Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Measurements
2.1.1. Experimental Sites
2.1.2. Ground Measurement of Frost Damage
2.2. Satellite-Based Frost Damage Detection
2.2.1. Retrieval of Sentinel-2 Images and Calculation of Vegetation Indices
2.2.2. Intensity Quantification and Identification of Starting and Ending Dates of Frost Damage Events from Vegetation Indices
- (1)
- Determining the set of peaks from the curve of the vegetation index according to its first derivative.
- (2)
- Determining the time windows in which daily minimum temperature (at 2 m height) is under the 0 °C threshold.
- (3)
- Retaining the dates of the peaks that fall in the time windows determined in step 2.
- (4)
- Selecting the peak with the highest vegetation index among those identified in step 3. The time window associated with this peak is the period when the frost damage has occurred.
2.2.3. Spatial and Temporal Variation of Frost Intensity
3. Results
3.1. Frost Damage Intensity Quantification from Vegetation Indices
3.2. Identification of the Starting and Ending Dates of the Frost Events from Vegetation Indices
3.3. Spatial and Temporal Variation of Frost Intensity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Justes, E. Cover Crops for Sustainable Farming; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-94-024-0985-7. [Google Scholar]
- Creamer, N.G.; Dabney, S.M. Killing Cover Crops Mechanically: Review of Recent Literature and Assessment of New Research Results. Am. J. Altern. Agric. 2002, 17, 32–40. [Google Scholar] [CrossRef]
- Pittman, K.B.; Cahoon, C.W.; Bamber, K.W.; Rector, L.S.; Flessner, M.L. Herbicide Selection to Terminate Grass, Legume, and Brassica Cover Crop Species. Weed Technol. 2020, 34, 48–54. [Google Scholar] [CrossRef]
- Labreuche, J.; Bodilis, A.M. Sensitivity of Cover Crops to Frost and to Mechanical Destruction Methods. In Proceedings of the 21ème Conférence du COLUMA—Journées Internationales sur la Lutte contre les Mauvaises Herbes, Dijon, France, 8–9 December 2010; pp. 321–331. [Google Scholar]
- Wójtowicz, M.; Wójtowicz, A.; Piekarczyk, J. Application of Remote Sensing Methods in Agriculture. Commun. Biometry Crop Sci. 2016, 11, 31–50. [Google Scholar]
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto Int. 2006, 21, 21–28. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D. Remotely sensed vegetation indices: Theory and applications for crop management. Riv. Ital. Agrometeorol. 2004, 1, 14. [Google Scholar]
- Corti, M.; Gallina, P.M.; Cavalli, D.; Cabassi, G. Hyperspectral Imaging of Spinach Canopy under Combined Water and Nitrogen Stress to Estimate Biomass, Water, and Nitrogen Content. Biosyst. Eng. 2017, 158, 38–50. [Google Scholar] [CrossRef]
- Allevato, E.; Saulino, L.; Cesarano, G.; Chirico, G.B.; D’Urso, G.; Falanga Bolognesi, S.; Rita, A.; Rossi, S.; Saracino, A.; Bonanomi, G. Canopy Damage by Spring Frost in European Beech along the Apennines: Effect of Latitude, Altitude and Aspect. Remote Sens. Environ. 2019, 225, 431–440. [Google Scholar] [CrossRef]
- Murphy, M.E.; Boruff, B.; Callow, J.N.; Flower, K.C. Detecting Frost Stress in Wheat: A Controlled Environment Hyperspectral Study on Wheat Plant Components and Implications for Multispectral Field Sensing. Remote Sens. 2020, 12, 477. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Rao, Y.; Liu, L.; Wang, W.; Dong, Q. Response of Winter Wheat to Spring Frost from a Remote Sensing Perspective: Damage Estimation and Influential Factors. ISPRS J. Photogramm. Remote Sens. 2020, 168, 221–235. [Google Scholar] [CrossRef]
- Nuttall, J.G.; Perry, E.M.; Delahunty, A.J.; O’Leary, G.J.; Barlow, K.M.; Wallace, A.J. Frost Response in Wheat and Early Detection Using Proximal Sensors. J. Agron. Crop Sci. 2019, 205, 220–234. [Google Scholar] [CrossRef]
- Romani, L.A.S.; Gonçalves, R.R.V.; Amaral, B.F.; Chino, D.Y.T.; Zullo, J.; Traina, C.; Sousa, E.P.M.; Traina, A.J.M. Clustering Analysis Applied to NDVI/NOAA Multitemporal Images to Improve the Monitoring Process of Sugarcane Crops. In Proceedings of the 2011 6th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images (Multi-Temp), Trento, Italy, 12–14 July 2011; pp. 33–36. [Google Scholar]
- Rudorff, B.F.T.; Aguiar, D.A.; Adami, M.; Salgado, M.P.G. Frost Damage Detection in Sugarcane Crop Using MODIS Images and SRTM Data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5709–5712. [Google Scholar]
- Marin, D.B.; Schwerz, F.; Barata, R.A.P.; de Oliveira Faria, R.; Dias, J.E.L. Unmanned Aerial Vehicle to Evaluate Frost Damage in Coffee Plants. Precis. Agric. 2021, 22, 1845–1860. [Google Scholar] [CrossRef]
- Bao, S.; Jingfeng, H.; Dongyan, Z.; Linsheng, H. Assessing and Characterizing Oilseed Rape Freezing Injury Based on MODIS and MERIS Data. Int. J. Agric. Biol. Eng. 2017, 10, 143–157. [Google Scholar] [CrossRef]
