Measuring Fluorescence as a Means to Evaluate the Physiological Reaction to Growth Retardant Applied to Manage Turf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Studies
2.2. Evaluation of TE Influence on Turfs
2.3. Climatic Data
2.4. Statistical Analysis and Results Visualization
3. Results
3.1. Turf Visual and Biometric Ratings
3.2. TE Influence on the Chlorophyll Index (CI) and Chl a Fluorescence
4. Discussion
4.1. Effects of Trinexapac-Ethyl (TE) on Turf Physiology as Measured via Chlorophyll Index and Fluorescence Data
4.2. Benefits of the Study and Possibilities of the Use of TE in Turfgrass Management
4.3. Implications for Turf Management
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braverman, S.W. Disease resistance in cool-season forage range and turf grasses II. Bot. Rev. 1986, 52, 1–112. [Google Scholar] [CrossRef]
- Ma, X.; Huang, B. Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species. Front. Plant Sci. 2016, 7, 905. [Google Scholar] [CrossRef] [Green Version]
- Dziamski, A.; Stypczyńska, Z.; Żurek, G. Estimation of Root and Shoot Growth of Selected Grass Species on the Basis of Seedling Characterization. Plant Breed. Seed Sci. 2014, 65, 3–14. [Google Scholar] [CrossRef]
- Cougnon, M.; Deru, J.; van Eekeren, N.; Baert, J.; Reheul, D. Root depth and biomass of tall fescue vs. perennial ryegrass. In Proceedings of the 17th Symposium of the European Grassland Federation “The Role of Grasslands in a Green Future: Threats and Perspectives in Less Favoured Areas”, Akureyri, Iceland, 23–26 June 2013; Helgadottir, A., Hopkins, A., Eds.; Euroepan Grassland Federation and Agricultural University of Iceland: Borgarnes, Iceland, 2013; pp. 285–288. [Google Scholar]
- Watson, C.J.; Carignan-Guillemette, L.; Turcotte, C.; Maire, V.; Proulx, R. Ecological and economic benefits of low-intensity urban lawn management. J. Appl. Ecol. 2020, 57, 436–446. [Google Scholar] [CrossRef]
- Kaufmann, J.E. How turfgrass biology affects responses to growth regulators. In Proceedings of the 6th International Turfgrass Research Conference, Tokyo, Japan, 31 July–5 August 1989; Takatoh, H., Ed.; Japanese Society of Turfgrasses Science: Tokyo, Japan, 1989; pp. 83–88. [Google Scholar]
- Ignatieva, M.; Haase, D.; Dushkova, D.; Haase, A. Lawns in Cities: From a Globalised Urban Green Space Phenomenon to Sustainable Nature-Based Solutions. Land 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Ignatieva, M.; Hedblom, M. An alternative urban green carpet. Science 2018, 362, 148–149. [Google Scholar] [CrossRef] [Green Version]
- Stier, J.C.; Steinke, K.; Ervin, E.H.; Higginson, F.R.; McMaugh, P.E. Turfgrass Benefits and Issues. In Agronomy Monographs. Turfgrass: Biology, Use, and Management; Stier, J.C., Horgan, B.P., Bonos, S.A., Eds.; Wiley: Madison, WI, USA, 2013; Volume 56, pp. 105–145. [Google Scholar] [CrossRef] [Green Version]
- Dobson, A.D.M.; Taylor, J.L.; Randolph, S.E. Tick (Ixodes ricinus) abundance and seasonality at recreational sites in the UK: Hazards in relation to fine-scale habitat types revealed by complementary sampling methods. Ticks Tick-Borne Dis. 2011, 2, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Nassauer, J.; Wang, Z.; Dayrell, E. What will the neighbors think? Cultural norms and ecological design. Landsc. Urban Plan. 2009, 92, 282–292. [Google Scholar] [CrossRef]
- Law, Q.D.; Bigelow, C.A.; Patton, A.J. Selecting turfgrasses and mowing practices that reduce mowing requirements. Crop Sci. 2016, 56, 3318–3327. [Google Scholar] [CrossRef] [Green Version]
- Priest, M.W.; Williams, D.J.; Bridgman, H.A. Emissions from in-use lawnmowers in Australia. Atmos. Environ. 2000, 34, 657–664. [Google Scholar] [CrossRef]
- Selhorst, A.; Lal, R. Net carbon sequestration potential and emission in home lawn turfgrasses of the United States. Environ. Manag. 2013, 51, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Allaire, S.E.; Dufour-L’Arrivee, C.; Lafond, J.A.; Lalancette, R.; Brodeur, J. Carbon dioxide emission by urban turfgrass areas. Can. J. Soil Sci. 2008, 88, 529–532. [Google Scholar] [CrossRef]
- Aamlid, T.; Niemelainen, O.; Rannikko, M.; Noteng, O.; Waldner, M.; Haugen, T.; Junnila, S.; Pettersen, T.; Espevig, T. Evaluation of the plant growth regulator Primo MAXX® (trinexapacethyl) on Nordic golf courses. Bioforsk Rep. 2009, 4, 1. Available online: http://www.sterf.org/Media/Get/1550/final-report (accessed on 13 August 2021).
