Is the Subsurface Drip the Most Sustainable Irrigation System for Almond Orchards in Water-Scarce Areas?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Orchard Description and Management
2.3. Almond Tree Development, Physiological Measurements, and Soil Water Content Evolution
2.4. Kernel Yield Determinations and Almond Crop Productivities
2.5. Irrigation Management
2.6. Ground Radiometric Thermal Measurements. STSEB Model
2.7. Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. Plant Determination and Soil Water Content Evolution
3.3. Almond ETc Estimations Using the STSEB Model
3.4. Plant–Water Relations
3.5. Almond Yield Response to Irrigation Systems, Water, and Nitrogen Productivities and Water Use Efficiency
4. Discussion
4.1. Effects of Irrigation System on Crop Growth and Development
4.2. Effects of Irrigation System on Crop and Soil Water Status
4.3. Effects of Irrigation System on ETc and Its Partition
4.4. Effects of Irrigation System on Yield, Use of Water and Nitrogen
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviations | Units | Meaning |
ANOVA | - | Analysis of variance |
Dc | m | Crown diameter |
DI | - | Surface drip irrigation system |
Dr,i | mm | Soil water depletion |
DRZ | - | Direct root zone irrigation |
Es | mm | Soil evaporation |
ETc | mm | Crop evapotranspiration |
ETo | mm | Reference crop evapotranspiration |
fc | fraction of unity | fraction of ground covered by the canopy |
FC | m3 m−3 | Field capacity |
fIPAR | fraction of unity | fraction of intercepted photosynthetic active radiation |
Fu | kg tree−1 | Total in-shell fruit fresh weight per tree |
G | W m−2 | Soil heat flux |
HFf | % | Water content of fruit fresh weight |
Hr | % | Mean daily relative humidity |
H | W m−2 | Sensible heat flux |
Ht | m | Tree height |
I | mm | Irrigation depth |
IRT | - | InfraRed Thermometers |
IW | m3 ha−1 | Seasonal irrigation water applied |
IWP | kg m−3 | Irrigation Water Productivity |
Kcb | addimensional | Standard basal crop coefficient |
Kcb end | addimensional | Kcb for end season |
Kcb ini | addimensional | Kcb during initial crop stage |
Kcb mid | addimensional | Kcb during mid-season stage |
Kd | addimensional | density coefficient |
LE | W m−2 | Surface latent heat flux |
LEc | W m−2 | Canopy latent heat flux |
LEs | W m−2 | Soil latent heat flux |
N-BWU | - | Non-beneficial water use |
NP | kg kg−1 N | Nitrogen productivity |
PAR | - | Photosynthetically active radiation |
Pe | mm | effective precipitation |
PWP | m3 m−3 | Permanent Wilting Point |
R | mm | Monthly total rainfall |
RAW | mm | Readily available water |
RDI | - | Regulated deficit irrigation |
REW | mm | Readily evaporative water |
Rk | fraction of unity | Kernel fraction |
Rn | W m−2 | Net radiation flux |
SDI | - | Subsurface drip irrigation system |
SEB | - | Surface energy balance |
STSEB | - | Simplified Two-Source Energy Balance |
SWB | - | Soil water balance |
Ta | °C | Mean daily air temperature |
Tc | mm | Crop transpiration |
Td | plants ha−1 | Tree density |
TEW | mm | Total evaporable water |
u2 | m s−1 | Mean daily wind speed |
Wk | g | Kernel unit weight |
WUEc | mm mm−1 | Crop-water use efficiency |
Yk | kg ha−1 | Commercial kernel yield |
Ze | m | Depth of the evaporative soil layer |
Zr | m | Depth of the root zone layer |
λ | J kg−1 | Latent heat of vaporization of water |
Ψs | MPa | Midday steam water potential |
References
- O’Connor, B.; Moul, K.; Pollini, B.; de Lamo, X.; Simonson, W. Earth Observation for SDG Compendium of Earth Observation Contributions to the SDG Targets and Indicators; ESA: Harwell, UK, 2020; p. 165. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Stadistic Division. Available online: http://www.fao.org/faostat/en/#home (accessed on 18 June 2022).