- Jurgens, C. The Modified Normalized Difference Vegetation Index (MNDVI) a New Index to Determine Frost Damages in Agriculture Based on Landsat TM Data. Int. J. Remote Sens. 1997, 18, 3583–3594. [Google Scholar] [CrossRef]
- Feng, M.; Yang, W.; Cao, L.; Ding, G. Monitoring Winter Wheat Freeze Injury Using Multi-Temporal MODIS Data. Agric. Sci. China 2009, 8, 1053–1062. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, H.; Gu, X.; Wang, J.; Cui, B. Assessing and Mapping Crop Vulnerability Due to Sudden Cooling Using Time Series Satellite Data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2990–2993. [Google Scholar]
- Zhao, L.; Li, Q.; Zhang, Y.; Wang, H.; Du, X. Normalized NDVI Valley Area Index (NNVAI)-Based Framework for Quantitative and Timely Monitoring of Winter Wheat Frost Damage on the Huang-Huai-Hai Plain, China. Agric. Ecosyst. Environ. 2020, 292, 106793. [Google Scholar] [CrossRef]
- Snyder, R.L.; de Melo-Abreu, J.P. Frost Protection: Fundamentals, Practice and Economics; Environment and Natural Resources; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; Volume 1. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management Zone Analyst (MZA). Agron. J. 2004, 96, 100–108. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; Collins, C.; Marinello, F. Medium-Resolution Multispectral Data from Sentinel-2 to Assess the Damage and the Recovery Time of Late Frost on Vineyards. Remote Sens. 2020, 12, 1896. [Google Scholar] [CrossRef]
- She, B.; Huang, J.; Guo, R.; Wang, H.; Wang, J. Assessing Winter Oilseed Rape Freeze Injury Based on Chinese HJ Remote Sensing Data. J. Zhejiang Univ.-Sci. B 2015, 16, 131–144. [Google Scholar] [CrossRef]
- Shen, M.; Chen, J.; Zhu, X.; Tang, Y. Yellow Flowers Can Decrease NDVI and EVI Values: Evidence from a Field Experiment in an Alpine Meadow. Can. J. Remote Sens. 2009, 35, 99–106. [Google Scholar] [CrossRef]
- Schulz, C.; Holtgrave, A.-K.; Kleinschmit, B. Large-Scale Winter Catch Crop Monitoring with Sentinel-2 Time Series and Machine Learning—An Alternative to on-Site Controls? Comput. Electron. Agric. 2021, 186, 106173. [Google Scholar] [CrossRef]
Site (Province) | Sowing Date | Cultivar | Seeding Rate (kg/ha) |
---|---|---|---|
Alfianello (Brescia) | 5 September 2021 | Maryna | 15 |
Trezzo sull’Adda (Milano) | 15 September 2021 | Maryna | 18 |
Fontanella (Bergamo) | 15 September 2021 | Borowska | 15 |
Ghedi (Brescia) | 18 September 2021 | Zlata | 15 |
Vegetation Index | Vegetation Index (Name) | Formula | Formula Using Sentinel-2 Bands | References |
---|---|---|---|---|
EVI | Enhanced Vegetation Index | [11,12] | ||
NDRE | Normalized difference Red-Edge | [12,15] | ||
NDVI | Normalized Difference vegetation index | [10,11,12,15,20] | ||
MMSR | Modification to Modified Simple Ratio | [15] | ||
CCCI | Canopy Chlorophyll Content Index | - | [12] |
Site | Alfianello | Fontanella | Ghedi | Trezzo Sull’adda | ||||
---|---|---|---|---|---|---|---|---|
Date of minimum air temperature | 30 November 2021 | 30 November 2021 | 30 November 2021 | 29 November 2021 | ||||
Minimum air temperatures at 2.0 m/0.5 m (°C) | −4.3/−5.1 | −2.5 | −2.8 | −1.8/−3.1 | ||||
Start | End | Start | End | Start | End | Start | End | |
MMSR | ** | 7 January | 26 January | 29 November * | 1 December * | 7 January | 26 January | |
NDRE | 28 November * | 1 December * | 3 December | 23 December | 29 November * | 1 December * | 3 December | 23 December |
NDVI | 3 December * | 23 December | 3 December | 23 December | 10 December | 12 December | 3 December | 23 December |
CCCI | 3 December | 23 December | 3 December | 23 December |
Site | Alfianello | Fontanella | Ghedi | Trezzo Sull’adda | ||||
---|---|---|---|---|---|---|---|---|
Start | End | Start | End | Start | End | Start | End | |
EVI | 29 November * | 1 December * | 29 November * | 1 December * | 29 November * | 1 December * | 7 December | 23 December |
MMSR | 29 November * | 1 December * | 29 November * | 1 December * | 7 December | 7 December | 7 December | 23 December |
CCCI | 29 November * | 1 December * | 29 November * | 1 December * | 29 November * | 1 December * | 22 December | 23 December |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabbrielli, M.; Corti, M.; Perfetto, M.; Fassa, V.; Bechini, L. Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard. Agronomy 2022, 12, 2025. https://doi.org/10.3390/agronomy12092025
Gabbrielli M, Corti M, Perfetto M, Fassa V, Bechini L. Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard. Agronomy. 2022; 12(9):2025. https://doi.org/10.3390/agronomy12092025
Chicago/Turabian StyleGabbrielli, Mara, Martina Corti, Marco Perfetto, Virginia Fassa, and Luca Bechini. 2022. "Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard" Agronomy 12, no. 9: 2025. https://doi.org/10.3390/agronomy12092025
APA StyleGabbrielli, M., Corti, M., Perfetto, M., Fassa, V., & Bechini, L. (2022). Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard. Agronomy, 12(9), 2025. https://doi.org/10.3390/agronomy12092025