online: https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/projecoes-do-agronegocio (accessed on 2 July 2021).
- ABIEC, Associação Brasileira das Indústrias Exportadoras de Carnes. Beef Report: Perfil da Pecuária no Brasil. 2021. Available online: http://abiec.com.br/publicacoes/beef-report-2021/ (accessed on 23 November 2021).
- FAOSTAT. 2019. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 1 April 2022).
- MAPA, Ministério da Agricultura, Pecuária e Abastecimento. Agropecuária Brasileira em Números. Secretaria de Política Agrícola, Brasília, Brazil. Available online: https://www.gov.br/agricultura/ptbr/assuntos/politica-agricola/todas-publicacoes-de-politicaagricola/agropecuaria-brasileira-em-numeros (accessed on 23 November 2021).
- Novaes, R.M.L.; Tubiello, F.N.; Garofalo, D.F.T.; de Santis, G.; Pazionotto, R.A.A.; Folegatti-Matsuura, M.I.S. Brazil’s Agricultural Land, Cropping Frequency and Second Crop Area: FAOSTAT Statistics and New Estimates; Embrapa Environment: Jaguariúna, Brazil, 2022; 26p. [Google Scholar]
- UNIPASTO (Associação para o Fomento à Pesquisa de Melhoramento de Forrageiras). Personal communication. 2022. Available online: https://www.unipasto.com.br/ (accessed on 14 April 2022).
- Dias-Filho, M.B. Diagnóstico das Pastagens no Brasil; Embrapa Amazônia Oriental: Belém, Brazil, 2014; 38p. [Google Scholar]
- Machado, L.A.Z.; Lempp, B.; do Valle, C.B.; Jank, L.; Batista, L.A.R.; Postiglioni, S.R.; Resende, R.M.S.; Fernandes, C.D.; Verzignassi, J.R.; Valentim, J.F.; et al. Principais espécies forrageiras utilizadas em pastagens para gado de corte. In Bovinocultura de Corte, 1st ed.; Pires, A.V., Ed.; Fundação de Estudos Agrários Luiz de Queiroz: Piracicaba, Brasil, 2010; pp. 375–417. [Google Scholar]
- Macedo, M.C.M.; Zimmer, A.H.; Kichel, N.A.; Almeida, R.G.; de Araujo, A.R. Degradação de pastagens, alternativas de recuperação e renovação, e formas de mitigação. In Encontro de Adubação de Pastagens da Scot Consultoria-Tec-Fértil; Scot Consultoria: Piracicaba, Brazil, 2013; pp. 158–181. [Google Scholar]
- Anderson-Teixeira, K.J.; Davis, S.C.; Masters, M.D.; Delucia, E.H. Changes in soil organic carbon under biofuel crops. Gcb Bioenergy 2009, 1, 75–96. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Cerri, C.E.P.; Sparovek, G.; Bernoux, M.; Easterling, W.E.; Melillo, J.M.; Cerri, C.C. Tropical agriculture and global warming: Impacts and mitigation options. Sci. Agric. 2007, 64, 83–99. [Google Scholar] [CrossRef]
- Cerri, C.C.; Bernoux, M.; Maia, S.M.F.; Cerri, C.E.P.; Junior, C.C.; Feilg, B.J.; Frazão, L.A.; Mello, F.F.C.; Galdos, M.V.; Moreira, C.S.; et al. Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture. Sci. Agric. 2010, 16, 110–116. [Google Scholar] [CrossRef]
- Watson, L. Portugal gives green light to pasture carbon farming as a recognised offset. Aust. Farm, J. 2010, 1, 44–47. [Google Scholar]
- Terra, A.B.; Florentino, L.A.; Rezende, A.D.; Silva, N.C. Leguminosas forrageiras na recuperação de pastagens no Brasil. Rev. Cienc. Agrícola. 2019, 42, 305–313. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019 Highlights. Available online: https://www.un.org/sustainabledevelopment/blog/2019/06/growing-at-a-slower-pace-world-population-is-expected-to-reach-9-7-billion-in-2050-and-could-peak-at-nearly-11-billion-around-2100-un-report/# (accessed on 2 July 2021).
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019, 9, 205. [Google Scholar] [CrossRef]
- ANPII, Associação Nacional dos Produtores e Importadores de Inoculante. Inoculantes. 2020. Available online: http://www.anpii.org.br/wpcontent/uploads/2020/06/Global-Fert-Inoculantes.pdf (accessed on 23 November 2021).
- Hungria, M.; Campo, R.J.; Souza, E.M.; Pedrosa, F.O. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 2010, 331, 413–425. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Rev. Bras. Cienc. Solo 2021, 45, 1–31. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Hungria, M.; Sena, J.V.S.; Poggere, G.; Reis, A.R.; Corrêa, R.S. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl. Soil Ecol. 2021, 163, 103913. [Google Scholar] [CrossRef]
- Ormeño-Orrillo, E.; Hungria, M.; Martínez-Romero, E. Dinitrogen-fixing prokaryotes. In The Prokaryotes—Prokaryotic Physiology and Biochemistry, 4th ed.; Rosemberg, E., De Long, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 427–451. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agric. Ecosyst. Environ. 2016, 221, 125–131. [Google Scholar] [CrossRef]
- Hungria, M.; Rondina, A.B.L.; Nunes, A.L.P.; Araujo, R.S.; Nogueira, M.A. Seed and leaf-spray inoculation of PGPR in Brachiaria (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield and nutrient status. Plant Soil 2021, 463, 171–186. [Google Scholar] [CrossRef]
- Hungria, M.; Loureiro, M.F.; Mendes, I.C.; Campo, R.J.; Graham, P.H. Inoculant preparation, production and application. In Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment, 1st ed.; Werner, D., Newton, W.E., Eds.; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2005; pp. 223–253. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biol. Fertil. Soils 2013, 49, 791–801. [Google Scholar] [CrossRef]
- Martins, G.; Nogueira, W.A.; Gama, T.C.M. Influência da inoculação de Azospirillum brasiliense e adubação química nitrogenada no desempenho produtivo de capim braquiária Piatã. Braz. J. Dev. 2018, 7, 84508–84517. [Google Scholar] [CrossRef]
- Fibach-Paldi, S.; Burdman, S.; Okon, Y. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol. Lett. 2012, 326, 99–108. [Google Scholar] [CrossRef] [Green Version]
- IPCC, Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Gas Inventories 2006; IPCC: Geneva, Switzerland, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 9 April 2021).