- IPCC. Climate Change 2022. Impacts, Adaptation and Vulnerability; Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; p. 3676. [Google Scholar]
- Jovanovic, N.; Pereira, L.S.; Paredes, P.; Pôças, I.; Cantore, V.; Todorovic, M. A Review of Strategies, Methods and Technologies to Reduce Non-Beneficial Consumptive Water Use on Farms Considering the FAO56 Methods. Agric. Water Manag. 2020, 239, 106267. [Google Scholar] [CrossRef]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Coping with Water Scarcity. Addressing the Challenges, 1st ed.; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-1-4020-9578-8. [Google Scholar]
- Perry, C.; Steduto, P.; Karajeh, F. Does Improved Irrigation Technology Save Water? A Review of the Evidence; Regional Initiative on Water Scarcity for the Near East and North Africa; Food and Agriculture Organization of the United Nations: Cairo, Egypt, 2017; p. 57. [Google Scholar]
- Lorite, I.J.; Ruiz-Ramos, M.; Gabaldón-Leal, C.; Cruz-Blanco, M.; Porras, R.; Santos, C. Water Management and Climate Change in Semiarid Environments. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–40. ISBN 978-0-12-813164-0. [Google Scholar]
- Goldhamer, D.A.; Viveros, M.; Salinas, M. Regulated Deficit Irrigation in Almonds: Effects of Variations in Applied Water and Stress Timing on Yield and Yield Components. Irrig. Sci. 2006, 24, 101–114. [Google Scholar] [CrossRef]
- Egea, G.; Nortes, P.A.; Domingo, R.; Baille, A.; Pérez-Pastor, A.; González-Real, M.M. Almond Agronomic Response to Long-Term Deficit Irrigation Applied since Orchard Establishment. Irrig. Sci. 2013, 31, 445–454. [Google Scholar] [CrossRef]
- Moldero, D.; López-Bernal, Á.; Testi, L.; Lorite, I.J.; Fereres, E.; Orgaz, F. Long-Term Almond Yield Response to Deficit Irrigation. Irrig. Sci. 2021, 39, 409–420. [Google Scholar] [CrossRef]
- García Tejero, I.F.; Moriana, A.; Rodríguez Pleguezuelo, C.R.; Durán Zuazo, V.H.; Egea, G. Sustainable Deficit-Irrigation Management in Almonds (Prunus dulcis L.). In Water Scarcity and Sustainable Agriculture in Semiarid Environment; Elsevier: Amsterdam, The Netherlands, 2018; pp. 271–298. ISBN 978-0-12-813164-0. [Google Scholar]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil Water Balance Models for Determining Crop Water and Irrigation Requirements and Irrigation Scheduling Focusing on the FAO56 Method and the Dual Kc Approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.; Humes, K. A Two-Source Approach for Stimating Soil and Vegetation Energy Fluxes from Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote Sensing for Estimating and Mapping Single and Basal Crop Coefficientes: A Review on Spectral Vegetation Indices Approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Sánchez, J.M.; López-Urrea, R.; Valentín, F.; Caselles, V.; Galve, J.M. Lysimeter Assessment of the Simplified Two-Source Energy Balance Model and Eddy Covariance System to Estimate Vineyard Evapotranspiration. Agric. For. Meteorol. 2019, 274, 172–183. [Google Scholar] [CrossRef]
- Drechsler, K.; Fulton, A.; Kisekka, I. Crop Coefficients and Water Use of Young Almond Orchards. Irrig. Sci. 2022, 40, 379–395. [Google Scholar] [CrossRef]
- Valentín, F.; Nortes, P.A.; Domínguez, A.; Sánchez, J.M.; Intrigliolo, D.S.; Alarcón, J.J.; López-Urrea, R. Comparing Evapotranspiration and Yield Performance of Maize under Sprinkler, Superficial and Subsurface Drip Irrigation in a Semi-Arid Environment. Irrig. Sci. 2020, 38, 105–115. [Google Scholar] [CrossRef]
- Sánchez, J.M.; López-Urrea, R.; Rubio, E.; Caselles, V. Determining Water Use of Sorghum from Two-Source Energy Balance and Radiometric Temperatures. Hydrol. Earth Syst. Sci. 2011, 15, 3061–3070. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.M.; López-Urrea, R.; Rubio, E.; González-Piqueras, J.; Caselles, V. Assessing Crop Coefficients of Sunflower and Canola Using Two-Source Energy Balance and Thermal Radiometry. Agric. Water Manag. 2014, 137, 23–29. [Google Scholar] [CrossRef]
