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Abstract: The increasing global demand for food has forced farmers to produce higher crop yields in
order to keep up with population growth, while maintaining sustainable production for the environ-
ment. As knowledge about natural cropland suitability is mandatory to achieve this, the aim of this
paper is to provide a review of methods for suitability prediction according to abiotic environmental
criteria. The conventional method for calculating cropland suitability in previous studies was a
geographic information system (GIS)-based multicriteria analysis, dominantly in combination with
the analytic hierarchy process (AHP). Although this is a flexible and widely accepted method, it
has significant fundamental drawbacks, such as a lack of accuracy assessment, high subjectivity,
computational inefficiency, and an unsystematic approach to selecting environmental criteria. To
improve these drawbacks, methods for determining cropland suitability based on machine learning
have been developed in recent studies. These novel methods contribute to an important paradigm
shift when determining cropland suitability, being objective, automated, computationally efficient,
and viable for widespread global use due to the availability of open data sources on a global scale.
Nevertheless, both approaches produce invaluable complimentary benefits to cropland management
planning, with novel methods being more appropriate for major crops and conventional methods
more appropriate for less frequent crops.

Keywords: farmland; geographic information system; vegetation index; biophysical variables;
Sentinel-2; analytic hierarchy process

1. Introduction

Accelerated global population growth necessitates the production of more and more
food [1]. Conventional intensive agricultural production can meet short-term food de-
mands, but it frequently comes at the price of long-term sustainability and land degra-
dation [2]. An additional challenge is posed by climate change and pollution, which
undermine the effectiveness of conventional cropland management [3]. The two most pop-
ular methods used in conventional agricultural production systems to improve crop yields
are (1) transforming land cover to create new cropland and (2) modifying agrotechnical
techniques, such as increasing the use of fertilizers and pesticides, so as to boost yields on
existing cropland. Land use conversion has a greater potential to increase overall yields
than improving agricultural practices on existing cropland [4]. However, new cropland
converted from forest and wetland areas results in the destruction of natural habitats and
poses a threat to biodiversity. Habitat destruction is the most common cause of flora en-
dangerment, with a negative outlook for their recovery potential [5]. The use of fertilizers
and pesticides is necessary for the continuous production of high and stable yields in
conventional intensive agricultural production [6]. Fertilizer and pesticide applications
continue to increase when the crop rotation system is not maintained, agrotechnical mea-
sures are inadequate, and certain agricultural crops are grown in an inherently unsuitable
location [4,7]. This practice leads to environmental pollution through heavy metals, mainly
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copper, persistent organic pollutants, and excessive nitrogen and phosphorus polluting
waterways [8,9]. Such pollution has a direct impact on human health, flora and fauna,
spreading through surface and groundwater, and accumulating in living organisms [10].

Alternative methods for increasing crop yields have been developed in response to the
requirement for the long-term sustainability of rising agricultural production. On existing
croplands, it is feasible to increase yields while using fewer fertilizers and pesticides
with a traditional method by cultivating crops in naturally suitable locations [11]. Crop
rotation and agricultural management strategies must be modified to foster circumstances
for ecologically responsible and sustainable agriculture as important abiotic factors are
either impossible to change or extremely difficult to do so [12]. Because of the temporal
variability of abiotic criteria, primarily caused by climate change, regular monitoring and
analysis of changes in suitability levels are required [13]. Agro-technics can directly benefit
from the inventory of existing suitability levels as it can be used to propose changes to
agrotechnical measures and the installation of irrigation systems in sensitive regions [14].
Crop cultivation in naturally suited sites is one part of regionalized agricultural production
that aims to achieve sustainable output (Figure 1).
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Figure 1. The concept of regionalized agricultural production according to cropland suitability.
The conceptualization of agricultural land management without determined suitability (left), pre-
dicted GIS-based cropland suitability (center), and regionalized agricultural production with land
management plans optimized according to predicted cropland suitability (right).