- Głąb, T.; Szewczyk, W.; Gondek, K.; Knaga, J.; Tomasik, M.; Kowalik, K. Effect of plant growth regulators on visual quality of turfgrass. Sci. Hortic. 2020, 267, 109314. [Google Scholar] [CrossRef]
- Lickfeldt, D.W.; Gardner, D.S.; Branham, B.E.; Voigt, T.B. Implications of Repeated Trinexapac-Ethyl Applications on Kentucky Bluegrass. Agron. J. 2001, 93, 1164–1168. [Google Scholar] [CrossRef]
- Rademacher, W. Growth retardants: Effect of gibberellin biosynthesis and other metabolic pathways. Ann. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 501–531. [Google Scholar] [CrossRef] [Green Version]
- Serensits, T.J.; McNitt, A.S.; Petrunak, D.M. Improving surface stability on natural turfgrass athletic fields. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2011, 225, 85–92. [Google Scholar] [CrossRef]
- Ervin, E.; Zhang, X. Applied Physiology of Natural and Synthetic Plant Growth Regulators on Turfgrasses. In Turfgrass Management and Physiology; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 171–202. ISBN 978-170-8493-7069-8494. [Google Scholar]
- Mohammadi, M.H.S.; Etemadi, N.; Arab, M.M.; Aalifar, M.; Arab, M.; Pessarakli, M. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiol. Biochem. 2017, 111, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Stier, J.C.; Rogers, J.N. Trinexapac-Ethyl and Iron Effects on Supina and Kentucky Bluegrasses Under Low Irradiance. Crop Sci. 2001, 41, 457–465. [Google Scholar] [CrossRef]
- Qian, Y.L.; Engelke, M.C.; Foster, M.J.V.; Reynolds, S. Trinexapac-ethyl Restricts Shoot Growth and Improves Quality of ‘Diamond’ Zoysiagrass Under Shade. HortSci. 1998, 33, 1019. [Google Scholar] [CrossRef] [Green Version]
- Brede, D. (Ed.) Turfgrass Maintenance Reduction Handbook: Sports, Lawns, and Golf; Ann Arbor Press: Chelsea, MI, USA, 2000; p. 374. ISBN 71-57504-106-5. [Google Scholar]
- British Society of Plant Breeders Ltd. Turfgras Seed. 2021. Available online: http://www.plantbreedingmatters.com/sg_userfiles/BSPB_Turfgrass_2020_LRes.pdf (accessed on 13 August 2021).
- Prokopiuk, K.; Żurek, G.; Rybka, K. Turf covering for sport season elongation cause no stress for grass species as detected by Chl a fluorescence. Urban For. Urban Green. 2019, 41, 14–22. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Govindjee, G. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 1995, 61, 32–42. [Google Scholar] [CrossRef]
- Goltsev, V.N.; Kalaji, H.M.; Paunov, M.; Bąba, W.; Horaczek, T.; Mojski, J.; Kociel, H.; Allakhverdiev, S.I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ. J. Plant Physiol. 2016, 63, 869–893. [Google Scholar] [CrossRef]
- Oukarroum, A.; Madidi, S.E.; Schansker, G.; Strasser, R.J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 2007, 60, 438–446. [Google Scholar] [CrossRef]
- Stirbet, A.; Riznichenko, G.Y.; Rubin, A.B. Govindjee Modeling chlorophyll a fluorescence transient: Relation to photosynthesis. Biochem. Mosc. 2014, 79, 291–323. [Google Scholar] [CrossRef] [PubMed]
- Żurek, G.; Rybka, K.; Pogrzeba, M.; Krzyżak, J.; Prokopiuk, K. Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses. PLoS ONE 2014, 9, e91475. [Google Scholar] [CrossRef]
- Heckman, N.L.; Caussoin, R.E.; Horst, G.L.; Elowsky, C.G. Growth regulator effects on cellular characteristics of two turfgrass species. Int. Turfgrass Soc. Res. J. 2005, 10, 857–861. Available online: https://www.academia.edu/26897007/Growth_regulator_effects_on_cellular_characteristics_of_two_turfgrass_species (accessed on 13 August 2021).