- Sánchez, J.M.; López-Urrea, R.; Doña, C.; Caselles, V.; González-Piqueras, J.; Niclòs, R. Modeling Evapotranspiration in a Spring Wheat from Thermal Radiometry: Crop Coefficients and E/T Partitioning. Irrig. Sci. 2015, 33, 399–410. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; Kustas, W.P.; Anderson, M.C.; Agam, N.; Tolk, J.A.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; O’Shaughnessy, S.A. Two-Source Energy Balance Model Estimates of Evapotranspiration Using Component and Composite Surface Temperatures. Adv. Water Resour. 2012, 50, 134–151. [Google Scholar] [CrossRef] [Green Version]
- González-Dugo, M.P.; González-Piqueras, J.; Campos, I.; Balbontín, C.; Calera, A. Estimation of Surface Energy Fluxes in Vineyard Using Field Measurements of Canopy and Soil Temperature. Remote Sens. Hydrol. 2010, 352, 59–62. [Google Scholar]
- López-Urrea, R.; Sánchez, J.M.; Montoro, A.; Mañas, F.; Intrigliolo, D.S. Effect of Using Pruning Waste as an Organic Mulching on a Drip-Irrigated Vineyard Evapotranspiration under a Semi-Arid Climate. Agric. For. Meteorol. 2020, 291, 108064. [Google Scholar] [CrossRef]
- Kustas, W.P.; Nieto, H.; Garcia-Tejera, O.; Bambach, N.; McElrone, A.J.; Gao, F.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.; Torres-Rua, A.; et al. Impact of Advection on Two-Source Energy Balance (TSEB) Canopy Transpiration Parameterization for Vineyards in the California Central Valley. Irrig. Sci. 2022, 1–17. [Google Scholar] [CrossRef]
- Xia, T.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Gao, F.; McKee, L.; Prueger, J.H.; Geli, H.M.E.; Neale, C.M.U.; Sanchez, L.; et al. Mapping Evapotranspiration with High-Resolution Aircraft Imagery over Vineyards Using One- and Two-Source Modeling Schemes. Hydrol. Earth Syst. Sci. 2016, 20, 1523–1545. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.M.; Simón, L.; González-Piqueras, J.; Montoya, F.; López-Urrea, R. Monitoring Crop Evapotranspiration and Transpiration/Evaporation Partitioning in a Drip-Irrigated Young Almond Orchard Applying a Two-Source Surface Energy Balance Model. Water 2021, 13, 2073. [Google Scholar] [CrossRef]
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 Vision of Subsurface Drip Irrigation in the U.S. Trans. ASABE 2021, 64, 1319–1343. [Google Scholar] [CrossRef]
- Payero, J.O.; Yonts, C.D.; Irmak, S.; Tarkalson, D. EC05-776 Advantages and Disadvantages of Subsurface Drip Irrigation. In Historical Materials from University of Nebraska-Lincoln Extension; University of Nebraska-Lincoln: Lincoln, NE, USA, 2005; pp. 1–8. [Google Scholar]
- Reich, D.; Godin, R.; Chávez, J.L.; Broner, I. Subsurface Drip Irrigation (SDI); Colorado State University Extension; Colorado State University: Fort Collins, CO, USA, 2014; pp. 1–3. [Google Scholar]
- Ayars, J.E.; Phene, C.J.; Phene, R.C.; Gao, S.; Wang, D.; Day, K.R.; Makus, D.J. Determining Pomegranate Water and Nitrogen Requirements with Drip Irrigation. Agric. Water Manag. 2017, 187, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Sanguinet, K.A.; Jacoby, P.W. Direct Root-Zone Irrigation Outperforms Surface Drip Irrigation for Grape Yield and Crop Water Use Efficiency While Restricting Root Growth. Agric. Water Manag. 2020, 231, 105993. [Google Scholar] [CrossRef]
- Romero, P.; Botia, P.; Garcia, F. Effects of Regulated Deficit Irrigation under Subsurface Drip Irrigation Conditions on Vegetative Development and Yield of Mature Almond Trees. Plant Soil 2004, 260, 169–181. [Google Scholar] [CrossRef]
- USDA-NRCS. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture: Washington, DC, USA, 2014.
- USDA-ARS. Soil Water Characteristics Programme. Available online: https://www.ars.usda.gov/research/software/download/?softwareid=492&modecode=80-42-05-10%20 (accessed on 16 March 2022).