The analytic hierarchy process (AHP) in conjunction with GIS-based multicriteria
analysis is currently regarded as the standard for assessing the suitability of crops. How-
ever, this method is sensitive to subjectivity, and cannot effectively incorporate a huge
quantity of data [15]. The use of machine learning techniques has improved the conven-
tional methodology by addressing these flaws in the prediction of biological, chemical,
and physical soil characteristics. Hengl et al. [16] included soil samples and publicly ac-
cessible spatial data reflecting abiotic criteria as part of the SoilGrids project into a novel
machine-based prediction. This marks the start of a paradigm change in the forecasting of
spatial factors in the environment, opening the possibility for applications in fields other
than soil science. Among these fields, cropland suitability prediction is one of the most
convenient for the application of a similar machine-learning-based approach, as it depends
on the same environmental criteria groups [15]. While the machine learning approach
in cropland suitability prediction has fundamental similarities with SoilGrids, the most
notable difference is present in training data selection (Figure 2). Cropland suitability has
been defined in previous studies as a slightly abstract term, being quantified by in-situ crop
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yield data [11] or data derived from remote sensing satellite missions, such as vegetation
indices [17] or biophysical variables [15].
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Although the extraordinary potential of machine learning and remote sensing data
in suitability determination has been noted, fully comprehensive and straightforward
solutions are still being researched. The aim of this study is to review present upgrades to
the conventional GIS-based multicriteria analysis with the machine learning approach and
to propose the most potent directions for cropland suitability calculation for future studies.

2. Advancements of the Conventional GIS-Based Multicriteria Analysis for Cropland
Suitability Prediction

Previous studies predominantly considered GIS-based multicriteria analysis as the
current standard for quantifying cropland suitability [11,18,19]. Because of its adaptability
and universal application, it has become an essential approach in suitability research across
a variety of scientific fields [20–22]. However, this approach’s basic flaws make it less
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successful when dependability and universal application become more important. The
standard procedure of GIS-based multicriteria analysis includes several steps (Figure 3):

1. Defining the study aim,
2. Selecting relevant environmental criteria,
3. Standardizing criteria values,
4. Weighting (pondering) of criteria,
5. Calculation of suitability and interpretation of the results.
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Previous research used the GIS-based multicriteria analysis to assess the suitability
of agricultural crops in a specific geographic location. An important component of the
studies analyzed is the timing of the analysis, which is conditioned by the availability of
data from one or more consecutive seasons [23]. Knowing the timing of the analysis is also
necessary because of the temporal variability of the basic abiotic criteria, especially the
climate criteria [24]. The novel methods using machine learning and open-data satellite
imagery are based on the same assumptions. This feature allows for multitemporal com-
parison of suitability results from the two approaches, enabling the evaluation of historical
accuracy and updating of the cropland management plans. The ability to adjust cropland
management to the classification of abiotic parameters (climate, soil, and terrain) has in-
creased with the emergence of remote sensing satellite missions with open data access [25].
The availability of these data is expected to increase in the future, due to the lifespan
of present missions and their continuous upgrade [26]. The fluctuation of temperature
and soil properties, caused by climate change and inadequate agricultural management,
requires constant updating of cropland suitability results for individual crops [27]. Yields
targeted by farmers, based on relative comparisons with neighboring agricultural parcels,
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are an additional factor that may lead to increased use of fertilizers and pesticides in inher-
ently unsuitable locations [28]. While these goals can be attained using the conventional
GIS-based multicriteria analysis, more computationally efficient approaches for cropland
suitability prediction using machine learning could further improve their applicability.

Previous research used the analysis of prior studies and expert views to choose the abiotic
criteria for cropland suitability modelling using GIS-based multicriteria analysis [11,29]. This
procedure was based on the assumption that each microsite is agroecologically specific
for crop cultivation [30]. The selection of the type and the amount of abiotic criteria for
a particular site and crop type was based on the knowledge of one or more agronomic
experts. The three factors that have the greatest effects on cropland suitability—climate,
soil, and topography—were consistently divided from the abiotic criteria [15,31]. Although
most of these studies focused on these criteria groups, their amount varied significantly
by crop type and geographic location (Table 1). The exceptions to the use of climate,
soil, and topography criteria were constraints representing appropriate land cover classes
and categories of irrigation systems. The selection of climate criteria depends directly
on the extent of the study area, while for smaller areas (such as municipalities), climate
homogeneity is assumed [19].

Table 1. Distribution of the three main criteria groups in previous studies for determining cropland
suitability using the conventional GIS-based multicriteria analysis.