- Ervin, E.; Koski, A.J. Trinexapac-ethyl Increases Kentucky Bluegrass Leaf Cell Density and Chlorophyll Concentration. HortSci. 2001, 36, 787–789. [Google Scholar] [CrossRef] [Green Version]
- Meghyn, M.; Ambika, C.; Wherley, B.G. Growth Responses of Hybrid Bluegrass and Tall Fescue as Influenced by Light Intensity and Trinexapac-ethyl. HortSci. 2015, 50, 1241–1247. [Google Scholar] [CrossRef] [Green Version]
- Ervin, E.; Koski, A. Kentucky Bluegrass Growth Responses to Trinexapac-Ethyl, Traffic, and Nitrogen. Crop Sci. 2001, 41, 1871–1877. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, W.; Amombo, E.; Hu, L.; Kjorven, J.O.; Chen, L. Mechanisms of Environmental Stress Tolerance in Turfgrass. Agronomy 2020, 10, 522. Available online: https://www.mdpi.com/2073-4395/2010/2074/2522 (accessed on 13 August 2021). [CrossRef] [Green Version]
- Foyer, C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 2018, 154, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Macolino, S.; Pignata, G.; Giolo, M.; Richardson, M. Species Succession and Turf Quality of Tall Fescue and Kentucky Bluegrass Mixtures as Affected By Mowing Height. Crop Sci. 2014, 54, 1220–1226. [Google Scholar] [CrossRef]
- Prończuk, M.; Zagdańska, B. Effect of Microdochium nivale and Low Temperature on Winter Survival of Perennial Ryegrass. J. Phytopathol. 1993, 138, 1–8. [Google Scholar] [CrossRef]
- Hofgaard, I.S.; Wanner, L.A.; Tronsmo, A.M. The effect of age and cold hardening on resistance to pink snow mould (Microdochium nivale) in perennial ryegrass (Lolium perenne L). Acta Agric. Scand. B Soil Plant Sci. 2006, 56, 315–323. [Google Scholar] [CrossRef]
- Leinauer, B. Turf solutions for the future, the 7th European turfgrass society research conference: Agronomy Journal special issue. Agron. J. 2020, 112, 3361–3362. [Google Scholar] [CrossRef]
- Springer, R.; Eudoxie, G.; Gouveia, G. Comparative Evaluation of Common Savannahgrass on a Range of Soils Subjected to Different Stresses I: Productivity and Quality. Agronomy 2014, 4, 202–216. [Google Scholar] [CrossRef] [Green Version]
Recommended TE Doses Per 100 m2 * (2018) | |
---|---|
Perennial ryegrass (1) | 16–30 (1.8–3.4) |
Kentucky bluegrass (2) | 20 (2.3) |
Tall fescue (3) | 24 (2.7) |
Mix (1) × (2) | 24 (2.7) |
Mix (1) × (2) × (3) | 24 (2.7) |
Scale Grades | Visual Merit | Turf Density | Turf Color |
---|---|---|---|
1 | no plants | no plants | no plants |
2 | poorly looking | very weak | dried |
3 | weak | ≤20% | yellow-brown turf |
4 | poor | ≤45% | bleaching turf |
5 | sufficient | ≤60% | gray-brown |
6 | average | >60% | green-blue |
7 | good | quite dense (ca. 80%) | light-green |
8 | very good | nearly 100% dense | green turf |
9 | ideal | fully dense turf | dark green |
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | Temperature [°C] | |||||||||||
