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Abstract: Lentinula edodes logs are susceptible to sundry bacteria contamination during the culture
process, and the manual identification of contaminated logs is difficult, untimely, and inaccurate.
Aiming to solve this problem, this paper proposes a method for the identification of contaminated
Lentinula edodes logs based on the deep learning model Ghost–YOLOv4. Firstly, a data set of Lentin-
ula edodes log sundry bacteria contamination was constructed. Secondly, in view of the problems that
the YOLOv4 network parameters are too large and that the detection speeds of Lentinula edodes log
videos are slow, the backbone feature extraction network was replaced with a lightweight network,
GhostNet, and the YOLOv4 enhancement feature extraction network PANet and the Yolo Head
modules were completed. The modification of the network reduced the number of parameters of the
network and improved the detection speed of the network. Finally, the feature extraction network
introduced the migration learning pre-training model, which reduced the computational pressure
and overfitting problems of the model and further improved the performance of the Ghost–YOLOv4
network. Not only did the constructed Ghost–YOLOv4 ensure the accuracy of the identification and
detection of Lentinula edodes log sundry bacteria contamination, but it also had better results in
detection speed and real-time performance, and it provides an effective solution for the lightweight
deployment of a target detection model on embedded equipment in culture sheds.

Keywords: crop disease monitoring; precision agriculture; artificial intelligence; Ghost–YOLOv4

1. Introduction

Lentinula edodes logs are often contaminated by sundry bacteria during the culture
process [1–4]. When the production environment of Lentinula edodes logs is not thoroughly
cleaned, the disinfection of the culture material is not adequate, and the operation is
not standardized; thus, sundry bacteria are provided with a good opportunity to cause
Lentinula edodes log diseases [5,6]. At the same time, in the process of pre-cultivation and
cultivation, the Lentinula edodes logs need puncture ventilation to increase the oxygen
content in the culture material, eliminate the waste gas released by the growth of the
mycelium, and shorten the time for the physiological maturation of the mycelium. If the
contaminated Lentinula edodes logs are not selected in time when they are punctured,
the sundry bacteria on the contaminated Lentinula edodes logs remain on the puncturing
needle, which leads to the contamination of the Lentinula edodes logs that need to be
punctured next, causing great economic losses to enterprises [7].

At present, the identification of Lentinula edodes log sundry bacteria contamination
in China is mainly based on the experience of experts in the agricultural field and tech-
nicians in plant protection [8]. Technicians need to have good observation abilities and
rich experience to accurately identify the type of Lentinula edodes log contamination.
This traditional identification method, which depends on personal experience, has great
limitations. When there are too many Lentinula edodes logs and too many varieties to be
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detected, the probability of error in the identification method based on human experience
increases. For example, there are various problems, such as careless observations by rod
inspectors; a heavy workload; and the untimely selection of contaminated Lentinula edodes
logs, resulting in the proliferation of sundry bacteria [9].

With the development of deep learning [10–12], the era of automatic detection of crop
diseases [13–15] has come. Deep learning image recognition models have good graphic
feature extraction performance, and they can quickly and non-destructively monitor and
recognize crop diseases within the visible light range and with higher accuracy, faster
detection speed, and better stability [16]. Sravan et al. [17] used the ResNet50 model for
plant disease identification, and after fine-tuning the training method of super parameters,
the model achieved the highest classification accuracy of 99.26%. Zi caifei et al. [18] used
rice blast images as a research object, and they proposed a rice blast recognition method
based on deep learning. By learning the common health status of rice and using the
rice blast picture set, the model features could be obtained, and the final model could
be used for detection and judgment. Huang Linsheng et al. [19] improved the residual
network resnet18, introduced a concept module, and used its multi-scale convolution kernel
structure to extract disease features at different scales. The average recognition accuracy of
the improved multi-scale attention residual network model multi-scale-se-resnet18 on the
eight crop disease data sets collected in a complex field environment reached 95.62%.