Crop
Abiotic Environmental Criteria Standard

Deviation Reference
Total Climate Soil Topography

multiple agroforestry crops 6 2 3 1 1.0 [32]
pepper 7 0 1 6 3.2 [19]

maize, rice 8 1 3 4 1.5 [33]
rice, potato 8 0 8 0 4.6 [34]

sorghum, cowpea, amaranth 8 5 1 2 2.1 [35]
wheat, rice, sorghum, maize 8 5 2 1 2.1 [36]

tea 9 2 2 5 1.7 [37]
wheat 9 0 6 3 3.0 [38]
wheat 10 0 2 8 4.2 [11]
barley 10 2 5 3 1.5 [39]

maize, rice, soybean 10 2 7 1 3.2 [40]
citrus 11 6 2 3 2.1 [41]
paddy 11 2 6 3 2.1 [42]
cotton 11 2 8 1 3.8 [43]
apple 11 3 5 3 1.2 [44]

soybean 12 6 4 2 2.0 [17]
tea 12 3 6 3 1.7 [45]

potato 13 8 2 3 3.2 [46]
potato 18 6 8 4 2.0 [47]

sorghum 29 23 3 3 11.5 [48]

The variability in the number of abiotic suitability criteria used and their distribution
among the criteria groups indicate a high influence of human subjectivity in their selection.
Although this method enables accurate suitability modelling based on professional exper-
tise, it may be incorrect and biased, as it requires diverse and numerous environmental
criteria in order to include all major aspects of suitability [15]. The variation from the ideal
number of seven criteria in the AHP, according to Saaty and Ozdemir [49], which should
range from five to nine criteria, expresses the computational inefficiency of this technique.
According to these suggestions, using less than four criteria only permits a bare minimum
depiction of cropland suitability. When subjectively assessing the relative relevance of the
criteria, ten or more criteria reflect a wider variety of abiotic criteria, but they also raise the
possibility of inaccuracy and the complexity of computations.
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Spatial modelling of selected abiotic criteria in a GIS environment is usually performed
in a raster data model [50]. The input data are usually distributed in numerous combina-
tions of data types obtained from various institutional and scientific sources. To harmonize
point vector input data into raster form, it is necessary to perform the prediction of soil
values at unsampled locations by spatial interpolation [51]. The selection of the optimal
method and parameters of spatial interpolation is a necessity for reliable modelling of the
input criteria, which decreases significantly if they are not adjusted to the characteristics of
the input values [52]. The relative complexity of such modelling, as well as subjectivity in
the selection of the spatial interpolation method, parameters, and classification standards,
suggest a potential reduction in human error by automating the process [53]. The same
approach increases time efficiency by not requiring individual tool editing in GIS and facili-
tates data distribution using a globally accepted standard. Following the same principle,
the developed processing framework can be easily adapted to different abiotic criteria
in cropland suitability studies. Commonly used criteria in cropland suitability studies
have been partially represented by global standards with subjective modifications [27] or
the application of different standards with the same objective [6,54]. As one of the most
common approaches to criteria selection is the analysis of previous studies, such cases
lead to potential inaccuracy in the selection of value ranges in further standardization and
weighting procedures.

Diverse input value ranges of modeled abiotic criteria are converted into a consistent
numerical normalization interval throughout the standardization procedure [17]. Typically,
numerical intervals such as 0–1 or, more commonly, 1–5 are used, which allow for a simple
representation of suitability using the five classes defined by the Food and Agriculture
Organization of the United Nations (FAO). In addition to combining values expressed
in different units of measurement, quantitative and qualitative data are also integrated,
which is often required to determine cropland suitability [55]. Three basic standardization
methods have been used in previous studies: linear stretching, stepwise standardization,
and fuzzy standardization. In linear stretching, the minimum and maximum input values
correspond to the limit values of the defined standardization interval. Although the
linear stretching method is very simple and completely objective, it leads to unreliable
standardization when the input data contain extreme values, which is often the case
in suitability studies. In contrast, the stepwise standardization method is a completely
subjective method based on discrete ranges of input values for a single standardized value.
Thus, generalized and approximate numerical values that typically have an identical range
are used to quantify the suitability level [56]. Because of the simplicity and flexibility of
the method, it has found the most frequent application in previous cropland suitability
studies [17]. Standardization using the fuzzy method combines the advantages of the
previous two methods with continuous standardization and relative objectivity using
mathematical models and the implementation of standardization thresholds based on a
subjective approach [57]. The alternatives in the choice of fuzzy logic mathematical models
(linear, S-shaped, J-shaped, and G-shaped) allow for additional flexibility in standardization.
Nevertheless, fuzzy logic methods are used much less frequently in suitability studies
compared with stepwise standardization. There is currently no extensive research that
outlines the precise impact of standardization methods on the accuracy of suitability results;
therefore, users choose a standardization method based only on their subjective preferences.
The comparative evaluation of these standardization methods has shown that the variety of
available methods in complex GIS-based multicriteria analysis should be evaluated more
thoroughly in future studies.