- de Castro, J.R.P.; Araujo, S. Inoculantes no agro. AgroAnalysis 2019, 39, 40–41. [Google Scholar]
- Ramírez-Guzmán, N.; Chávez-Gonzalez, M.; Sepúlveda-Torre, L.; Torres-Léon, C.; Cintra, A.; Angulo-López, J.; Martínez-Hernández, J.L.; Aguilar, C.N. Significant advances in biopesticide production: Strategies for high-density bio-inoculant cultivation. In Microbial Services in Restoration Ecology, 1st ed.; Singh, J.S., Vimal, S.R., Eds.; Elsevier: Amsterdã, Germany, 2020; Volume 1, pp. 1–11. [Google Scholar] [CrossRef]
- de Moraes, R.F. Agrotóxicos no Brasil: Padrões de uso, política da regulação e prevenção da captura regulatória. Econ. Stor. 2019, 2596, 1–85. [Google Scholar]
- Warra, A.A.; Prasad, M.N.V. African perspective of chemical usage in agriculture and horticulture—Their impact on human health and environment. In Agrochemicals Detection, Treatment and Remediation, 1st ed.; Majeti, N., Vara, P., Eds.; Butterworth-Heinemann: Oxônia, UK, 2020; Volume 1, pp. 401–436. [Google Scholar] [CrossRef]
- Fukami, J.; Cerezini, P.; Hungria, M. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express 2018, 8, 73. [Google Scholar] [CrossRef]
- Mariano, R.L.R.; Silveira, E.B.; Assis, S.M.P.; Gomes, A.M.A.; Nascimento, A.R.P.; Donato, V.M.T.S. Importância de bactérias promotoras de crescimento e de biocontrole de doenças de plantas para uma agricultura sustentável. Anais Acad. Pernambucana Cienc. Agron. 2013, 1, 89–111. [Google Scholar]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, M.; Kumar, V.; Vyas, P.D. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal. Agric. Biotechnol. 2019, 23, 101487. [Google Scholar] [CrossRef]
- Metivier, J.R. Giberelinas. In Fisiologia Vegetal, 1st ed.; Ferri, M.G., Ed.; EDUSP: São Paulo, Brazil, 1986; Volume 2, pp. 129–161. [Google Scholar]
- Biswas, J.C.; Ladha, J.K.; Dazzo, F.B.; Yanni, Y.G.; Rolfe, B.G.R. Rhizobial inoculation influences seedling vigor and yield of rice. Agron. J. 2000, 92, 880–886. [Google Scholar] [CrossRef] [Green Version]
- Radwan, T.S.D.; Mohamed, Z.K.; Reis, V.M. Aeração e adição de sais na produção de ácido indol acético por bactérias diazotróficas. Pesq. Agropec. Bras. 2005, 40, 997–1004. [Google Scholar] [CrossRef] [Green Version]
- Werner, T.; Schmülling, T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 2009, 12, 527–538. [Google Scholar] [CrossRef]
- Christmann, A.; Moes, D.; Himmelbach, A.; Yang, Y.; Tang, Y.; Grill, E. Integration of abscisic acid signalling into plant responses. Plant Biol. 2006, 8, 314–325. [Google Scholar] [CrossRef]
- Ruůzžicčka, K.; Ljung, K.; Vanneste, S.; Podhorská, R.; Beeckman, T.; Friml, J.; Benková, E. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 2007, 19, 2197–2212. [Google Scholar] [CrossRef] [Green Version]
- Dimkpa, C.; Weinand, T.; Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009, 32, 1682–1694. [Google Scholar] [CrossRef]
- Penrose, D.; Glick, B. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can. J. Microbiol. 2001, 47, 77–80. [Google Scholar] [CrossRef]
- Diaz-Puentes, L.N. Resistencia sistémica adquirida mediada por el ácido salicílico. Biotecnol. Sect. Agropec. Agroind 2012, 10, 257–267. [Google Scholar]
- Ballaré, C.L. Jasmonate-induced defenses: A tale of intelligence, collaborators and rascals. Trends Plant Sci. 2011, 16, 249–257. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Leon-Reyes, A.; van der Ent, S.; Van Wees, S.C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Basalah, M.O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 2011, 248, 447–455. [Google Scholar] [CrossRef]
- Sahu, A.; Bhattacharjya, S.; Mandal, A.; Thakur, J.K.; Atoliya, N.; Sahu, N.; Manna, M.C.; Patra, A.K. Microbes: A sustainable approach for enhancing nutrient availability in agricultural soils. In Role of Rhizospheric Microbes in Soil, 1st ed.; Menna, V.S., Ed.; Springer: Singapore, 2018; Volume 1, pp. 47–75. [Google Scholar] [CrossRef]
- Nenwani, V.; Doshi, P.; Saha, T.; Rajkumar, S. Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J. Yeast Fungal Res. 2010, 1, 9–14. [Google Scholar] [CrossRef]
- Dodor, D.E.; Tabatabai, M.A. Effect of cropping systems on phosphatases in soils. J. Plant Nutr. Soil Sci. 2003, 166, 7–13. [Google Scholar] [CrossRef]
- Yadav, R.; Tarafdar, J. Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biol. Fertil. Soils 2001, 34, 140–143. [Google Scholar] [CrossRef]
- Masood, S.; Bano, A. Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In Potassium Solubilizing Microorganisms for Sustainable Agriculture, 1st ed.; Meena, V.S., Maurya, B.R., Verma, J.P., Meena, R.S., Eds.; Springer: New Delhi, India, 2016; Volume 1, pp. 137–147. [Google Scholar] [CrossRef]
- Vidyalakshmi, R.; Paranthaman, R.; Bhakyaraj, R. Sulphur oxidizing bacteria and pulse nutrition—A review. World J. Agric. Sci. 2009, 5, 270–278. [Google Scholar]
- Esther, J.; Sukla, L.B.; Pradhan, N.; Panda, S. Fe (III) reduction strategies of dissimilatory iron reducing bacteria. Korean J. Chem. Eng. 2015, 32, 1–14. [Google Scholar] [CrossRef]
- Nogueira, M.A.; Nehls, U.; Hampp, R.; Poralla, K.; Cardoso, E.J.B.N. Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 2007, 298, 273–284. [Google Scholar] [CrossRef]
- Coyne, M.S.; Mikkelsen, R.; Mineralization, S. Soil microorganisms contribute to plant nutrition and root health. Better Crops 2015, 99, 18–20. [Google Scholar]
- Goswami, M.; Deka, S. Plant growth-promoting rhizobacteria—Alleviators of abiotic stresses in soil: A review. Pedosphere 2020, 30, 40–61. [Google Scholar] [CrossRef]
- Delaporte-Quintana, P.; Lovaisa, N.C.; Rapisarda, V.A.; Pedraza, R.O. The plant growth promoting bacteria Gluconacetobacter diazotrophicus and Azospirillum brasilense contribute to the iron nutrition of strawberry plants through siderophores production. Plant Growth Regul. 2020, 91, 185–199. [Google Scholar] [CrossRef]