The identification and classification of diseases related to the contamination of Lentin-
ula edodes logs should refer to the development results of computer vision technol-
ogy [20–23] and should improve the efficiency of monitoring the contamination of Lentinula
edodes logs by means of efficient treatment methods. On the basis of this, a recognition
method of Lentinula edodes log sundry bacteria contamination based on the deep learning
model Ghost–YOLOv4 is proposed.

The main contributions of this paper are as follows:

(1) In terms of identification of the sundry bacteria contamination of Lentinula edodes
logs, domestic edible fungus companies basically rely on manual inspection by in-
spectors. At the same time, literature related to the sundry bacteria contamination
identification of Lentinula edodes logs was not found. Therefore, this paper may
report the first research in China to apply a deep learning image recognition model to
the identification of Lentinula edodes log sundry bacteria contamination.

(2) This study constructed a data set of Lentinula edodes log sundry bacteria contamina-
tion, including 4126 images, 3 types of sundry bacteria contamination, and 1 type of
normal Lentinula edodes log, collected and annotated by ourselves.

(3) In order to deploy the lightweight target detection model on the Lentinula edodes
log puncturing machine and realize the real-time monitoring of the Lentinula edodes
log sundry bacteria contamination, a Ghost–YOLOv4 Lentinula edodes log sundry
bacteria contamination target detection algorithm is proposed, which provides an
effective solution for the selection of contaminated Lentinula edodes logs. The research
in this paper is based on the demand of the edible fungi industry; it is of great
significance to reduce the spread of sundry bacteria contamination, improve the
product quality of Lentinula edodes logs, and increase the economic benefits of
the company.

2. Materials and Methods
2.1. Lentinula Edodes Log Sundry Bacteria Contamination Data Set
2.1.1. Data Acquisition

From May 2021 to September 2021, images and videos of Lentinula edodes log sundry
bacteria contamination were collected manually in the culture shed of a smart factory of
a company in Shandong. An image of part of the Lentinula edodes log sundry bacteria
contamination was taken on the spot with a Canon camera. The model of the camera was
Canon EOS 600D, the image resolution was 5184 × 3456, the focal length was 38 mm, the
ISO speed was 400, and the shutter speed was 1/60 s. There was an LED strip light panel
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every 2 m in the cultivation shed, 20 W white light, and good lighting conditions. The
fixed camera was placed 50 cm from the Lentinula edodes logs for shooting. The shooting
standard was to shoot 4 images of each Lentinula edodes log in a 90-degree rotation manner.
The second part was to add a camera to the piercing machine in the cultivation shed. The
model of the camera was Hikvision E14a, the resolution was 2560 × 1440, and the field
of view was 80 ◦H 90 ◦D. When the Lentinula edodes log piercing machine pulled the
Lentinula edodes logs from the shelf and rotated the piercing hole, the camera could shoot
the video in 360 degrees. In the method of adding an image acquisition device to the
Lentinula edodes log piercing machine, images were captured while the piercing hole was
ventilated, thereby improving the efficiency of image acquisition. This method collected
35 videos, which were divided into frames and sampled. In order to make a training set, a
validation set, and a test set, the 35 videos were divided into frames. Because each video
contained a large number of frames with very similar content, if all these pictures were
used as data sets, it would greatly increase the annotation workload. Therefore, this paper
used footnotes to sample the frames generated by each video. Specifically, 1 frame was
collected every 60 or 100 frames, and it was added to the final Lentinula edodes log sundry
bacteria contamination data set. Finally, 4126 pictures were obtained, which were divided
into a training set, a validation set, and a test set according to the ratio of 7:2:1. The two
acquisition methods collected 942 images of Aspergillus flavus-contaminated Lentinula
edodes logs (as shown in Figure 1a,b), 893 images of Trichoderma viride-contaminated
Lentinula edodes logs (as shown in Figure 1c,d), 664 images of Neurospora-contaminated
Lentinula edodes logs (as shown in Figure 1e,f), and 1627 images of normal Lentinula
edodes logs (as shown in Figure 1g,h), resulting in a total of 4126 images of Lentinula
edodes logs. Figure 1 shows the data set of the sundry bacteria contamination of Lentinula
edodes logs.
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Lentinula edodes logs.
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2.1.2. Data Set Preprocessing

In this experiment, the data set of Lentinula edodes log sundry bacteria contamination
was used, with a total of 4126 original collected images. The images were noised, inverted,
rotated, and randomly adjusted by the python script data enhancement operation; the data
volume was expanded to 16,504 images, which were saved in the JPEGImages folder in
.jpg format.