Criteria weights measure the relative weights of all of the chosen suitability criteria, as
opposed to standardization, which assesses the suitability of a single criterion according to
its range of values [58]. Input criteria are weighted to proportionally indicate their effects,
as they have various degrees of influence on agricultural suitability. Sensitivity analyses
in previous studies found that the weights assigned to the criteria had the largest effect on
the cropland suitability results in the GIS-based multicriteria analysis [59]. There are several
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different approaches to weighing abiotic criteria, from straightforward estimating techniques
to sophisticated ones such as AHP, TOPSIS, ELECTRE, and PROMETHEE [60,61]. A common
feature of all weighting methods is that the sum of all weights equals 1, which means
100% of the influence of the selected abiotic input criteria on suitability. Previous studies
have highlighted the advantages of the AHP in terms of flexibility and simplicity [62–64],
leading to its preferred use in cropland suitability studies (Table 2). The Web of Science Core
Collection search was performed for the articles matching the topic of “land suitability”
AND (“crop” OR “agriculture” OR “farming”) AND the method name, as stated in Table 2.

Table 2. Application of criteria weighting methods in cropland suitability studies indexed in the Web
of Science Core Collection during the period of 2000–2020.

Method
Published Papers Indexed in the Web of Science Core Collection

2000–2020 2010–2020

AHP 160 152
TOPSIS 7 7

PROMETHEE 4 4
ELECTRE 3 3

machine learning 20 20

The principle of AHP is based on a relative pairwise comparison of all combinations
of input criteria, where a relatively more influential abiotic factor is denoted by an integer
in the interval of one to nine. Even if a consistency index checks each pairwise comparison
result, using more than nine criteria makes the weighing procedure overly complicated
and prone to errors. Previous suitability studies have highlighted the difficulties of com-
prehensive suitability modelling with the recommended number of abiotic criteria [4,65].
Currently, the two main drawbacks of using AHP in GIS-based multicriteria analysis are the
sensitivity of weighting to human subjective judgements with a high number of pairwise
comparisons and the inability of choosing an arbitrary number of criteria.

Suitability calculation based on standardized values of abiotic input criteria and their
weights is the simplest and most consistent step in GIS-based multicriteria analysis [66].
The weighted linear combination is a conventional choice for calculating suitability, where
the standardized values and their respective weights are multiplied. The range of suitability
values corresponds to an arbitrarily chosen numerical normalization interval. Numerous
studies regard the FAO’s categorization of cropland suitability into five classifications as the
standard for suitability calculation [11,39,67,68]. Its application facilitates the comparison
of suitability values between crops and for different locations for the same crop.

The evaluation of accuracy is frequently omitted in agricultural suitability studies
based on the GIS-based multicriteria analysis, despite the fact that it is a crucial step in all
closely related types of spatial analysis. The complicated idea of agricultural suitability can
only be validated with very narrow data sources [54]. Crop yield data have been utilized
as an accurate indicator of suitability in the majority of earlier research where accuracy
evaluations were performed [11,29]. It is also influenced by components that cannot be
modeled in a GIS environment, such as the implementation of agro-technical measures at
the micro level, making it an incomplete indicator of suitability. The use of conventional
cropland suitability studies is severely constrained as official databases of yield data for
specific agricultural plots are extremely scarce, making it impossible to conduct an external,
impartial examination of the suitability.