- Trigo, I.F.; de Bruin, H.; Beyrich, F.; Bosveld, F.C.; Gavilán, P.; Groh, J.; López-Urrea, R. Validation of Reference Evapotranspiration from Meteosat Second Generation (MSG) Observations. Agric. For. Meteorol. 2018, 259, 271–285. [Google Scholar] [CrossRef]
- SIAR Sistema de Información Climática Para el Regadío. Available online: https://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1 (accessed on 16 March 2022).
- Thomas, D. Phenology Standard for Almonds; Shouth Australian Resarch & Development Institute PIRSA: Adelaide, Australia, 2018.
- Patrignani, A.; Ochsner, T.E. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef] [Green Version]
- Auzmendi, I.; Mata, M.; Lopez, G.; Girona, J.; Marsal, J. Intercepted Radiation by Apple Canopy Can Be Used as a Basis for Irrigation Scheduling. Agric. Water Manag. 2011, 98, 886–892. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Estimating Crop Coefficients from Fraction of Ground Cover and Height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, F.J.; De Melo-Abreu, J.P.; Mateos, L.; Fereres, E. The Radiation Balance. In Principles of Agronomy for Sustainable Agriculture.; Springer: Cham, Switzerland, 2016; pp. 27–41. [Google Scholar]
- Fulton, A.; Grant, J.; Buchner, R.; Connell, J. Using the Pressure Chamber for Irrigation Management in Walnut, Almond and Prune; University of California, Agriculture and Natural Resources: Davis, CA, USA, 2014; ISBN 978-1-60107-858-2. [Google Scholar]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water Use Indicators and Economic Analysis for On-Farm Irrigation Decision: A Case Study of a Super High Density Olive Tree Orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Sainju, U.M.; Lenssen, A.W.; Allen, B.L.; Jabro, J.D.; Stevens, W.B. Crop Water and Nitrogen Productivity in Response to Long-Term Diversified Crop Rotations and Management Systems. Agric. Water Manag. 2021, 257, 107149. [Google Scholar] [CrossRef]
- NCRS. Estimation of Direct Runoff from Storm Rainfall, Natural Resourcesconservation Service. In Part 630 Hydrology. National Engineering Handbook; United States Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Fereres, E.; Goldhamer, D.A.; Sadras, V.O. Yield Response to Water of Fruit Trees and Vines: Guidelines. In Crop Yield Response to Water; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 2012; p. 505. ISBN 978-92-5-107274-5. [Google Scholar]
- Sánchez, J.M.; Kustas, W.P.; Casselles, V.; Anderson, M.C. Modelling Surface Energy Fluxes over Maize Using a Two-Source Patch Model and Radiometric Soil and Canopy Temperature Observations. Remote Sens. Environ. 2008, 112, 1130–1143. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 24 March 2021).
- Espadafor, M.; Orgaz, F.; Testi, L.; Lorite, I.J.; Villalobos, F.J. Transpiration of Young Almond Trees in Relation to Intercepted Radiation. Irrig. Sci. 2015, 33, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, D.; Ayars, J.E.; Phene, C.J. Biophysical Response of Young Pomegranate Trees to Surface and Sub-Surface Drip Irrigation and Deficit Irrigation. Irrig. Sci. 2017, 35, 425–435. [Google Scholar] [CrossRef]