In the experiment, labelImg labeling software was used to label the types of bacterial
contamination in the dataset. For example, Figure 2 shows the labeling of Trichoderma
viride-contaminated Lentinula edodes logs. The a priori box was used to select the Tri-
choderma viride-contaminated Lentinula edodes logs, and the names of the contaminated
bacteria were entered. The File List in the lower right corner displays the image names that
needed to be labeled.
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Figure 2. Annotation of Lentinula edodes log sundry bacteria contamination image.

After labeling, the labelImg software automatically generated .xml label files in the
pascal VOC format [24]. These label files recorded the location, size, and category informa-
tion of all target a priori boxes, and the corresponding pictures of Lentinus edodes were
named and stored in the Annotations label folder.

The experiment completed the labeling of 16,504 images; the Lentinula edodes log
sundry bacteria contamination data set was collected and cleaned, and the missing and
incorrect labels in the .xml file were repaired. The repair method was as follows: for
missing labels, the labelImg software was used to repeat the above method to label the
images of Lentinula edodes log sundry bacteria contamination; for incorrect labels, the
prior frame on the image was deleted and redrawn, and the contaminated bacteria name
was entered. Finally, using the voc_annotation.py file, the images and annotation files of
Lentinula edodes log sundry bacteria contamination were divided into a training set, a
validation set, and a test set according to the ratio of 7:2:1.

2.2. Construction of the Recognition Model
2.2.1. The Classic YOLOv4 Algorithm

YOLOv4 [25] is one of the most commonly used target detection algorithms, and it
can accurately detect target objects in many scenes. Its network structure is shown in
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Figure 3, which is mainly divided into three parts: a backbone feature extraction network,
an enhanced feature extraction network, and a head prediction network.
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Among them, the backbone feature extraction network is CSPDarknet53, which con-
sists of multiple residual blocks. When the feature image is input into the YOLOv4 network,
the YOLOv4 network first adjusts the size of the feature image to 416 × 416, and then
it segments the adjusted feature image into 13 × 13, 26 × 26, and 52 × 52; that is, the
function of the CSPDarknet53 feature extraction network is to obtain 52 × 52, 26 × 26,
and 13 × 13, three effective characteristic layers. The enhanced feature extraction network
mainly includes the Spatial Pyramid Pooling (SPP) structure and the Path Aggregation
Network (PANet) [26]. The SPP module performs 5 × 5, 9 × 9, and 13 × 13 maximum
pooling of the three scales; then, the tensor concat is fused into a feature map, and the
dimension reduction through convolution separates important context feature information
on the premise of ensuring speed. The PANet includes up-sampling and down-sampling
operations. By fusing top-down semantic features and bottom-up strong positioning fea-
tures, the loss of target shallow feature information is alleviated, and the representation
ability of the model is increased. The head prediction network, namely, the Yolo Head
module, is the output layer of the YOLOv4 network [27]. The three heads correspond to
three sizes, which are 19 × 19, 38 × 38, and 76 × 76. The position and confidence score of
the boundary prediction frame are calculated on three feature grids of different sizes, and
the non-maximum suppression algorithm is used to consider the position information of
the center point of the boundary box and retain the best prediction frame.

2.2.2. GhostNet Network

GhostNet [28–30] is a lightweight CNN proposed by Huawei in 2020. The significance
of its research is that it can make full use of computer computing power and storage
resources in mobile terminals and small embedded devices in order to achieve the best
performance of the model so as to meet various needs in computer vision.

