Soil Salinity Prediction Using Remotely Piloted Aircraft Systems under Semi-Arid Environments Irrigated with Salty Non-Conventional Water Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Plot (Greenhouse)
2.3. Commercial Plot (Open-Air)
2.4. Soil Analysis
2.4.1. Soil Sample in the Experimental Plot
2.4.2. Soil Sample in the Commercial Plot
2.4.3. Soil Salinity and Saturated Soil Paste (SSP)
2.4.4. Soil pH
2.4.5. Mineral Contents of the Soil and the Irrigation Water
2.5. Crop Analysis
2.5.1. Lettuce Samples in the Experimental and Commercial Plots
2.5.2. Mineral Content of the Leaves
2.6. Remote Sensing Techniques
2.6.1. Data Collection and Image Processing
2.6.2. Correlation of ECsat with the Indices
3. Results
3.1. Crop Development in Greenhouse Plots
3.1.1. Visual Assessment and Lettuce Characteristics
3.1.2. Chemical Composition of the Irrigation Water in the Commercial Plot and Greenhouse
3.1.3. Mineral Content of Leaves
3.1.4. Salts in the Soil
3.1.5. Canopy Temperature
3.1.6. Normalized Difference Vegetation Index (NDVI)
3.1.7. Salinity Index (SI)
3.1.8. Normalized Difference Salinity Index (NDSI)
3.2. Crop Development in Commercial Plot
3.2.1. Lettuce Weight and Mineral Content of Leaves
3.2.2. ECsat and DEM of the Plot
3.3. Index Maps and Correlations with ECsat
3.3.1. Canopy Temperature
3.3.2. Normalized Difference Vegetative Index (NDVI)
3.3.3. Salinity Index (SI)
3.3.4. Normalized Difference Salinity Index (NDSI)
4. Discussion
4.1. Crop Salt Tolerance
4.2. Crop Growth and Leaf Mineral Content
4.3. Canopy Temperature
4.4. NDVI
4.5. SI
4.6. NDSI
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Drechsel, P.; Qadir, M.; Wichelns, D. (Eds.) Wastewater Economic Asset in Urbanizing World; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Jaramillo, M.; Restrepo, I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Reichel, A.; Lazarova, M. The Effects of Outsourcing and Devolvement on the Strategic Position of HR Departments: Outsourcing, Devolvement, and Strategic Position of HR Departments. Hum. Resour. Manag. 2013, 52, 923–946. [Google Scholar] [CrossRef]
- Vivaldi, G.A.; Camposeo, S.; Rubino, P.; Lonigro, A. Microbial impact of different types of municipal wastewaters used to irrigate nectarines in Southern Italy. Agric. Ecosyst. Environ. 2013, 181, 50–57. [Google Scholar] [CrossRef]
- Norton-Brandão, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of used urban waters for irrigation purposes—A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef]
- Parsons, L.R.; Sheikh, B.; Holden, R.; York, D.W. Reclaimed Water as an Alternative Water Source for Crop Irrigation. HortScience 2010, 45, 1626–1629. [Google Scholar] [CrossRef]
- Pedrero, F.; Alarcón, J.J.; Nicolás, E.; Mounzer, O. Influence of irrigation with saline reclaimed water on young grapefruits. Desalination Water Treat. 2013, 51, 2488–2496. [Google Scholar] [CrossRef]
- Martínez, S.; Suay, R.; Moreno, J.; Segura, M.L. Reuse of tertiary municipal wastewater effluent for irrigation of Cucumis melo L. Irrig. Sci. 2013, 31, 661–672. [Google Scholar] [CrossRef]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Tallou, A.; Haouas, A.; Jamali, M.Y.; Atif, K.; Amir, S.; Aziz, F. Review on Cow Manure as Renewable Energy. In Smart Village Technology; Patnaik, S., Sen, S., Mahmoud, M.S., Eds.; Modeling and Optimization in Science and Technologies; Springer International Publishing: Cham, Switzerland, 2020; Volume 17, pp. 341–352. ISBN 978-3-030-37793-9. [Google Scholar] [CrossRef]