- Bryla, D.R.; Trout, T.J.; Ayars, J.E.; Johnson, R.S. Growth and Production of Young Peach Trees Irrigated by Furrow, Microjet, Surface Drip, or Subsurface Drip Systems. HortScience 2003, 38, 1112–1116. [Google Scholar] [CrossRef] [Green Version]
- Lorite, I.J.; Cabezas-Luque, J.M.; Arquero, O.; Gabaldón-Leal, C.; Santos, C.; Rodríguez, A.; Ruiz-Ramos, M.; Lovera, M. The Role of Phenology in the Climate Change Impacts and Adaptation Strategies for Tree Crops: A Case Study on Almond Orchards in Southern Europe. Agric. For. Meteorol. 2020, 294, 108142. [Google Scholar] [CrossRef]
- Espadafor, M.; Orgaz, F.; Testi, L.; Lorite, I.J.; González-Dugo, V.; Fereres, E. Responses of Transpiration and Transpiration Efficiency of Almond Trees to Moderate Water Deficits. Sci. Hortic. 2017, 225, 6–14. [Google Scholar] [CrossRef]
- Egea, G.; Nortes, P.A.; González-Real, M.M.; Baille, A.; Domingo, R. Agronomic Response and Water Productivity of Almond Trees under Contrasted Deficit Irrigation Regimes. Agric. Water Manag. 2010, 97, 171–181. [Google Scholar] [CrossRef]
- Girona, J.; Mata, M.; Marsal, J. Regulated Deficit Irrigation during the Kernel-Filling Period and Optimal Irrigation Rates in Almond. Agric. Water. Manag. 2005, 75, 152–167. [Google Scholar] [CrossRef]
- Mañas, F.; López-Fuster, P.; López-Urrea, R. Effects of Different Regulated and sustained deficit irrigation strategies in almond production. Acta Hortic. 2014, 1028, 391–394. [Google Scholar] [CrossRef]
- Gutiérrez-Gordillo, S.; Durán-Zuazo, V.H.; García-Tejero, I. Response of Three Almond Cultivars Subjected to Different Irrigation Regimes in Guadalquivir River Basin. Agric. Water Manag. 2019, 222, 72–81. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Fereres, E. Establishing an Almond Water Production Function for California Using Long-Term Yield Response to Variable Irrigation. Irrig. Sci. 2017, 35, 169–179. [Google Scholar] [CrossRef]
Soil Depth (m) | FC (%) | PWP (%) | Saturation (%) | Sat. Hydr. Conduct. (mm h−1) | Bulk Density (t m−3) |
---|---|---|---|---|---|
0.00–0.30 | 24.6 | 12.9 | 42.8 | 13.9 | 1.52 |
0.30–1.20 | 26.3 | 14.1 | 43.7 | 15.9 | 1.49 |
Year | Month | Ta (°C) | Hr (%) | u2 (m s−1) | Rn (MJ m−2 d−1) | R (mm) | ETo (mm d−1) * |
---|---|---|---|---|---|---|---|
2019 | Jan * | 7.0 | 59.1 | 2.8 | 3.5 | 3.0 | 1.9 |
Feb * | 8.7 | 59.1 | 2.0 | 6.0 | 3.6 | 2.3 | |
Mar * | 11.1 | 51.8 | 1.8 | 7.8 | 15.0 | 3.1 | |
Apr | 12.8 | 65.8 | 2.2 | 7.9 | 136.0 | 3.1 | |
May | 17.9 | 57.4 | 1.7 | 11.1 | 23.0 | 4.9 | |
Jn | 22.1 | 47.6 | 1.6 | 11.7 | 0.7 | 6.0 | |
Jl | 25.8 | 47.1 | 1.5 | 11.2 | 0.0 | 6.1 | |
Aug | 25.3 | 56.4 | 1.2 | 10.4 | 14.5 | 5.3 | |
Sep | 21.1 | 71.2 | 1.1 | 7.4 | 114.7 | 3.4 | |
Oct | 16.8 | 69.9 | 0.9 | 5.3 | 39.0 | 2.6 | |
Nov | 11.7 | 64.1 | 2.3 | 2.2 | 24.7 | 1.8 | |
Dec | 9.9 | 79.3 | 1.0 | 1.5 | 34.3 | 1.3 | |
2020 | Jan | 6.8 | 77.4 | 1.8 | 2.9 | 69.4 | 1.2 |
Feb | 11.0 | 70.5 | 1.7 | 5.7 | 0.2 | 2.1 | |
Mar | 10.7 | 70.8 | 2.2 | 5.6 | 143.8 | 2.4 | |
Apr | 12.5 | 75.8 | 1.3 | 8.5 | 62.6 | 2.9 | |
May | 17.9 | 63.4 | 1.3 | 12.4 | 53.0 | 4.5 | |
Jn | 22.3 | 52.6 | 1.2 | 14.2 | 4.3 | 5.6 | |
Jl | 25.1 | 57.0 | 1.1 | 14.6 | 3.8 | 5.8 | |