- Videira, S.S.; Oliveira, D.M.; Morais, R.F.; Borges, W.L.; Baldani, V.L.D.; Baldani, J.I. Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated from two Pennisetum purpureum Schum. genotypes grown in the field. Plant Soil 2012, 356, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Fukami, J.; Nogueira, M.A.; Araujo, R.S.; Hungria, M. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 2016, 6, 414–430. [Google Scholar] [CrossRef]
- Garcia, N.F.S.; Arf, O.; Portugal, J.R.; Peres, A.R.; Rodrigues, M.; Penteado, M.d.S. Doses and application methods of Azospirillum brasilense in irrigated upland rice. Rev. Bras. Eng. Agric. Ambient. 2016, 20, 990–995. [Google Scholar] [CrossRef] [Green Version]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Pagliari, P.H.; Santini, J.M.K.; Alves, C.J.; Megda, M.M.; Nogueira, T.A.R.; Andreotti, M.; Arf, O. Maize yield response to nitrogen rates and sources associated with Azospirillum brasilense. Agron. J. 2019, 111, 1985–1997. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, V.F.; Klein, J.; Ferreira, M.B.; Klein, D.K. Promotion of rice growth and productivity as a result of seed inoculation with Azospirillum brasilense. Afr. J. Agric. Res. 2020, 16, 765–776. [Google Scholar] [CrossRef]
- Chibeba, A.M.; Guimarães, M.F.; Brito, O.R.; Araujo, R.S.; Nogueira, M.A.; Hungria, M. Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Amer. J. Plant Sci. 2015, 6, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.Z.; Roberto, L.A.; Hungria, M.; Corrêa, R.S.; Magri, E.; Correia, T.D. Meta-analysis of maize responses to Azospirillum brasilense inoculation in Brazil: Benefits and lessons to improve inoculation efficiency. Appl. Sol. Ecol. 2022, 170, 104276. [Google Scholar] [CrossRef]
- Döbereiner, J. Fixação de nitrogênio em gramíneas tropicais. Interciência 1979, 4, 200–205. [Google Scholar]
- Araújo, E.O.; Martins, M.R.; Vitorino, A.C.T.; Mercante, F.M.; Urquiaga, S.S. Effect of nitrogen fertilization associated with diazotrophic bacteria inoculation on nitrogen use efficiency and its biological fixation by corn determined using 15N. Afr. J. Microbiol. Res. 2015, 9, 643–650. [Google Scholar] [CrossRef]
- Reis, V.M.; dos Reis, F.B., Jr.; Quesada, D.M.; de Oliveira, O.C.; Alves, B.J.; Urquiaga, S.; Boddey, R.M. Biological nitrogen fixation associated with tropical pasture grasses. Funct. Plant. Biol. 2001, 28, 837–844. [Google Scholar] [CrossRef]
- Miranda, C.H.B.; Boddey, R.M. Estimation of biological nitrogen fixation associated with 11 ecotypes of Panicum maximum grown in nitrogen-15-labeled soil. Agron. J. 1987, 79, 558–563. [Google Scholar] [CrossRef]
- Smith, R.L.; Schank, S.C.; Bouton, J.H.; Quesenberry, K.H. Yield increases of tropical grasses after inoculation with Spirillum lipoferum. Ecol. Bull. 1978, 26, 380–385. [Google Scholar]
- Tien, T.M.; Gaskins, M.H.; Hubbel, D.H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 1979, 37, 1016–1024. [Google Scholar] [CrossRef] [Green Version]
- Fukami, J.; Ollero, F.J.; Megías, M.; Hungria, M. Phytohormones and induction of plant stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Cerezini, P.; Kuwano, B.H.; Santos, M.B.; Terassi, F.; Hungria, M.; Nogueira, M.A. Strategies to promote early nodulation in soybean under drought. Field Crop. Res. 2016, 196, 160–167. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; De La Osa, C.; Valderrama-Fernández, R.; Nogueira, M.A.; Megías, M.; Hungria, M. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Arch. Microbiol. 2018, 200, 1191–1203. [Google Scholar] [CrossRef]
- Turan, M.; Gulluce, M.; von Wirén, N.; Sahin, F. Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey. J. Plant Nutr. Soil Sci. 2012, 175, 818–826. [Google Scholar] [CrossRef]
- Fallik, E.; Okon, Y.; Epstein, E.; Goldman, A.; Fischer, M. Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots. Soil Biol. Biochem. 1989, 21, 147–153. [Google Scholar] [CrossRef]
- Rondina, A.B.L.; Sanzovo, A.W.S.; Guimarães, G.S.; Wendling, J.R.; Nogueira, M.A.; Hungria, M. Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biol. Fertil. Soils 2020, 56, 537–549. [Google Scholar] [CrossRef]
- Santos, M.S.; Rondina, A.B.; Nogueira, M.A.; Hungria, M. Compatibility of Azospirillum brasilense with pesticides used for treatment of maize seeds. Int. J. Microbiol. 2020, 2020, 8833879. [Google Scholar] [CrossRef]
- Janzen, R.A.; Rood, S.B.; Dormaar, J.F.; McGill, W.B. Azospirillum brasilense produces gibberellin in pure culture on chemically-defined medium and in co-culture on straw. Soil Biol. Biochem. 1992, 24, 1061–1064. [Google Scholar] [CrossRef]
- Cohen, A.C.; Travaglia, C.N.; Bottini, R.; Piccoli, P.N. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 2009, 87, 455–462. [Google Scholar] [CrossRef]
- Perrig, D.; Boiero, M.L.; Masciarelli, O.A.; Penna, C.; Ruiz, O.A.; Cassán, F.D.; Luna, M.V. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl. Microbiol. Biotechnol. 2007, 75, 1143–1150. [Google Scholar] [CrossRef]
- Strzelczyk, E.; Kampert, M.; Li, C.Y. Cytokinin-like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol. Res. 1994, 149, 55–60. [Google Scholar] [CrossRef]
- Abbasi, K.; Mir-Mahmoodi, T.; Jalilnezhad, N. Effects of Azospirillum bacteria and cytokinin hormone on morphology, yield and yield components of corn (Zea mays L.). Int. J. Biol. Sci. 2015, 6, 378–386. [Google Scholar] [CrossRef]
- Day, J.M.; Döbereiner, J. Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biol. Biochem. 1976, 8, 45–50. [Google Scholar] [CrossRef]
- Caballero-Mellado, J.; Carcano-Montiel, M.G.; Mascarua-Esparza, M.A. Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 1992, 13, 243–253. [Google Scholar]
- Eskew, D.L.; Focht, D.D.; Ting, I.P. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl. Environ. Microbiol. 1977, 34, 582–585. [Google Scholar] [CrossRef] [Green Version]
- Pereg, L.; Luz, E.; Bashan, Y. Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 2015, 399, 389–414. [Google Scholar] [CrossRef]