- Tallou, A.; Aziz, F.; Garcia, A.J.; Salcedo, F.P.; El Minaoui, F.E.; Amir, S. Bio-fertilizers issued from anaerobic digestion for growing tomatoes under irrigation by treated wastewater: Targeting circular economy concept. Int. J. Environ. Sci. Technol. 2021, 19, 2379–2388. [Google Scholar] [CrossRef]
- Xu, M.; Bai, X.; Pei, L.; Pan, H. A research on application of water treatment technology for reclaimed water irrigation. Int. J. Hydrogen Energy 2016, 41, 15930–15937. [Google Scholar] [CrossRef]
- Dickin, S.K.; Schuster-Wallace, C.J.; Qadir, M.; Pizzacalla, K. A Review of Health Risks and Pathways for Exposure to Wastewater Use in Agriculture. Environ. Health Perspect. 2016, 124, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Salcedo, F.P.; Cutillas, P.P.; Cabañero, J.J.A.; Vivaldi, A.G. Use of remote sensing to evaluate the effects of environmental factors on soil salinity in a semi-arid area. Sci. Total Environ. 2022, 815, 152524. [Google Scholar] [CrossRef] [PubMed]
- Hamzeh, S.; Naseri, A.A.; Alavipanah, S.K.; Mojaradi, B.; Bartholomeus, H.M.; Clevers, J.G.; Behzad, M. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 282–290. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS). Remote Sens. 2014, 6, 10813–10834. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; Zang, S.; Zhang, Y.; Hao, Q.; Wu, Y. Remote Sensing of Soil Alkalinity and Salinity in the Wuyu’er-Shuangyang River Basin, Northeast China. Remote Sens. 2016, 8, 163. [Google Scholar] [CrossRef]
- El Harti, A.; Lhissou, R.; Chokmani, K.; Ouzemou, J.; Hassouna, M.; Bachaoui, E.M.; El Ghmari, A. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 64–73. [Google Scholar] [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Nortes, P.A.; Alarcón, J.J.; Hunink, J.E.; Parra, M.; Contreras, S.; Droogers, P.; Nicolás, E. Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing. Agric. Water Manag. 2017, 183, 60–69. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Ortuño, M.F.; Nortes, P.A.; Vicente-Sánchez, J.; Bañón, S.; Sánchez-Blanco, M.J. Mycorrhizal euonymus plants and reclaimed water: Biomass, water status and nutritional responses. Sci. Hortic. 2015, 186, 61–69. [Google Scholar] [CrossRef]
- Quebrajo, L.; Perez-Ruiz, M.; Pérez-Urrestarazu, L.; Martínez, G.; Egea, G. Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosyst. Eng. 2018, 165, 77–87. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Tian, F.; Hou, M.; Qiu, Y.; Zhang, T.; Yuan, Y. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma 2020, 357, 113961. [Google Scholar] [CrossRef]
- Gartley, K.L. Recommended Methods for Measuring Soluble Salts in Soils. In Recommended Soil Testing Procedures for the Northeastern United States; Cooperative Bulletin No. 493; University of Delaware: Newark, DE, USA, 2011; pp. 87–94. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Bernstein, L.; Francois, L.E.; Clark, R.A. Interactive Effects of Salinity and Fertility on Yields of Grains and Vegetables. Agron. J. 1974, 66, 412–421. [Google Scholar] [CrossRef]
- Lara, M.; Diezma, B.; Lleó, L.; Roger, J.; Garrido, Y.; Gil, M.; Ruiz-Altisent, M. Hyperspectral Imaging to Evaluate the Effect of IrrigationWater Salinity in Lettuce. Appl. Sci. 2016, 6, 412. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO: Rome, Italy, 1985. [Google Scholar]
