DS-DETR: A Model for Tomato Leaf Disease Segmentation and Damage Evaluation
Abstract
:1. Introduction
- Two datasets were proposed. The Plant Disease Classification Dataset (PDCD) with 86,023 images, including 27 diseases of 14 plants, was collected. The other is the Tomato leaf Disease Segmentation Dataset (TDSD) containing 1700 images, which was annotated by ourselves.
- A DS-DETR model was proposed to segment leaf disease spots efficiently based on several improvements on DETR. Additionally, DS-DETR is better than several other state-of-the-art segmentation networks.
- A disease damage evaluation method was proposed for early blight and late blight in tomato by calculating the disease spot area ratio over the leaf area. This method can provide technical support for the precise prevention and control of crop diseases in production.
2. Materials and Methods
2.1. Image Data Acquisition
2.2. Dataset Pre-Processing
2.3. Overall Design of DS-DETR
2.3.1. Unsupervised Pre-Training
2.3.2. Spatially Modulated Co-Attention
2.3.3. Improving Relative Position Encoding
3. Training the Tomato Leaf Disease Segmentation and Damage Evaluation Model
3.1. Computational Hardware and Platform
3.2. Model Training
3.3. Network Evaluations
4. Result
4.1. Ablation Study
4.2. Compared with the State-of-the-Art Instance Segmentation
4.3. Disease Damage Evaluation
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Wen, H.; Li, X.; Fu, Z.; Lv, X.; Zhang, L. Research Progress Analysis of Mainly Agricultural Diseases Detection and Early Warning Technologies. Trans. Chin. Soc. Agric. Mach. 2016, 47, 266–277. [Google Scholar]
- Mi, G.; Tang, Y.; Niu, L.; Ma, K.; Yang, F.; Shi, X.; Zhao, X.; Wang, J. Important virus diseases of tomato in China and their prevention control measures. China Cucurbits Veg. 2021, 34, 8–14. [Google Scholar] [CrossRef]
- Blancard, D. Tomato Diseases: A Colour Handbook; Manson Publishing Ltd.: London, UK, 2012. [Google Scholar]
- Laterrot, H. Disease resistance in tomato: Practical situation. Acta Physiol. Plant. 2000, 22, 328–331. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Khirade, S.D.; Patil, A. Plant disease detection using image processing. In Proceedings of the 2015 International Conference on Computing Communication Control and Automation, Pune, India, 26–27 February 2015; pp. 768–771. [Google Scholar]
- Ud Din, Z.; Adnan, S.M.; Ahmad, R.W.; Aziz, S.; Ismail, W.; Iqbal, J. Classification of Tomato Plants’ Leaf Diseases using Image Segmentation and SVM. Tech. J. 2018, 23, 81–88. [Google Scholar]
- Wen, C.; Wang, S.; Yu, H.; Su, H. Image segmentation method for maize diseases based on pulse coupled neural network with modified artificial bee algorithm. Trans. Chin. Soc. Agric. Eng. 2013, 29, 142–149. [Google Scholar]
- Anam, S.; Fitriah, Z. Early Blight Disease Segmentation on Tomato Plant Using K-means Algorithm with Swarm Intelligence-based Algorithm. Comput. Sci. 2021, 16, 1217–1228. [Google Scholar]
- Chen, Z.; Wu, R.; Lin, Y.; Li, C.; Chen, S.; Yuan, Z.; Chen, S.; Zou, X. Plant disease recognition model based on improved YOLOv5. Agronomy 2022, 12, 365. [Google Scholar] [CrossRef]
- Hassan, S.M.; Jasinski, M.; Leonowicz, Z.; Jasinska, E.; Maji, A.K. Plant disease identification using shallow convolutional neural network. Agronomy 2021, 11, 2388. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.; Liu, J. Fused-Deep-Features Based Grape Leaf Disease Diagnosis. Agronomy 2021, 11, 2234. [Google Scholar] [CrossRef]
- Yang, K.; Zhong, W.; Li, F. Leaf segmentation and classification with a complicated background using deep learning. Agronomy 2020, 10, 1721. [Google Scholar] [CrossRef]
- Yin, C.; Zeng, T.; Zhang, H.; Fu, W.; Wang, L.; Yao, S. Maize Small Leaf Spot Classification Based on Improved Deep Convolutional Neural Networks with a Multi-Scale Attention Mechanism. Agronomy 2022, 12, 906. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network. Front. Plant Sci. 2020, 11, 898. [Google Scholar] [CrossRef]