- Aguirre, P.F.; Olivo, C.J.; Rodrigues, P.F.; Falk, D.R.; Adams, C.B.; Schiafino, H.P. Forage yield of Coastcross-1 pastures inoculated with Azospirillum brasilense. Acta Sci. Anim. Sci. 2018, 40, e36392. [Google Scholar] [CrossRef] [Green Version]
- Leite, R.D.C.; Santos, A.C.D.; Santos, J.G.D.D.; Leite, R.D.C.; Oliveira, L.B.T.D.; Hungria, M. Mitigation of mombasa grass (Megathyrsus maximus) dependence on nitrogen fertilization as a function of inoculation with Azospirillum brasilense. Rev. Bras. Cienc. Solo 2019, 43, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rocha, A.F.S.; Costa, R.R.G.F. Desempenho de Urochloa brizantha cv Paiaguás inoculada com Azospirillum brasilense e diferentes doses nitrogênio. Glob. Sci. Technol. 2018, 11, 177–186. [Google Scholar]
- Heinrichs, R.; Meirelles, G.C.; Santos, L.P.M.; Lira, M.C.S.; Lapaz, A.M.; Nogueira, M.A.; Bonini, C.S.B.; Soares Filho, C.V.; Moreira, A. Azospirillum inoculation of ‘Marandu’ palisade grass seeds: Effects on forage production and nutritional status. Semina. Cienc. Agrar. 2020, 41, 465–478. [Google Scholar] [CrossRef]
- Duarte, C.F.D.; Cecato, U.; Hungria, M.; Fernandes, H.J.; Biserra, T.T.; Galbeiro, S.; Toniato, A.K.B.; Silva, D.R. Morphogenetic and structural characteristics of Urochloa species under inoculation with plant growth-promoting bacteria and nitrogen fertilization. Crop Pasture Sci. 2020, 71, 82–89. [Google Scholar] [CrossRef]
- David, B.V.; Chandrasehar, G.; Selvam, P.N. Pseudomonas fluorescens: A plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In New and Future Developments in Microbial Bbiotechnology and Bioengineering: Crop Improvement through Microbial Biotechnology, 1st ed.; Prasad, R., Gill, S.S., Tuteja, N., Eds.; Elsevier: Nova Deli, India, 2018; Volume 1, pp. 221–243. [Google Scholar] [CrossRef]
- Prasad, R.; Kumar, M.; Varma, A. Role of PGPR in soil fertility and plant health. In Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, 1st ed.; Egamberdieva, D., Shrivastava, S., Varma, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 42, pp. 247–260. [Google Scholar] [CrossRef]
- Kumar, V.; Menon, S.; Agarwal, H.; Gopalakrishnan, D. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour.-Effic. Technol. 2017, 4, 434–439. [Google Scholar] [CrossRef]
- Hesse, E.; O’brien, S.; Tromas, N.; Bayer, F.; Luján, A.M.; Veen, E.M.; Hodgson, D.J.; Buckling, A. Ecological selection of siderophore producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 2018, 21, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, F.; Pfender, W.F. Antibiosis and antagonism of Sclerotinia homoeocarpa and Drechslera poae by Pseudomonas fluorescens Pf-5 in vitro and in planta. Phytopathology 1997, 87, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Zaidi, A.; Ahemad, M.; Oves, M.; Wani, P.A. Plant growth promotion by phosphate solubilizing fungi—Current perspective. Arch. Agron. Soil Sci. 2010, 56, 73–98. [Google Scholar] [CrossRef]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total. Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Reddy, M.S. Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 2015, 25, 428–437. [Google Scholar] [CrossRef]
- Nishimori, E.; Kita-Tsukamoto, K.; Wakabayashi, H. Pseudomonas plecoglossicida sp. nov. the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol. 2000, 50, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Castanheira, N.; Dourado, A.C.; Kruz, S.; Alves, P.I.L.; Delgado-Rodríguez, A.I.; Pais, I.; Semedo, J.; Scotti-Campos, P.; Sánchez, C.; Borges, N.; et al. Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils. J. Appl. Microbiol. 2016, 120, 724–739. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.J.S.; Dias-Filho, M.B.; Castro, T.H.R.; Gurgel, E.S.C.; da Silva, G.B. Efficiency of biostimulants for alleviating shade effects on forage grass. J. Agric. Studies 2021, 9, 14–30. [Google Scholar] [CrossRef]
- Lopes, M.J.S.; Dias-Filho, M.B.; Castro, T.H.R.; Silva, G.B. Light and plant growth-promoting rhizobacteria effects on Brachiaria brizantha growth and phenotypic plasticity to shade. Grass Forage Sci. 2017, 73, 493–499. [Google Scholar] [CrossRef]
- Begum, N.; Afzal, S.; Zhao, H.; Lou, L.; Cai, Q. Shoot endophytic plant growth-promoting bacteria reduce cadmium toxicity and enhance switchgrass (Panicum virgatum L.) biomass. Acta Physiol. Plant. 2018, 40, 170. [Google Scholar] [CrossRef]
- Sá, G.C.R.; Hungria, M.; Carvalho, C.L.M.; Moreira, A.; Nogueira, M.A.; Heinrichs, R.; Soares Filho, C.V. Nutrients uptake in shoots and biomass yields and roots and nutritive values of Zuri Guinea grass inoculated with plant growth-promoting bacteria. Commun. Soil Sci. Plant Anal. 2019, 50, 2927–2940. [Google Scholar] [CrossRef]
- Sá, G.C.R.; Carvalho, C.L.M.; Moreira, A.; Hungria, M.; Nogueira, M.A.; Heinrichs, R.; Soares Filho, C.V. Biomass yield, nitrogen accumulation and nutritive value of Mavuno grass inoculated with plant growth-promoting bacteria. Commun. Soil Sci. Plant Anal. 2019, 50, 1931–1942. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The mycorrhiza helper bacteria revisited. New Phyotol. 2007, 176, 22–36. [Google Scholar] [CrossRef]
- Zangaro, W.; Rondina, A.B.L. Arbuscular mycorrhizas in different successional stages in some Brazilian ecosystems. In Recent Advances on Mycorrhizal Fungi, 1st ed.; Pagano, M.C., Ed.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 47–62. [Google Scholar] [CrossRef]
- Zangaro, W.; Lescano, L.E.A.M.; Matsuura, E.M.; Rondina, A.B.L.; Nogueira, M.A. Interactions between arbuscular mycorrhizal fungi and exotic grasses differentially affect the establishment of seedlings of early-and late-successional woody species. Appl. Soil Ecol. 2018, 124, 394–406. [Google Scholar] [CrossRef]
- Rondina, A.B.L.; Tonon, B.C.; Lescano, L.E.A.M.; Hungria, M.; Nogueira, M.A.; Zangaro, W. Plants of distinct successional stages have different strategies for nutrient acquisition in an Atlantic Rain Forest ecosystem. Int. J. Plant. Sci. 2019, 180, 186–199. [Google Scholar] [CrossRef]