- Ahmed, S.; Ahmed, S.; Roy, S.K.; Woo, S.H.; Sonawane, K.D.; Shohael, A.M. Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agric. 2019, 4, 361–373. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.K.; Sankaralingam, A.; Nakkeeran, S. Effect of Temperature and Salinity on the Growth of Sclerotinia sclerotiorum Causing Head Rot of Cabbage. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.T.; Ali, N.Y.; Suleman, P. Effect of Salinity, Temperature and Carbon Source on the Growth and Development of Sclerotia of Sclerotinia sclerotiorum Isolated from Semi-arid Environment. Plant Pathol. J. 2008, 24, 407–416. [Google Scholar] [CrossRef]
- Silva, S.; do Nascimento, R.; Oliveira, H.; Cardoso, J.A.F.; Xavier, D.A.; de Sousa Silva, S.; Silva, S.; do Nascimento, R.; Oliveira, H.; Cardoso, J.A.F.; et al. Levels of nitrate, pigments and thermographic analysis of lettuce under different temperatures of nutrient solution. Afr. J. Agric. Res. 2016, 11, 1668–1673. [Google Scholar] [CrossRef]
- Smolinska, U.; Horbowicz, M. Fungicidal Activity of Volatiles from Selected Cruciferous Plants against Resting Propagules of Soil!borne Fungal Pathogens. Blackwell Wiss.-VerlagBerlin 1999, 147, 119–124. [Google Scholar] [CrossRef]
- Talib Alkooranee, J.; Raad Aledan, T.; Xiang, J.; Lu, G.; Li, M. Induced Systemic Resistance in Two Genotypes of Brassica napus (AACC) and Raphanus oleracea (RRCC) by Trichoderma Isolates against Sclerotinia sclerotiorum. Am. J. Plant Sci. 2015, 6, 1662–1674. [Google Scholar] [CrossRef]
- Simon, E.W. The Symptoms of Calcium Deficiency in Plants. New Phytol. 1978, 80, 1–15. [Google Scholar] [CrossRef]
- Inmaculada, Y. Copper in Plants. Toxic Met. Plant 2005, 17, 145–156. [Google Scholar]
- Sandmann, M.; Grosch, R.; Graefe, J. The Use of Features from Fluorescence, Thermography, and NDVI Imaging to Detect Biotic Stress in Lettuce. Plant Dis. 2018, 102, 1101–1107. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A. Satellite Thermography for Soil Salinity Assessment of Cropped Areas in Uzbekistan. Land Degrad. Dev. 2017, 28, 870–877. [Google Scholar] [CrossRef]
- Aldakheel, Y.Y.; Elprince, A.M.; Aatti, M.A. Mapping Vegetation and Saline Soil Using NDVI in Arid Irrigated Lands. In Proceedings of the ASPRS 2006 Annual Conference, Reno, NV, USA, 1–5 May 2006. [Google Scholar]
- Brunner, P.; Li, H.T.; Kinzelbach, W.; Li, W.P. Generating soil electrical conductivity maps at regional level by integrating measurements on the ground and remote sensing data. Int. J. Remote Sens. 2007, 28, 3341–3361. [Google Scholar] [CrossRef]
- Platonov, A.; Noble, A.; Kuziev, R. Soil Salinity Mapping Using Multi-Temporal Satellite Images in Agricultural Fields of Syrdarya Province of Uzbekistan. In Developments in Soil Salinity Assessment and Reclamation; Shahid, S.A., Abdelfattah, M.A., Taha, F.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 87–98. ISBN 978-94-007-5683-0. [Google Scholar]
- Asfaw, E.; Suryabhagavan, K.V.; Argaw, M. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. J. Saudi Soc. Agric. Sci. 2018, 17, 250–258. [Google Scholar] [CrossRef]
- Hammam, A.A.; Mohamed, E.S. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Egypt. J. Remote Sens. Space Sci. 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Bachaoui, B.; Bachaoui, E.M.; Maimouni, S.; Lhissou, R.; El Harti, A.; El Ghmari, A. The use of spectral and geomorphometric data for water erosion mapping in El Ksiba region in the central High Atlas Mountains of Morocco. Appl. Geomat. 2014, 6, 159–169. [Google Scholar] [CrossRef]