Aug | 25.4 | 50.8 | 1.0 | 12.6 | 0.0 | 5.5 | |
Sep | 20.2 | 65.2 | 1.0 | 9.2 | 45.2 | 3.7 | |
Oct | 14.9 | 65.0 | 1.0 | 5.9 | 16.0 | 2.6 | |
Nov | 15.0 | 64.7 | 0.3 | 5.5 | 120.0 | 1.3 | |
Dec | 7.7 | 70.9 | 2.4 | 3.0 | 17.6 | 1.3 | |
2021 | Jan | 6.2 | 70.3 | 2.5 | 3.1 | 63.3 | 1.4 |
Feb | 9.9 | 76.4 | 0.8 | 4.3 | 5.4 | 1.9 | |
Mar | 10.7 | 70.1 | 1.0 | 7.4 | 25.6 | 2.5 | |
Apr | 12.9 | 78.2 | 0.9 | 9.7 | 42.0 | 2.7 | |
May | 18.0 | 63.2 | 1.0 | 14.8 | 43.8 | 4.6 | |
Jn | 21.1 | 66.2 | 0.9 | 16.2 | 23.3 | 5.1 | |
Jl | 24.5 | 57.4 | 0.9 | 17.5 | 35.0 | 6.1 | |
Aug | 24.9 | 62.3 | 0.8 | 13.3 | 6.6 | 5.0 | |
Sep | 21.3 | 72.8 | 0.7 | 10.7 | 119.6 | 3.5 | |
Oct | 16.9 | 74.5 | 0.8 | 6.7 | 25.4 | 2.0 | |
Nov | 10.7 | 63.9 | 1.6 | 3.3 | 26.9 | 1.5 |
Description of Phenological Stage | BBCH Identification Codes | Phenological Period | Growing Season Date | ||
---|---|---|---|---|---|
2019 | 2020 | 2021 | |||
Swollen bud | 51 | 19-feb | 30-ene | 02-feb | |
Full bloom | 65 | I | 18-mar | 09-mar | 15-mar |
Fruit set | 71 | II | 26-mar | 20-mar | 30-mar |
Fruit final size/early pit hardening | 79 | 07-may | 30-abr | 29-abr | |
Early hull split | 85 | III | 09-ago | 10-ago | 05-ago |
Fruit ripe (harvest) | 89 | IV | 01-sep | 28-ago | 27-ago |
50% of leaves fallen | 95 | 21-nov | 25-nov | 15-oct |
Season | Treat. | IW (m3 ha−1) | Wk (g) | Rk (%) | Yk (kg ha−1) | IWP (kg m−3) | R 1 (m3 ha−1) | Iw1 (m3 ha−1) | WUEc 1 | NP (kg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
2019 | DI | 2581 | - | - | - | - | 3557 | 2332 | 0.44 | - |
SDI | 2324 | - | - | - | - | 2076 | 0.42 | - | ||
2020 | DI | 5188 | 0.97 | 29.5 | 479.8 | 0.09 | 658 | 4089 | 0.70 | 5.34 |
SDI | 4468 | 0.95 | 28.7 | 411.8 | 0.09 | 3531 | 0.74 | 4.36 | ||
SEM | - | 0.01 | 0.3 | 33.4 | 0.01 | - | - | - | 0.23 | |
p-value | - | ns | ns | ns | ns | - | - | - | ns | |
2021 | DI | 7158 | 0.84 | 31.4 | 2206.4 | 0.31 a # | 3530 | 7060 | 0.57 | 13.43 |
SDI | 6174 | 0.80 | 31.1 | 2163.0 | 0.35 b | 6083 | 0.48 | 14.00 | ||
SEM | - | 0.01 | 0.4 | 59.4 | 0.01 | - | - | - | 0.37 | |
p-value | - | ns | ns | ns | * | - | - | - | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, F.; Sánchez, J.M.; González-Piqueras, J.; López-Urrea, R. Is the Subsurface Drip the Most Sustainable Irrigation System for Almond Orchards in Water-Scarce Areas? Agronomy 2022, 12, 1778. https://doi.org/10.3390/agronomy12081778
Montoya F, Sánchez JM, González-Piqueras J, López-Urrea R. Is the Subsurface Drip the Most Sustainable Irrigation System for Almond Orchards in Water-Scarce Areas? Agronomy. 2022; 12(8):1778. https://doi.org/10.3390/agronomy12081778
Chicago/Turabian StyleMontoya, Francisco, Juan M. Sánchez, José González-Piqueras, and Ramón López-Urrea. 2022. "Is the Subsurface Drip the Most Sustainable Irrigation System for Almond Orchards in Water-Scarce Areas?" Agronomy 12, no. 8: 1778. https://doi.org/10.3390/agronomy12081778
APA StyleMontoya, F., Sánchez, J. M., González-Piqueras, J., & López-Urrea, R. (2022). Is the Subsurface Drip the Most Sustainable Irrigation System for Almond Orchards in Water-Scarce Areas? Agronomy, 12(8), 1778. https://doi.org/10.3390/agronomy12081778