- Govindasamy, V.; Senthilkumar, M.; Magheshwaran, V.; Kumar, U.; Bose, P.; Sharma, V.; Annapurna, K. Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. In Plant Growth and Health Promoting Bacteria, 1st ed.; Maheshwari, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 18, pp. 333–364. [Google Scholar] [CrossRef]
- Gurung, N.; Ray, S.; Bose, S.; Rai, V. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int. 2013, 2013, 329121. [Google Scholar] [CrossRef] [Green Version]
- Araujo, F.F.; Guaberto, L.M.; Silva, I.F. Bioprospecção de bactérias promotoras de crescimento em Brachiaria brizantha. Rev. Bras. Zootec. 2012, 41, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Lima, F.F.; Nunes, L.A.; Figueiredo, M.; de Araújo, F.F.; Lima, L.M.; de Araújo, A.S. Effect of Bacillus subtilis inoculation and nitrogen fertilization on maize yield. Rev. Bras. Ciênc. Agrar. 2011, 6, 657–661. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Marriel, I.E.; Sousa, S.M.; Lana, U.G.P.; Mattos, B.B.; Oliveira, C.A.; Gomes, E.A. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake in low-P. Braz. J. Microbiol. 2018, 49, 40–46. [Google Scholar] [CrossRef]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the subtilis and cereus clades of species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trived, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Arshad, M.; Zahir, Z.A.; Asghar, M. Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak. J. Agric. Sci. 2015, 52, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Basak, B.B.; Biswas, D.R. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 2009, 317, 235–255. [Google Scholar] [CrossRef]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef] [Green Version]
- Kundan, R.; Pant, G.; Jadon, N.; Agrawal, P.K. Plant growth promoting rhizobacteria: Mechanism and current prospective. J. Fertil. Pestic. 2015, 6, 9. [Google Scholar] [CrossRef]
- Park, Y.G.; Mun, B.G.; Kang, S.M.; Hussain, A.; Shahzad, R.; Seo, C.W.; Kim, A.Y.; Lee, S.U.; Oh, K.Y.; Lee, D.Y.; et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE 2017, 12, e0173203. [Google Scholar] [CrossRef] [Green Version]
- Chinnaswamy, A.; Coba De La Peña, T.; Stoll, A.; De La Peña Rojo, D.; Bravo, J.; Rincón, A.; Lucas, M.M.; Pueyo, J.J. A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann. Appl. Biol. 2018, 172, 295–308. [Google Scholar] [CrossRef]
- Awasthi, S.; Srivastava, P.; Mishra, P.K. Application of EPS in agriculture: An important natural resource for crop improvement. Agric. Res. Technol. 2017, 8, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Lata, C. Heavy metal stress, signaling, and tolerance due to plant- associated microbes: An overview. Front. Plant Sci. 2018, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Li, Z.; Shi, Y.; Guo, D.; Pang, B.; Chen, X.; Shao, D.; Liu, Y.; Shi, J. Bacillus subtilis inhibits Aspergillus carbonarius by producing iturin A, which disturbs the transport, energy metabolism, and osmotic pressure of fungal cells as revealed by transcriptomics analysis. Int. J. Food Microbiol. 2020, 330, 108783. [Google Scholar] [CrossRef]
- Araujo, F.F.; Henning, A.A.; Hungria, M. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 2005, 21, 1639–1645. [Google Scholar] [CrossRef]
- Hanif, A.; Zhang, F.; Li, P.; Li, C.; Xu, Y.; Zubair, M.; Zhang, M.; Jia, D.; Zhao, X.; Liang, J.; et al. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins 2019, 11, 295. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.Y.; Meng, M. Biochemical characterization and antifungal activity of an endo-1, 3-β-glucanase of Paenibacillus sp. isolated from garden soil. Appl. Microbiol. Biotechnol. 2003, 61, 472–478. [Google Scholar] [CrossRef]
- Agarwal, M.; Dheeman, S.; Dubey, R.C.; Kumar, P.; Maheshwari, D.K.; Bajpai, V.K. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol. Res. 2017, 205, 40–47. [Google Scholar] [CrossRef]
- El-Bendary, M.A.; Hamed, H.A.; Moharam, M.E. Potential of Bacillus isolates as bio-control agents against some fungal phytopathogens. Biocatal. Agric. Biotechnol. 2016, 5, 173–178. [Google Scholar] [CrossRef]
- Theunissen, B. The beginnings of the “Delft Tradition” revisited: Martinus, W. Beijerinck and the genetics of microorganisms. J. Hist. Biol. 1996, 29, 197–228. [Google Scholar] [CrossRef]
- Verma, R.; Annapragada, H.; Katiyar, N.; Shrutika, N.; Das, K.; Murugesan, S. Rhizobium. In Beneficial Microbes in Agro-Ecology, 1st ed.; Amaresan, N., Annapurna, K., Sankaranarayanan, A., Kumar Senthil, M., Kumar, K., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 1, pp. 37–54. [Google Scholar] [CrossRef]
- Deubel, A.; Merbach, W. Influence of microorganisms on phosphorus bioavailability in soils. In Microorganisms in Soils: Roles in Genesis and Function, 1st ed.; Buscot, F., Varma, A., Eds.; Springer: Berlin, Germany, 2005; Volume 3, pp. 177–191. [Google Scholar] [CrossRef]
- Silva, F.B.; Winck, B.; Borges, C.S.; Santos, F.L.; Bataiolli, R.D.; Backes, T.; Bassani, V.L.; Borin, J.B.M.; Frazzon, A.P.G.; Sá, E.L.S. Native rhizobia from southern Brazilian grassland promote the growth of grasses. Rhizosphere 2020, 16, 100240. [Google Scholar] [CrossRef]
- Atzorn, R.; Crozier, A.; Wheeler, C.T.; Sandberg, G. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 1988, 175, 532–538. [Google Scholar] [CrossRef]
- Upadhyaya, N.M.; Parker, C.W.; Letham, D.S.; Scott, K.F.; Dart, P.J. Evidence for cytokinin involvement in Rhizobium (IC3342)-induced leaf curl syndrome of pigeonpea (Cajanus cajan Millsp.). Plant Physiol. 1991, 95, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.G.; Sá, E.L.S.; Bruxel, M.; Giongo, A.; Santos, S.N.; Nunes, A.S. Indoleacetic acid producing rhizobia promote growth of tanzania grass (Panicum maximum) and Pensacola grass (Paspalum saurae). Int. J. Agric. Biol. 2013, 15, 827–834. [Google Scholar]