3. Recent Developments in Machine-Learning-Based Cropland Suitability Prediction

According to the disadvantages of the conventional GIS-based multicriteria analysis
with AHP, machine learning methods have already enabled researchers to provide more
computationally efficient, objective, and reliable cropland suitability prediction (Figure 4).
Machine learning has been efficiently used to address both the subjectivity and the difficulty
of including environmental data in the GIS context. It facilitated the integration of big data’s
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many forms, as well as its processing, and it created intricate nonlinear linkages between
training data and independent predictors (covariates) [16]. Machine learning allows for
a fully automated and subjective determination of feature importance, as opposed to the
manual and subjective computation of weights of specific abiotic criteria in the suitability
result [69].
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Two general approaches were mainly improved using machine learning in cropland
suitability prediction studies:

1. Computationally efficient suitability assessment methods using global satellite mis-
sions with a high (e.g., Sentinel-2, Landsat 8) and medium spatial resolution (e.g.,
Sentinel-3, PROBA-V). This approach ensures the applicability of the accuracy as-
sessment for predicted cropland suitability, otherwise commonly omitted from the
conventional approach. The excessive subjectivity of the GIS-based multicriteria
analysis with AHP has been independently evaluated using this globally available
remote sensing open data. These methods provide a scientific contribution to the
training/test data component of the suitability prediction.
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2. Suitability prediction methods based on machine learning algorithms and globally
available spatial data that provide high prediction reliability with lower user subjec-
tivity compared with the GIS-based multicriteria analysis. Aside from enabling the
inclusion of significantly more environmental covariates in the suitability prediction
without impairing computational efficiency, exact and specific abiotic criteria become
accessible. In contrast with the generalized and vague criteria (e.g., “precipitation”,
“temperature”, or “soil texture”), these methods included specific relevant environ-
mental abiotic criteria, such as the mean air temperature in individual months or soil
clay, silt, and sand contents in narrow soil depth layers.

Although previous machine-learning-based suitability studies have shown a better
performance for suitability calculation than the GIS-based multicriteria analysis, the funda-
mental shortcomings of the current development have only been partially addressed. This
primarily relates to the lack of reference parameters for validating suitability results based
on the same assumptions as the conventional approach. According to Frampton et al. [70],
multispectral satellite data may be used to quantify several biophysical variables, including
the leaf area index (LAI), percentage of photosynthetic radiation absorbed (FAPAR), and
canopy chlorophyll concentration. The excellent connection between these data and crop
yields at each growth stage of individual crops is a crucial aspect that makes it possible
to utilize them to develop and test suitability models [71]. According to United Nations
guidelines, the significance of LAI and FAPAR is underlined, suggesting a high potential
for cropland suitability studies [70]. The multispectral Sentinel-2 and Sentinel-3 satellite
missions’ successful launch has significantly improved these capabilities by enabling high-
and medium-resolution modelling of biophysical vegetation characteristics. Addition-
ally, the use of remote sensing data eliminates the costly and time-consuming gathering
of data using terrestrial techniques, particularly for more extensive and less established
transportation infrastructure, which defines the majority of agricultural parcels [25,72].

Taghizadeh-Mehrjardi et al. [54] contrasted standard parametric approaches with
machine learning to assess the accuracy of suitability prediction for wheat and barley. For
wheat and barley, the machine learning approach’s overall accuracy was 26% and 29%
higher, respectively, than the conventional method. Additionally, this method measured
the relative weights of each abiotic input element, offering an objective alternative to
the AHP method’s weighing procedure. Møller et al. [6] pointed out the capability of
precisely defining each component of suitability, highlighting the socioeconomic and
environmental components, and acknowledged the similar potential of machine learning
in suitability prediction. By creating and studying a technique for assessing the suitability
accuracy utilizing the NDVI vegetation index from the multispectral Sentinel-2 images,
the traditional GIS-based multicriteria analysis was primarily improved. To improve the
subjective weight determination of AHP, Singh et al. [73] applied a Random Forest machine
learning algorithm to derive criteria weights based on the relative variable importance.
Radočaj et al. [17] proposed the novel peak NDVI method to identify the vegetation
potential of soybean during the full maturity (R6) development stage, representing a
measurable and exact approach for high repeatability in future seasons and other locations
in the world. The strongest association between NDVI and soybean grain production was
discovered at this development stage, which has great promise as an efficient and accessible
replacement for the traditional validation method [74]. This method may be used on any
crop where there is a strong relationship between soil-related yield components and a
vegetation index derived from satellite images at the individual growth stages. Because
of the open data availability of Sentinel-2 and similar missions, the ability to evaluate the
accuracy of cropping events has become accessible for most future studies.