The core module of the GhostNet network is the Ghost Module. As shown in Figure 4,
Ghost Module generates m original feature maps T through one convolution and completes
the traditional convolution in two steps. The first step uses 1 × 1 ordinary convolution for
mapping to generate m necessary feature enrichment (Identity operation). The second step
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is to use the depthwise separable convolution block to perform layer-by-layer convolution,
perform linear transformation and stacking on T, and generate s feature maps. Finally, the
feature maps of the two steps are spliced together through the concat layer to obtain the
final n output feature maps [31,32], where n = m × s.
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The core idea of the GhostNet network is to generate more features with fewer param-
eters. Compared with an ordinary convolutional neural network, the Ghost Module can
ensure that the total number of parameters and computational complexity are effectively
reduced without changing the scale of the output characteristic map, and the Ghost Module
has the advantages of plug and play and convenient transplantation.

The Ghost bottleneck consists of two Ghost Modules [33], and its structure is shown
in Figure 5. When the step size of the Ghost bottleneck is set to 1, two Ghost Modules are
used for feature extraction in the trunk part, while no processing is carried out in the part
of the residual side, and the input and output are added directly. When the step size of the
Ghost bottleneck is set to 2, a Ghost Module is first used to extract the features of the input
feature layer, channel-by-channel convolution is used to compress the height and width of
the previous feature layer, a Ghost Module is used to extract the features again, and, finally,
a residual edge is added.
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2.2.3. Ghost–YOLOv4 Detection Algorithm of Lentinula Edodes Log Sundry
Bacteria Contamination

The ultimate goal of this paper was to design a lightweight Lentinula edodes log
contamination detection algorithm that can be applied to embedded devices. CSPDark-
net53, the backbone feature extraction network in YOLOv4, improves operation accuracy
by increasing the input feature information and the calculation amount of the network; this
undoubtedly increases the GPU memory of the network and the storage capacity of the
model, which also leads to the shortcomings of the YOLOv4 algorithm, such as high delay
and slow speed in mobile terminals and embedded devices [34]. Therefore, a lightweight
network model is needed to optimize the YOLOv4 network so that the YOLOv4 network
can run smoothly in embedded equipment and achieve the goal of the real-time monitoring
of the contamination of Lentinula edodes logs. On the basis of this, this paper designed a
recognition model of Lentinula edodes log sundry bacteria contamination: Ghost–YOLOv4.
The network structure is shown in Figure 6.
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The improved lightweight Ghost–YOLOv4 network uses GhostNet as the backbone
extraction network to replace the original CSPDarknet53 network. The specific approach
was to replace the backbone feature extraction network resblock module of YOLOv4 with
the Ghost bottleneck module and to build it according to the network structure of GhostNet.
It was found that, in the third, fifth, and sixth stages of the feature extraction network
GhostNet, the three effective feature layers, 52 × 52 × 40, 26 × 26 × 80, and 13 × 13 × 160,
needed to be input into the enhanced feature extraction network. As shown in Figure 6, the
output of the Ghost bottleneck in stages 3 and 5 of the GhostNet module entered the later
output network through the full connection layer, and the output of the Ghost bottleneck
in stage 6 entered the later output network from the SPP network. This completed the
splicing of the three feature maps of different sizes, 13 × 13, 28 × 28, and 56 × 56, in the
GhostNet network, and the YOLOv4 multi-scale was featured to form the final feature
extraction network.

The Ghost–YOLOv4 network adopted PANet for parameter aggregation. PANet is a
bidirectional fusion network that can be from top to bottom and from bottom to top, and
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an adaptive feature channel is added between the lowest and top features, which can fully
integrate different feature layers in the whole Ghost–YOLOv4 network. In the process
of feature fusion, in order to further reduce the parameters of the model, the size of all
the convolution kernels in PANet is 3 × 3, and they are replaced by a deeply separable
convolution block [35–37]. A depthwise separable convolution block is composed of a
3 × 3 depthwise separable convolution and a 1 × 1 normal convolution, which can greatly
reduce the parameter computation cost compared with the traditional convolution. The
structure of a depthwise separable convolution block is shown in Figure 7.
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Therefore, the PANet structure in the Ghost–YOLOv4 network in this paper was mainly
a circular pyramid network structure composed of depthwise separable convolution blocks,
up and down sampling, feature fusion, and stacking.