- Noel, T.C.; Sheng, C.; Yost, C.K.; Pharis, R.P.; Hynes, M.F. Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: Direct growth promotion of canola and lettuce. Can. J. Microbiol. 1996, 42, 279–283. [Google Scholar] [CrossRef]
- Souleimanov, A.; Prithiviraj, B.; Smith, D.L. The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. J. Exp. Bot. 2002, 53, 1929–1934. [Google Scholar] [CrossRef] [Green Version]
- Marks, B.B.; Megías, M.; Nogueira, M.A.; Hungria, M. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium japonicum and Azospirillum brasilense inoculants with the soybean and maize crops. AMB Express 2013, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Marks, B.B.; Megías, M.; Ollero, F.J.; Nogueira, M.A.; Araujo, R.S.; Hungria, M. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici CIAT 899 enriched on lipo-chitooligossacharides (LCOs). AMB Express 2015, 5, 71. [Google Scholar] [CrossRef]
- Phillips, D.A.; Joseph, C.M.; Yang, G.P.; Martínez-Romero, E.; Sanborn, J.R.; Volpin, H. Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc. Natl. Acad. Sci. USA 1999, 96, 12275–12280. [Google Scholar] [CrossRef] [Green Version]
- Matiru, V.N.; Dakora, F.D. Potencial use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr. J. Biotechnol. 2004, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Prithiviraj, B.; Smith, D.L. Nod factor [Nod Bj V (C18:1, MeFuc)] and lumichrome enhance photosynthesis and growth of corn and soybean. J. Plant Physiol. 2008, 165, 1342–1351. [Google Scholar] [CrossRef]
- Staudt, A.K.; Wolfe, L.G.; Shrout, J.D. Variations in exopolysaccharide production by Rhizobium tropici. Arch. Microbiol. 2011, 194, 197–206. [Google Scholar] [CrossRef]
- Plett, J.M.; Solomon, J.; Snijders, F.; Marlow-Conway, J.; Plett, K.L.; Bithell, S.L. Order of microbial succession affects rhizobia-mediated biocontrol efforts against Phytophthora root rot. Microbiol. Res. 2021, 242, 126628. [Google Scholar] [CrossRef]
- Jemai, N.; Gargouri, S.; Hemissi, I.; Ben Mahmoud, K.; Ksouri, M.F.; Jemmali, A. Rhizoctonia solani affecting micropropagated Garnem (Prunus amygdalus × Prunus persica) rootstock-characterization and biocontrol with Rhizobia. J. Plant Pathol. 2021, 103, 207–215. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008; pp. 1–769. ISBN 978-0-12-370526-6. [Google Scholar]
- Wehner, J.; Antunes, P.M.; Powell, J.R.; Mazukatow, J.; Rillig, M.C. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia 2010, 53, 197–201. [Google Scholar] [CrossRef]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Zou, Y.N.; Wu, Q.S.; Kuča, K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021, 23, 50–55. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I.; et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H.; Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 1994, 59, 89–102. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Jakobsen, I.; Grølund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.B.; Zeto, S.K. Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 2000, 23, 867–902. [Google Scholar] [CrossRef]
- Lehmann, A.; Veresoglou, S.D.; Leifheit, E.F.; Rillig, M.C. Arbuscular mycorrhizal influence on zinc nutrition in crop plants—A meta-analysis. Soil Biol. Biochem. 2014, 69, 123–131. [Google Scholar] [CrossRef]
- Rondina, A.B.L.; Lescano, L.E.A.M.; Alves, R.A.; Matsuura, E.M.; Nogueira, M.A.; Zangaro, W. Arbuscular mycorrhizas increase survival, precocity and fowering of herbaceous and shrubby species of early stages of tropical succession in pot cultivation. J. Trop. Ecol. 2014, 30, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, A.; Rillig, M.C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—A meta-analysis. Soil Biol. Biochem. 2015, 81, 147–158. [Google Scholar] [CrossRef]
- Qiu, Q.; Bender, S.F.; Mgelwa, A.S.; Hu, Y. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis. Sci. Total Environ. 2022, 807, 150857. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Boller, T.; Wiemken, A.; Sanders, I.R. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 1998, 79, 2082–2091. [Google Scholar] [CrossRef]
- Leifheit, E.F.; Veresiglou, S.D.; Lehmann, A.; Morris, E.K.; Rillig, M.C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil 2014, 374, 523–537. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; van der Heijden, M.G.A. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.; Silva, C.F.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.C.; Sales, M.; Faustino, L.L.; Barreto-Garcia, P.A.B. Glomalin in soil aggregates under different forest and pasture systems in the North of Rio de Janeiro state, Brazil. Environ. Sustain. Indic. 2020, 8, 100088. [Google Scholar] [CrossRef]
- Schüβler, A.; Schwaezott, D.; Walker, C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef] [Green Version]
- Kiers, E.T.; Duhamel, M.; Beestty, Y.; Mensah, J.A.; Franken, O.; Verbruggen, E.; Fellbaum, C.R.; Kowalchuk, G.A.; Hart, M.M.; Bago, A.; et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 2011, 333, 880–882. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P.; Ho, M.D. Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant Soil 2005, 269, 45–56. [Google Scholar] [CrossRef]
- Kanno, T.; Saito, M.; Ando, Y.; Macedo, M.C.M.; Nakamura, T.; Miranda, C.H.B. Importance of indigenous arbuscular mycorrhiza for growth and phosphorus uptake in tropical forage grasses growing on an acid, infertile soil from the Brazilian savannas. Trop. Grassl. 2006, 40, 94–101. [Google Scholar]
- Cavagnaro, R.A.; Oyarzabal, M.; Oesterheld, M.; Grimoldi, A.A. Screening of biomass production of cultivated forage grasses in response to mycorrhizal symbiosis under nutritional deficit conditions. Grassl. Sci. 2014, 60, 178–184. [Google Scholar] [CrossRef]
- Teutscherova, N.; Vazquez, E.; Arevalo, A.; Pulleman, M.; Rao, I.; Arango, J. Differences in arbuscular mycorrhizal colonization and P acquisition between genotypes of the tropical Brachiaria grasses: Is there a relation with BNI activity? Biol. Fertil. Soils 2019, 55, 325–337. [Google Scholar] [CrossRef]