Besides novel methods that improve the conventional GIS-based multicriteria analysis,
a major scientific contribution was made by developing the fully objective method based
on machine learning for suitability prediction [15]. As a result of the strong association
with biomass and crop output, LAI and FAPAR from the PROBA-V satellite mission data
were chosen as the reference data for a novel machine learning technique for forecasting
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cropland suitability. Using unsupervised K-Means classification, the suitability classes of
the reference data were established based on their values on historical crop parcels. These
data were divided at random to create training and test samples, which also satisfied the
need for validating the suitability results. The suitability level for the whole agricultural
region in the research area was calculated using the machine learning algorithms Random
Forest and Support Vector Machine based on training data and variables that represented
climate, soil, and topographical criteria. After categorization, machine learning procedures,
which are an objectively determined counterpart of the AHP weights from the traditional
technique of the GIS-based multicriteria analysis, evaluated the relative value of the abiotic
input criteria. The evaluation of the accuracy of the individual annual suitability results
was based on the figure of merit and the overall accuracy, and the grids obtained by the
optimal machine learning method were selected for further processing. Their values were
aggregated in the unsupervised classification by the K-Means method, resulting in the final
suitability classes (Figure 5).
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The majority of problems with GIS-based multicriteria analysis were solved by adopt-
ing the machine learning approach. It provides unbiased results, enabling the integration
of vast and intricate geographical data, and accurately determines the suitability of crops
using open-source satellite data. This approach is suitable for all main crop types as it
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requires training and testing data, but it may fall short for less frequent crops because they
are planted on fewer and smaller agricultural plots. Therefore, at the present point of devel-
opment, a machine learning-based suitability prediction approach should be utilized jointly
with the conventional approach. While the proposed methods were developed in principle
for application to all major crops, future studies should address their evaluation for other
major crops, as well as their accuracy under different agricultural management systems.

4. Conclusions and Future Outlooks

The implementation of machine learning in cropland suitability prediction models
has ensured several advantages over the conventional GIS-based multicriteria analysis.
These include objective, robust, and computationally efficient prediction using a variety of
specific environmental abiotic criteria. As these criteria, as well as the training/test data
in recent studies, were derived from open data remote sensing satellite missions, there is
immense potential for widespread global application for many crops. As was the case with
soil mapping recently, machine learning induced a paradigm shift from the conventional
approach of cropland suitability prediction. The application of global remote sensing data
also enabled the development of globally applicable accuracy assessment methods for
cropland suitability using vegetation indices and biophysical variables. This might be
the most impactful upgrade in the domain of cropland suitability prediction in recent
years, allowing for the independent assessment of the subjective conventional GIS-based
multicriteria analysis with AHP.

Nevertheless, novel machine learning-based methods for cropland suitability predic-
tion are still under research, and there is no globally standardized and straightforward
procedure. Training/test data derived from low and medium spatial resolution remote
sensing satellite missions presently require substantial coverage of individual crops in
the study area. This includes both the overall cultivated area and the presence of rela-
tively large agricultural parcels to avoid spectral noise from other crops and land cover
classes. These conditions are very often met for major crops in most locations globally
where these are cultivated (maize, wheat, rice, soybean, sunflower, etc.), but a variety
of less common, yet important, crops do not support the application of novel methods
presently. Therefore, even with the expected further development of machine-learning-
based methods for cropland suitability prediction, conventional GIS-based multicriteria
analysis is likely to remain. As the mentioned restrictions on remote sensing data and crop
coverage are unlikely to be resolved in the near future, novel and conventional suitability
prediction methods should coexist. With machine-learning-based methods used for major
crops and conventional approaches for less frequently cultivated ones, both of these will
provide invaluable complimentary benefits to sustainable cropland management planning
in the future.
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19. Jurišić, M.; Plaščak, I.; Antonić, O.; Radočaj, D. Suitability Calculation for Red Spicy Pepper Cultivation (Capsicum Annum L.)
Using Hybrid GIS-Based Multicriteria Analysis. Agronomy 2020, 10, 3. [CrossRef]