The Yolo Head module of Ghost–YOLOv4 predicted the result on the basis of the
characteristic information after the enhanced processing of PANet. Similarly, depthwise
separable convolution blocks were also used to replace all convolution kernels in the
Yolo Head module with a size of 3 × 3, to determine whether the three prediction frames
generated by the prediction of each feature layer contained the required feature information,
to suppress the non-maximum value and adjust the prior frame, and, finally, to obtain the
final prediction frame.

2.3. Model Evaluation Method

In order to evaluate the model recognition performance, this paper comprehensively
considered Precision, Recall, mAP, model size, network structure parameters, and detection
speed FPS [38].

The calculation of Precision and Recall adopts the Macro-F1 calculation rule, and the
calculation formulae are as follows. Among them, TP represents the number of positive
samples predicted to be positive, FP represents the number of negative samples predicted
to be positive, TN represents the number of negative samples predicted to be negative, and
FN represents the number of positive samples predicted to be negative.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

The average precision AP is the area under the Precision–Recall curve, and Total
images represents the total number of pictures in the data set. The calculation formula is:

AP =
Σ Precision

N (Total images)
(3)
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The mAP value is the average value of the AP of the four categories to be detected,
and Total classes represents the total category of the target to be detected in the dataset.
The calculation formula is:

mAP =
Σ AP

N (Total classes)
(4)

3. Results

The hardware environment of the experiment was Windows 10, the CPU was Intel
Core i7-12700H, the memory capacity was 16 GB, and the disk capacity was 1 T. During
the training process, the Nvidia Gtx1070Ti GPU graphics card was used to accelerate the
training. The software environment was CUDA10.0, Cudnn10.0, written with the python3.7
program; the open-source deep learning framework Pytorch was used as the development
environment; and deep learning libraries, such as Matplotlib and Numpy, were installed
for data analysis.

The pictures sets in the training and testing of the experiment had a size of 416 × 416 × 3
and were in JPG format, and the dataset was enhanced with CutMix, Mosaic, and Self-
Confrontational Training (SAT) methods [39] using DropBlock regularization to solve the
fitting problem and using the class label smoothing method to enhance the generalization
ability of the model. A total of 300 iterations were set, and four types of loss values were
observed. According to the size of the computer memory, the parameter Batch size was set
equal to 8, and the learning rate was 0.001. The learning rate was adjusted according to the
cosine annealing learning rate algorithm that comes with Pytorch.

In the early stage of the experiment, although we carried out some work in the process
of data set collection and production, the data set was relatively small, and the model
trained from 0 was not necessarily good. In order to reduce the calculation pressure and
overfitting problem of the model, the transfer learning pre-training weight was introduced
into the backbone feature extraction network of Ghost–YOLOv4 [40]. The pre-training
weight retained a large amount of parameter information trained by GhostNet on the VOC
data set. On the basis of the improved Ghost–YOLOv4 model, the method of migration
learning was adopted, and load was used; the load_state_dict function loaded the pre-
training weight of GhostNet corresponding to ghostnet_weights.pth. We considered the
problem that with more weight layers in the frozen GhostNet network, the accuracy of
the model would decline relatively, and the overfitting ratio would increase more. This
paper did not freeze the weight parameters of any layer of the GhostNet backbone feature
extraction network, and it retrained the weight of all layers of the GhostNet backbone
feature extraction network by using the Lentinula edodes log contamination data set.
The reason for this is that the more weight layers that are frozen by GhostNet, the fewer
parameters that need to be trained in the model; the weaker the calculation and feature
extraction ability of the model on the Lentinula edodes log contamination images; the
weaker the shared features between the layers due to the weakening of the ability of mutual
influence; and the greater the inability to relearn when the original bottom layer features
propagate upward layer by layer, resulting in the gradual decline of the feature migration
ability of the top layer. That is, the model only transfers the high-level features and cannot
realize the gradual abstraction, characterization, and extraction of features from the bottom
to the top level, so the recognition rate of the model gradually declines in the end.