1995–2015 | −1.8 | −1.0 | 2.8 | 8.1 | 14.2 | 16.9 | 18.5 | 18.2 | 13.3 | 8.3 | 2.8 | −0.1 |
2018 | 0.9 | −3.1 | 0.8 | 13.5 | 17.9 | 19.2 | 21.1 | 20.9 | 16.1 | 10.2 | 4.4 | 2.1 |
2019 | −1.6 | 3.0 | 5.9 | 11.7 | 13.9 | 22.8 | 19.1 | 20.8 | 14.6 | 11.0 | 6.4 | 3.3 |
Precipitation [mm] | ||||||||||||
1995–2015 | 21.3 | 17.5 | 22.3 | 30.3 | 46.0 | 63.0 | 74.3 | 51.8 | 43.5 | 31.5 | 30.3 | 28.4 |
2018 | 26.0 | 8.8 | 16.4 | 26.0 | 73.2 | 25.2 | 80.0 | 34.4 | 34.0 | 28.0 | 28.8 | 63.8 |
2019 | 39.6 | 34.2 | 36.8 | 3.0 | 9.2 | 40.8 | 53.2 | 37.4 | 74.4 | 13.6 | 15.8 | 34.8 |
Factor | Perennial Ryegrass | Kentucky Bluegrass | Tall Fescue | ||||||
---|---|---|---|---|---|---|---|---|---|
Goalkeeper | Jackento | Top Gun | Award | BlueChip | Liberator | Arid 3 | Pixi | Stowell | |
Spring (1 week) | |||||||||
Control | 289A | 281A | 287A | 276A | 264A | 253A | 236A | 283A | 266A |
TE [1.5 g/100 m2] | 276A | 267A | 276A | 235B | 238B | 234A | 216B | 212B | 229B |
TE [4.5 g/100 m2] | 249A | 214B | 200B | 177C | 171C | 173B | 221B | 195C | 193C |
Spring (5 weeks) | |||||||||
Control | 359B | 348B | 373B | 386A | 406A | 401A | 400B | 393A | 388B |
TE [1.5 g/100 m2] | 383B | 374B | 336B | 426A | 435A | 400A | 458A | 335B | 432A |
TE [4.5 g/100 m2] | 478A | 462A | 440A | 326B | 365B | 345B | 320C | 338B | 375B |
Autumn (1 week) | |||||||||
Control | 387A | 386A | 373A | 452C | 380A | 393A | 320B | 380A | 390A |
TE [1.5 g/100 m2] | 305B | 312B | 335B | 367B | 310B | 344B | 291C | 286C | 333B |
TE [4.5 g/100 m2] | 300B | 285B | 291C | 271A | 285B | 305B | 351A | 312B | 297C |
Autumn (5 weeks) | |||||||||
Control | 122C | 139C | 134C | 170C | 198B | 221B | 234B | 222C | 241C |
TE [1.5 g/100 m2] | 294B | 279B | 283B | 440A | 414A | 438A | 438A | 476A | 483A |
TE [4.5 g/100 m2] | 347A | 327A | 325A | 218B | 193B | 286B | 252B | 343B | 314B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martyniak, D.; Prokopiuk, K.; Żurek, G.; Rybka, K. Measuring Fluorescence as a Means to Evaluate the Physiological Reaction to Growth Retardant Applied to Manage Turf. Agronomy 2022, 12, 1776. https://doi.org/10.3390/agronomy12081776
Martyniak D, Prokopiuk K, Żurek G, Rybka K. Measuring Fluorescence as a Means to Evaluate the Physiological Reaction to Growth Retardant Applied to Manage Turf. Agronomy. 2022; 12(8):1776. https://doi.org/10.3390/agronomy12081776
Chicago/Turabian StyleMartyniak, Danuta, Kamil Prokopiuk, Grzegorz Żurek, and Krystyna Rybka. 2022. "Measuring Fluorescence as a Means to Evaluate the Physiological Reaction to Growth Retardant Applied to Manage Turf" Agronomy 12, no. 8: 1776. https://doi.org/10.3390/agronomy12081776
APA StyleMartyniak, D., Prokopiuk, K., Żurek, G., & Rybka, K. (2022). Measuring Fluorescence as a Means to Evaluate the Physiological Reaction to Growth Retardant Applied to Manage Turf. Agronomy, 12(8), 1776. https://doi.org/10.3390/agronomy12081776