- Abuelgasim, A.; Ammad, R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sens. Appl. Soc. Environ. 2019, 13, 415–425. [Google Scholar] [CrossRef]
Plot | Average Dry Weight of Lettuce (g) | Plot | Whole Lettuce Weight (g) | Head Lettuce Weight (g) | Height Lettuce Head (cm) | Head Lettuce Diameter (cm) | |
---|---|---|---|---|---|---|---|
T1 | SP | 1.80 ± 0.48 | CP | 630.43 ± 96.20 | 379.53 ± 54.30 | 22 83 ± 0.85 | 11.40 ± 0 50 |
CP | 2.60 ± 0.13 | ||||||
T2 | SP | 10.03 ± 1.85 | |||||
CP | 13.20 ± 1.53 | SP | 499.40 ± 76.72 | 319.70 ± 50.29 | 22.58 0.91 | 11.03 ± 0.57 | |
T3 | SP | 7.34 ± 0.68 | |||||
CP | 8.02 ± 1.44 |
Mineral Content (mg/L) | CW | SW | Irrigation Water (Greenhouse) |
---|---|---|---|
Cl− | 322.11 ± 368.19 | 861.10 ± 361.60 | 176.67 ± 21.42 |
Br− | 3.66 ± 2.76 | 7.89 ± 8.09 | - |
NO3− | 20.14 ± 6.47 | 25.71 ± 1.98 | 2.73 ± 0.64 |
PO43− | 3.94 ± 0.68 | 10.83 ± 7.85 | 3.18 ± 0.90 |
SO42− | 92.14 ± 63.37 | 319.10 ± 185.27 | 82.96 ± 17.05 |
Na+ | 152.36 ± 43.50 | 762.63 ± 47.41 | 127.42 ± 13.08 |
P | 1.37 ± 0.56 | 5.04 ± 4.09 | 1.00 ± 0.48 |
S | 43.22 ± 19.76 | 149.86 ± 96.94 | 33.55 ± 10.49 |
Mineral | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
CP | SP | CP | SP | CP | SP | |
N total (g/Kg dw) | 49.03 | 50.95 | 39.40 | 43.42 | 38.73 | 45.75 |
C total (g/Kg dw) | 370.66 | 373.53 | 340.24 | 350.65 | 393.07 | 393.96 |
Ca2+ (g/Kg dw) | 16.67 | 17.56 | 25.85 | 19.56 | 7.41 | 5.81 |
Fe2+ (mg/Kg dw) | 748.71 | 756.64 | 1326.60 | 887.33 | 103.52 | 66.20 |
Cl− (mg/L) | 144.25 | 150.69 | 150.15 | 194.27 | 62.36 | 122.08 |
Na+ (g/Kg dw) | 9.20 | 12.57 | 9.74 | 15.74 | 6.77 | 11.34 |
Mineral | T3 | T4 | Harvesting |
---|---|---|---|
N total (g/Kg dw) | 43.87 | 44.03 | 37.09 |
C total (g/Kg dw) | 396.29 | 349.40 | 391.58 |
Ca2+ (g/Kg dw) | 1.26 | 1.88 | 1.52 |
Cl− (mg/L) | 234.88 | 234.88 | 98.67 |
Fe2+ (mg/Kg dw) | 1084.86 | 1308.56 | 1068.58 |
Mg2+ (g/Kg dw) | 3.20 | 4.01 | 3.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrero Salcedo, F.; Pérez Cutillas, P.; Aziz, F.; Llobet Escabias, M.; Boesveld, H.; Bartholomeus, H.; Tallou, A. Soil Salinity Prediction Using Remotely Piloted Aircraft Systems under Semi-Arid Environments Irrigated with Salty Non-Conventional Water Resources. Agronomy 2022, 12, 2022. https://doi.org/10.3390/agronomy12092022
Pedrero Salcedo F, Pérez Cutillas P, Aziz F, Llobet Escabias M, Boesveld H, Bartholomeus H, Tallou A. Soil Salinity Prediction Using Remotely Piloted Aircraft Systems under Semi-Arid Environments Irrigated with Salty Non-Conventional Water Resources. Agronomy. 2022; 12(9):2022. https://doi.org/10.3390/agronomy12092022
Chicago/Turabian StylePedrero Salcedo, Francisco, Pedro Pérez Cutillas, Faissal Aziz, Marina Llobet Escabias, Harm Boesveld, Harm Bartholomeus, and Anas Tallou. 2022. "Soil Salinity Prediction Using Remotely Piloted Aircraft Systems under Semi-Arid Environments Irrigated with Salty Non-Conventional Water Resources" Agronomy 12, no. 9: 2022. https://doi.org/10.3390/agronomy12092022
APA StylePedrero Salcedo, F., Pérez Cutillas, P., Aziz, F., Llobet Escabias, M., Boesveld, H., Bartholomeus, H., & Tallou, A. (2022). Soil Salinity Prediction Using Remotely Piloted Aircraft Systems under Semi-Arid Environments Irrigated with Salty Non-Conventional Water Resources. Agronomy, 12(9), 2022. https://doi.org/10.3390/agronomy12092022