- Zangaro, W.; Alves, R.A.; Lescano, L.E.; Ansanelo, A.P.; Nogueira, M.A. Investment in fine roots and arbuscular mycorrhizal fungi decrease during succession in three Brazilian ecosystems. Biotropica 2012, 44, 141–150. [Google Scholar] [CrossRef]
- Zangaro, W.; Rostirola, L.V.; Souza, P.B.; Alves, R.A.; Lescano, L.E.A.M.; Rondina, A.B.L.; Nogueira, M.A.; Carrenho, R. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 2013, 23, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Zangaro, W.; Alves, R.A.; Souza, P.B.; Rostirola, L.V.; Lescano, L.E.A.M.; Rondina, A.B.L.; Nogueira, M.A. Succession and environmental variation influence soil exploration potential by fine roots and mycorrhizal fungi in an Atlantic ecosystem in southern Brazil. J. Trop. Ecol. 2014, 30, 237–248. [Google Scholar] [CrossRef]
- Ramos, M.L.G.; Konrad, M.D.F.; Silva, D.E.; Ribeiro Junior, W.Q.; Batista, L.M.T. Mycorrhizal fungus diversity and radicular colonization, on single and consorciation with maize. Biosci. J. 2012, 28, 235–244. [Google Scholar]
- Moraes, J.M.A.S.; Zanchi, C.S.; Pires, G.C.; Moretti, C.F.; Barbosa, M.V.; Silva, A.O.; Pacheco, L.P.; Carneiro, M.A.C.; Oliveira, R.L.; Kemmelmeier, K.; et al. Arbuscular mycorrhizal fungi in integrated crop livestock systems with intercropping in the pasture phase in the Cerrado. Rhizosphere 2019, 11, 100165. [Google Scholar] [CrossRef]
- Pires, G.C.; Lima, M.E.; Zanchi, C.S.; Freitas, C.M.; Souza, J.M.A.; Camargo, T.A.; Pacheco, L.P.; Wruck, F.J.; Carneiro, M.A.C.; Kemmelmeier, K.; et al. Arbuscular mycorrhizal fungi in the rhizosphere of soybean in integrated crop livestock system with intercropping in the pasture phase. Rhizosphere 2021, 17, 100270. [Google Scholar] [CrossRef]
- Stürmer, S.L.; Siqueira, J.O. Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 2011, 21, 255–267. [Google Scholar] [CrossRef]
- Rubin, J.G.K.R.; Stürmer, S.L. Potencial de inóculo micorrízico e importância do comprimento do micélio para a agregação de solos de ambiente fluvial. Rev. Bras. Cienc. Solo 2015, 39, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Posada, R.H.; Franco, L.A.; Ramos, C.; Plazas, L.S.; Suárez, J.C.; Álvarez, F. Effect of physical, chemical and environmental characteristics on arbuscular mycorrhizal fungi in Brachiaria decumbens (Stapf) pastures. J. Appl. Microbiol. 2008, 104, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.C.; Miller, R.M.; Wilson, G.W.T. Mycorrhizal interactions with climate, soil parent material and topography. In Mycorrhizal Mediation of Soil: Fertility, Structure and Carbon Storage, 1st ed.; Johnson, N.C., Gehring, C., Jansa, J., Eds.; Elsevier: Amsterdam, Germany, 2017; Volume 1, pp. 47–66. [Google Scholar] [CrossRef]
- Corazza, E.J.; Brossard, M.; Muraoka, T.; Coelho-Filho, M.A. Spatial variability of soil phosphorus of a low productivity Brachiaria brizantha pasture. Sci. Agric. 2003, 60, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, O.C.; Oliveira, I.P.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M. Chemical and biological indicators of decline/degradation of Brachiaria pastures in the Brazilian Cerrado. Agric. Ecosyst. Environ. 2004, 103, 289–300. [Google Scholar] [CrossRef]
- Oliveira, L.B.; Tiecher, T.; Quadros, F.L.F.; Trindade, J.P.P.; Gatiboni, L.C.; Brunetto, G.; Santos, D.R. Formas de fósforo no solo sob pastagens naturais submetidas à adição de fosfatos. Rev. Bras. Cienc. Solo 2014, 38, 867–878. [Google Scholar] [CrossRef]
- Dias-filho, M.B. Os desafios da produção animal em pastagens na fronteira agrícola brasileira. Rev. Bras. Zootec. 2011, 40, 243–252. [Google Scholar]
- Cavagnaro, R.A.; Oyarzabal, M.; Oesterheld, M.; Grimoldi, A.A. Species-specific trade-offs between regrowth and mycorrhizas in the face of defoliation and phosphorus addition. Fungal Ecol. 2021, 51, 101058. [Google Scholar] [CrossRef]
- Koide, R.T. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 1991, 117, 365–386. [Google Scholar] [CrossRef]
- Koide, R.T. Mycorrhizal symbiosis and plant reproduction. In Arbuscular Mycorrhizas: Physiology and Function, 1st ed.; Koltai, H., Kapulnik, Y., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 1, pp. 297–320. [Google Scholar] [CrossRef]
- Johnson, N.C.; Graham, J.H.; Smith, F.A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 1997, 35, 575–585. [Google Scholar] [CrossRef]
- Graham, J.H.; Abbott, L.K. Wheat responses to aggressive and nonaggressive arbuscular mycorrhizal fungi. Plant Soil 2000, 220, 207–218. [Google Scholar] [CrossRef]
- Ryan, M.H.; van Herwaarden, A.F.; Angus, J.F.; Kirkegaard, J.A. Reduced growth of autumn-sown wheat in a low-P is associated with high colonization by arbuscular mycorrhizal fungi. Plant Soil 2005, 270, 275–286. [Google Scholar] [CrossRef]
- Klironomos, J.N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 2003, 84, 2292–2301. [Google Scholar] [CrossRef]
- Basiru, S.; Mwanza, H.P.; Hijri, M. Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms 2021, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Johny, L.; Adholeya, A. Review of patents for agricultural use of arbuscular mycorrhizal fungi. Mycorrhiza 2021, 31, 127–136. [Google Scholar] [CrossRef]
- Islam, M.N.; Germida, J.J.; Walley, F.L. Survival of a commercial AM fungal inoculant and its impact on indigenous AM fungal communities in field soils. Appl. Soil Ecol. 2021, 166, 103979. [Google Scholar] [CrossRef]
- Messa, V.R.; Savioli, M.R. Improving sustainable agriculture with arbuscular mycorrhizae. Rhizosphere 2021, 19, 100412. [Google Scholar] [CrossRef]
- Stoffel, S.C.G.; Soares, C.R.F.S.; Meyer, E.; Lovato, P.E.; Gianchini, A.J. Yield increase of corn inoculated with a commercial arbuscular mycorrhizal inoculant in Brazil. Cienc. Rural 2020, 50, 1–10. [Google Scholar] [CrossRef]