- Lin, K.; Gong, L.; Huang, Y.; Liu, C.; Pan, J. Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Front. Plant Sci. 2019, 10, 155. [Google Scholar] [CrossRef]
- Ngugi, L.C.; Abdelwahab, M.; Abo-Zahhad, M. Tomato leaf segmentation algorithms for mobile phone applications using deep learning. Comput. Electron. Agric. 2020, 178, 105788. [Google Scholar] [CrossRef]
- Kavitha Lakshmi, R.; Savarimuthu, N. DPD-DS for plant disease detection based on instance segmentation. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 7559–7568. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Wu, B.; Xu, C.; Dai, X.; Wan, A.; Zhang, P.; Yan, Z.; Tomizuka, M.; Gonzalez, J.; Keutzer, K.; Vajda, P. Visual transformers: Token-based image representation and processing for computer vision. arXiv 2020, arXiv:2006.03677. [Google Scholar]
- Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-alone self-attention in vision models. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 68–80. [Google Scholar]
- Hu, H.; Zhang, Z.; Xie, Z.; Lin, S. Local relation networks for image recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3464–3473. [Google Scholar]
- Ho, J.; Kalchbrenner, N.; Weissenborn, D.; Salimans, T. Axial attention in multidimensional transformers. arXiv 2019, arXiv:1912.12180. [Google Scholar]
- Zhao, H.; Jia, J.; Koltun, V. Exploring self-attention for image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10076–10085. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Dai, X.; Chen, Y.; Yang, J.; Zhang, P.; Yuan, L.; Zhang, L. Dynamic detr: End-to-end object detection with dynamic attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 2988–2997. [Google Scholar]
- Dai, Z.; Cai, B.; Lin, Y.; Chen, J. Up-detr: Unsupervised pre-training for object detection with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 1601–1610. [Google Scholar]
- Gao, P.; Zheng, M.; Wang, X.; Dai, J.; Li, H. Fast convergence of detr with spatially modulated co-attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 3621–3630. [Google Scholar]
- Meng, D.; Chen, X.; Fan, Z.; Zeng, G.; Li, H.; Yuan, Y.; Sun, L.; Wang, J. Conditional DETR for fast training convergence. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 3651–3660. [Google Scholar]
- Yao, Z.; Ai, J.; Li, B.; Zhang, C. Efficient detr: Improving end-to-end object detector with dense prior. arXiv 2021, arXiv:2104.01318. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv 2020, arXiv:2010.04159. [Google Scholar]
- Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 15908–15919. [Google Scholar]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation through attention. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 10347–10357. [Google Scholar]
- Touvron, H.; Cord, M.; Sablayrolles, A.; Synnaeve, G.; Jégou, H. Going deeper with image transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 32–42. [Google Scholar]
- Yuan, K.; Guo, S.; Liu, Z.; Zhou, A.; Yu, F.; Wu, W. Incorporating convolution designs into visual transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 579–588. [Google Scholar]
- Chohan, M.; Khan, A.; Chohan, R.; Katpar, S.H.; Mahar, M.S.; Engineering. Plant disease detection using deep learning. Int. J. Recent Technol. 2020, 9, 909–914. [Google Scholar] [CrossRef]
- Reedha, R.; Dericquebourg, E.; Canals, R.; Hafiane, A. Transformer Neural Network for Weed and Crop Classification of High Resolution UAV Images. Remote Sens. 2022, 14, 592. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, Y.; Hou, F.; Yuan, J.; Tian, J.; Zhang, Y.; Shi, Z.; Fan, J.; He, Z. A survey of visual transformers. arXiv 2021, arXiv:2111.06091. [Google Scholar]
- Wu, K.; Peng, H.; Chen, M.; Fu, J.; Chao, H. Rethinking and improving relative position encoding for vision transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 10033–10041. [Google Scholar]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Ghiasi, G.; Cui, Y.; Srinivas, A.; Qian, R.; Lin, T.-Y.; Cubuk, E.D.; Le, Q.V.; Zoph, B. Simple copy-paste is a strong data augmentation method for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 2918–2928. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Chen, H.; Sun, K.; Tian, Z.; Shen, C.; Huang, Y.; Yan, Y. Blendmask: Top-down meets bottom-up for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8573–8581. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H. Conditional convolutions for instance segmentation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 282–298. [Google Scholar]
- Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. Solov2: Dynamic and fast instance segmentation. Adv. Neural Inf. Process. Syst. 2020, 33, 17721–17732. [Google Scholar]
- Hu, J.; Cao, L.; Lu, Y.; Zhang, S.; Wang, Y.; Li, K.; Huang, F.; Shao, L.; Ji, R. Istr: End-to-end instance segmentation with transformers. arXiv 2021, arXiv:2105.00637. [Google Scholar]
Method | Backbone | Epoch | Improving | Box/% | Mask/% | Parameter | Time (s) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aug | UP | SMCA | iRPE | AP | AP0.5 | AP0.75 | Recall | AP | AP0.5 | AP0.75 | Recall | |||||
DETR | ResNet50 | 150 | 0.5516 | 0.7823 | 0.6050 | 0.6127 | 0.5361 | 0.7512 | 0.5613 | 0.6337 | 163.36 M | 0.0308 | ||||
DETR | ResNet50 | 350 | 0.6114 | 0.8199 | 0.6371 | 0.6830 | 0.5871 | 0.7795 | 0.5840 | 0.6777 | 163.36 M | 0.0308 | ||||
DETR | ResNet50 | 150 | √ | 0.5891 | 0.8211 | 0.6196 | 0.6586 | 0.5750 | 0.7631 | 0.5970 | 0.6670 | 163.36 M | 0.0308 | |||
DETR | ResNet50 | 350 | √ | 0.6425 | 0.8268 | 0.6859 | 0.7096 | 0.6213 | 0.8208 | 0.6142 | 0.7011 | 163.36 M | 0.0308 | |||
DETR | ResNet50 | 100 | √ | √ | 0.6926 | 0.8292 | 0.7160 | 0.7505 | 0.6341 | 0.8199 | 0.6628 | 0.7275 | 163.36 M | 0.0308 | ||
DETR | ResNet50 | 100 | √ | √ | √ | 0.7015 | 0.8376 | 0.7160 | 0.7532 | 0.6531 | 0.8459 | 0.6689 | 0.7172 | 164.06 M | 0.0336 | |
Our | ResNet50 | 100 | √ | √ | √ | √ | 0.7393 | 0.8682 | 0.7633 | 0.7685 | 0.6823 | 0.8669 | 0.7042 | 0.7325 | 164.12 M | 0.0371 |
Method | Backbone | Epoch | Box/% | Mask/% | Parameter | Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AP | AP0.5 | AP0.75 | Recall | AP | AP0.5 | AP0.75 | Recall | |||||
Mask R-CNN [44] | ResNet50-FPN | 100 | 0.5997 | 0.8090 | 0.6407 | 0.6579 | 0.5242 | 0.7495 | 0.5719 | 0.6151 | 167.60 M | 0.0256 |
ResNet101-FPN | 100 | 0.6246 | 0.8403 | 0.6679 | 0.6866 | 0.5536 | 0.7729 | 0.6034 | 0.6585 | 239.85 M | 0.0285 | |
Blendmask [45] | ResNet50-FPN | 100 | 0.6147 | 0.8013 | 0.6562 | 0.6727 | 0.5998 | 0.7838 | 0.6178 | 0.6800 | 137.22 M, | 0.0262 |
CondInst [46] | ResNet50-FPN | 100 | 0.6071 | 0.8016 | 0.6549 | 0.6719 | 0.6456 | 0.8013 | 0.6540 | 0.7024 | 130.12 M | 0.0270 |
SOLOv2 [47] | ResNet50-FPN | 100 | 0.6901 | 0.8362 | 0.6978 | 0.7378 | 0.6628 | 0.8281 | 0.6838 | 0.7165 | 176.18 M | 0.0243 |
ISTR [48] | ResNet50-FPN | 300 | 0.7246 | 0.8532 | 0.7589 | 0.7582 | 0.5802 | 0.8147 | 0.6561 | 0.6803 | 413.11 M | 0.0397 |
Our Method | ResNet50 | 100 | 0.7393 | 0.8682 | 0.7633 | 0.7685 | 0.6823 | 0.8669 | 0.7042 | 0.7325 | 164.12 M | 0.0371 |
Class | Accuracy/% |
---|---|
Healthy | 98.73 |
Mild early blight | 95.00 |
Severe early blight | 97.50 |
Mild late blight | 93.33 |
Severe late blight | 97.44 |
Average | 96.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wen, C.; Chen, H.; Ma, Z.; Zhang, T.; Su, H.; Yang, C. DS-DETR: A Model for Tomato Leaf Disease Segmentation and Damage Evaluation. Agronomy 2022, 12, 2023. https://doi.org/10.3390/agronomy12092023
Wu J, Wen C, Chen H, Ma Z, Zhang T, Su H, Yang C. DS-DETR: A Model for Tomato Leaf Disease Segmentation and Damage Evaluation. Agronomy. 2022; 12(9):2023. https://doi.org/10.3390/agronomy12092023
Chicago/Turabian StyleWu, Jianshuang, Changji Wen, Hongrui Chen, Zhenyu Ma, Tian Zhang, Hengqiang Su, and Ce Yang. 2022. "DS-DETR: A Model for Tomato Leaf Disease Segmentation and Damage Evaluation" Agronomy 12, no. 9: 2023. https://doi.org/10.3390/agronomy12092023
APA StyleWu, J., Wen, C., Chen, H., Ma, Z., Zhang, T., Su, H., & Yang, C. (2022). DS-DETR: A Model for Tomato Leaf Disease Segmentation and Damage Evaluation. Agronomy, 12(9), 2023. https://doi.org/10.3390/agronomy12092023