For the Lentinula edodes log sundry bacteria contamination data set, the pre-training
weight parameters had a significant effect on the improvement of the accuracy of model
recognition due to the VOC data set used in the pre-training weights of migration learning,
which provided a large number of images so that the model could learn enough features
and better fit the parameters and so that the model could obtain good initialization network
parameters during migration learning. This reduced the possibility of fitting [41], and
it also showed that the transfer learning ability of pre-training weights obtained with
sufficient training data in the target domain was stronger than that of directly training
small sample data.
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The change in the loss value could be observed in real time during training. Figure 8
shows the loss curve of the training process. The train loss is the loss curve of the training
set, the val loss is the loss curve of the validation set, and the smooth train loss and smooth
val loss are the smoothing of the two. After training multiple epochs, one can see the
generated weight file in the logs directory.
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In order to prove the effectiveness of the methods in this paper, sufficient comparative
experiments were carried out. Using the Lentinula edodes log sundry bacteria contamina-
tion test data set and the captured Lentinula edodes log video, comparative experiments
were carried out on the original YOLOv4, the improved Ghost–YOLOv4, and the improved
Mobilenetv3–YOLOv4 in the same modified way. Table 1 shows the comparison results of
various performance indicators of the original YOLOv4 algorithm, Mobilenetv3–YOLOv4,
and the Ghost–YOLOv4 detection algorithm. The evaluation indicators were mAP, Preci-
sion, Recall, Model size, Network structure parameters, detection speed FPS, etc.

Table 1. Comparison of performance indexes of the model.

Performance Index YOLOv4 Mobilenetv3–YOLOv4 Ghost–YOLOv4

mAP/% 93.59 92.27 93.17
Precision/% 95.1 94.47 94.5

Recall/% 91.46 89.11 91.02
Model size/MB 224.29 53.77 43.4

Network structure parameter quantity 69,040,001 11,729,069 11,482,545
FPS/(frames/s) 23 27.68 39

It can be seen in Table 1 that the improved Ghost–YOLOv4 could reduce the model size
to only 19.3% of the original YOLOv4 model, greatly reduce the model parameters from
69,040,001 to 11,482,545, and improve FPS to 1.69 times that of YOLOv4, with the detection
accuracy almost unchanged. This shows that the complexity of the improved Ghost–
YOLOv4 model was greatly reduced, and the size of the model was only 0.19 times that of
the original. On the premise of almost no reduction in accuracy, the real-time performance
of the algorithm was effectively improved, and the detection speed was increased by
1.7 times. It is more suitable for lightweight model deployment on embedded devices.

Figure 9 shows the detection effect diagram. It can be seen that the Ghost–YOLOv4
detection model could accurately detect the sundry bacteria contamination species of the
Lentinula edodes logs.
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4. Discussion

Aiming to solve the problem of the number of YOLOv4 network parameters being
too large and the detection speed of Lentinula edodes log video on embedded equipment
being slow, this paper designed a lightweight network model, Ghost–YOLOv4, based on
deep learning, which has a high recognition accuracy, meets the requirements of Lentinula
edodes log contamination identification, reduces the workload of factory staff, and is of
great significance in improving the product quality of Lentinula edodes logs. Reducing the
economic losses of edible fungi enterprises has certain practical significance and value. In
follow-up work, we will study the development of the Lentinula edodes log contamination
identification system, complete the deployment of the lightweight target detection model
on embedded equipment, connect the image acquisition equipment in the culture shed (so
as to identify the contaminated Lentinula edodes logs in the production process), record
the number and status of contaminated Lentinula edodes logs, send an alarm for abnormal
conditions, trace the source of the Lentinula edodes log contamination, and improve the
product quality of the Lentinula edodes logs.
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