- Stoffel, S.C.G.; Soares, C.R.F.S.; Meyer, E.; Lovato, P.E.; Gianchini, A.J. Yield increase of soybean inoculated with a commercial arbuscular mycorrhizal inoculant in Brazil. Afr. J. Agric. Res. 2020, 16, 702–713. [Google Scholar] [CrossRef]
- Cely, M.V.T.; Oliveira, A.G.; Freitas, V.F.; Luca, M.B.; Barazetti, A.R.; Santos, I.M.O.; Gionco, B.; Garcia, G.V.; Prete, C.E.C.; Andrade, G. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front. Microbiol. 2016, 7, 720. [Google Scholar] [CrossRef]
- Barazetti, A.R.; Simionato, A.S.; Navarro, M.O.P.; Santos, I.M.O.; Modolon, F.; Andreata, M.F.L.; Liuti, G.; Cely, M.V.T.; Chryssafidis, A.L.; Dealis, M.L.; et al. Formulations of arbuscular mycorrhizal fungi inoculum applied to soybean and corn plants under controlled and field conditions. Appl. Soil Ecol. 2019, 142, 25–33. [Google Scholar] [CrossRef]
- Leite, R.C.; Santos, J.G.D.; Silva, E.L.; Alves, C.R.C.R.; Hungria, M.; Leite, R.C.; Santos, A.C. Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop Pasture Sci. 2018, 70, 61–67. [Google Scholar] [CrossRef]
- Manrique, A.E.R.; Mazzuchelli, R.D.C.L.; Araujo, A.S.F.; Araujo, F.F.D. Conditioning and coating of Urochloa brizantha seeds associated with inoculation of Bacillus subtilis. Pesq. Agropec. Trop. 2019, 49, 1–8. [Google Scholar] [CrossRef]
- Costa, N.L.; Paulino, V.T.; Costa, R.S.C.; Pereira, R.G.D.; Townsend, C.R.; Magalhães, J.A. Efeito de micorrizas arbusculares sobre o crescimento e nutrição mineral de Brachiaria brizantha cv. Marandu. Cienc. Anim. Bras. 2012, 13, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Sales, L.R.; Silva, G.N.D.; Siqueira, R.H.D.S.; Carneiro, M.A.C.; Faquin, V. Influência de fungos micorrícos arbusculares na biomassa e na nutrição de Urochloa decumbens em diferentes densidades do solo. Pesq. Agropec. Bras. 2018, 53, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Picazevicz, A.A.C.; Shockness, L.S.F.; Santos Filho, A.L.; Nascimento, I.R.; Maciel, L.D.; Silva, L.R.; Costa, G.E.G. Crescimento de Panicum maximum cv. BRS Zuri em resposta a rizobactéria e nitrogênio. Rev. Bras. Agropecuária Sustentável 2020, 10, 33–37. [Google Scholar] [CrossRef]
- de Carvalho, C.L.M.; Duarte, A.N.M.; Hungria, M.; Nogueira, M.A.; Moreira, A.; Soares Filho, C.V. Nitrogen in shoots, number of tillers, biomass yield and nutritive value of zuri guinea grass inoculated with plant-growth promoting bacteria. Int. J. Innov. Res. 2020, 8, 437–463. [Google Scholar] [CrossRef]
- Costa, N.D.L.; Townsend, C.R.; Magalhães, J.A.; Paulino, V.T.; Rodrigues, A.N.A.; Nascimento, L.D.S.; Rodrigues, M.D.A. Resposta de Andropogon gayanus cv. Planaltina a inoculação de micorrizas arbusculares e fertilização com fosfato de rocha. PubVet 2015, 9, 405–409. [Google Scholar] [CrossRef]
Forage Species | Microorganism Genus/Species | Strain | Nitrogen (kg ha−1) | Shoot Biomass Increase (g) | Root Biomass Increase (g) | Reference |
---|---|---|---|---|---|---|
Urochloa brizantha cv. Marandu | Azospirillum brasilense | Ab-V5 and Ab-V6 | 40 | 24.66 | - | [26] |
Urochloa brizantha cv. Marandu | Azospirillum brasilense | Ab-V5 and Ab-V6 | 50 | 13.04 | - | [207] |
Urochloa brizantha cv. Marandu | Azospirillum brasilense | Ab-V5 and Ab-V6 | 25 | - | 81.1 | [95] |
Urochloa brizantha cv. Marandu | Bacillus subtilis | AP-3 | - | 27.41 | 13.59 | [208] |
Urochloa brizantha cv. Marandu | Acaulospora muricata | - | - | 353 | - | [209] |
Urochloa brizantha cv. Paiaguás | Azospirillum brasilense | Ab-V5 and Ab-V6 | 50 | 41.25 | - | [94] |
Urochloa ruzizienses | Azospirillum brasilense | Ab-V5 and Ab-V6 | 40 | 23.26 | - | [26] |
Urochloa ruziziensis | Pseudomonas fluorescens | CNPSo 2719 | 0 | 43 | 60 | [96] |
Urochloa ruziziensis | Pseudomonas ananatis | AMG521 | 0 | 44 | 70 | [96] |
Urochloa ruziziensis | Azospirillum brasilense | Ab-V5 and Ab-V6 | 80 | 29.3 | - | [27] |
Urochloa ruziziensis | Pseudomonas fluorescens | CNPSo 2719 | 80 | 27.6 | - | [27] |
Urochloa brizantha | Azospirillum brasilense | Ab-V5 and Ab-V6 | 60 | - | 66.5 | [27] |
Urochloa brizantha | Pseudomonas fluorescens | CNPSo 2719 | 60 | - | 97.5 | [27] |
Urochloa decumbens | Claroideoglomus etunicatum and Acaulospora morrowiae | - | - | - | 31 | [210] |
Megathyrsus maximus cv. Zuri | Azospirillum brasilense | Ab-V5 and Ab-V6 | 50 | 17.02 | 17 | [211] |
Megathyrsus maximus cv. BRS Zuri | Pseudomonas fluorescens | CNPSo 2719 | 100 | 7 | -- | [212] |
Megathyrsus maximus cv. Tanzânia | Mesorhizobium sp. | SEMIA 816 | 50 | - | 12,5 | [144] |
Paspalum saurae | Mesorhizobium sp. | SEMIA 816 | 50 | - | 11.7 | [144] |
Andropogon gayanus cv. Planaltina | Acaulospora muricata | - | - | 107 | - | [213] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, G.S.; Rondina, A.B.L.; Santos, M.S.; Nogueira, M.A.; Hungria, M. Pointing Out Opportunities to Increase Grassland Pastures Productivity via Microbial Inoculants: Attending the Society’s Demands for Meat Production with Sustainability. Agronomy 2022, 12, 1748. https://doi.org/10.3390/agronomy12081748
Guimarães GS, Rondina ABL, Santos MS, Nogueira MA, Hungria M. Pointing Out Opportunities to Increase Grassland Pastures Productivity via Microbial Inoculants: Attending the Society’s Demands for Meat Production with Sustainability. Agronomy. 2022; 12(8):1748. https://doi.org/10.3390/agronomy12081748
Chicago/Turabian StyleGuimarães, Gabriel Silva, Artur Berbel Lirio Rondina, Mariana Sanches Santos, Marco Antonio Nogueira, and Mariangela Hungria. 2022. "Pointing Out Opportunities to Increase Grassland Pastures Productivity via Microbial Inoculants: Attending the Society’s Demands for Meat Production with Sustainability" Agronomy 12, no. 8: 1748. https://doi.org/10.3390/agronomy12081748
APA StyleGuimarães, G. S., Rondina, A. B. L., Santos, M. S., Nogueira, M. A., & Hungria, M. (2022). Pointing Out Opportunities to Increase Grassland Pastures Productivity via Microbial Inoculants: Attending the Society’s Demands for Meat Production with Sustainability. Agronomy, 12(8), 1748. https://doi.org/10.3390/agronomy12081748