20. Kaya, T.; Kahraman, C. Fuzzy Multiple Criteria Forestry Decision Making Based on an Integrated VIKOR and AHP Approach.
Expert Syst. Appl. 2011, 38, 7326–7333. [CrossRef]

21. Rahmat, Z.G.; Niri, M.V.; Alavi, N.; Goudarzi, G.; Babaei, A.A.; Baboli, Z.; Hosseinzadeh, M. Landfill Site Selection Using GIS and
AHP: A Case Study: Behbahan, Iran. KSCE J. Civ. Eng. 2017, 21, 111–118. [CrossRef]

22. Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological Vulnerability Assessment Based on AHP-PSR Method and Analysis of Its Single
Parameter Sensitivity and Spatial Autocorrelation for Ecological Protection—A Case of Weifang City, China. Ecol. Indic. 2021, 125,
107464. [CrossRef]

23. Feyisa, G.L.; Palao, L.K.; Nelson, A.; Gumma, M.K.; Paliwal, A.; Win, K.T.; Nge, K.H.; Johnson, D.E. Characterizing and Mapping
Cropping Patterns in a Complex Agro-Ecosystem: An Iterative Participatory Mapping Procedure Using Machine Learning
Algorithms and MODIS Vegetation Indices. Comput. Electron. Agric. 2020, 175, 105595. [CrossRef]

24. Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars,
J.G.B.; Walsh, M.G.; et al. SoilGrids 1km—Global Soil Information Based on Automated Mapping. PLoS ONE 2014, 9, e105992.
[CrossRef] [PubMed]

25. Radocaj, D.; Obhodas, J.; Jurisic, M.; Gasparovic, M. Global Open Data Remote Sensing Satellite Missions for Land Monitoring
and Conservation: A Review. Land 2020, 9, 402. [CrossRef]

26. Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s Sentinel Missions in Support of Earth System Science.
Remote Sens. Environ. 2012, 120, 84–90. [CrossRef]

27. Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of
Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [CrossRef]

http://doi.org/10.1016/j.biocon.2012.01.068
http://doi.org/10.3390/land7040133
http://doi.org/10.1007/s11119-016-9495-0
http://doi.org/10.3390/land10020107
http://doi.org/10.1111/j.1461-0248.2004.00676.x
http://doi.org/10.3390/agronomy11040703
http://doi.org/10.18047/poljo.28.1.8
http://doi.org/10.3390/toxics9030042
http://doi.org/10.1016/j.scitotenv.2020.140553
http://doi.org/10.1016/j.compag.2019.105062
http://doi.org/10.1007/s13593-011-0037-x
http://doi.org/10.3390/agronomy8030025
http://doi.org/10.1007/s10584-011-0344-x
http://doi.org/10.3390/agronomy11081620
http://doi.org/10.1371/journal.pone.0169748
http://doi.org/10.3390/rs12091463
http://doi.org/10.1016/j.geoderma.2019.05.046
http://doi.org/10.3390/agronomy10010003
http://doi.org/10.1016/j.eswa.2010.12.003
http://doi.org/10.1007/s12205-016-0296-9
http://doi.org/10.1016/j.ecolind.2021.107464
http://doi.org/10.1016/j.compag.2020.105595
http://doi.org/10.1371/journal.pone.0105992
http://www.ncbi.nlm.nih.gov/pubmed/25171179
http://doi.org/10.3390/land9110402
http://doi.org/10.1016/j.rse.2011.07.023
http://doi.org/10.1016/j.agsy.2019.02.013


Agronomy 2022, 12, 2210 13 of 14

28. Deike, S.; Pallutt, B.; Melander, B.; Strassemeyer, J.; Christen, O. Long-Term Productivity and Environmental Effects of Arable
Farming as Affected by Crop Rotation, Soil Tillage Intensity and Strategy of Pesticide Use: A Case-Study of Two Long-Term Field
Experiments in Germany and Denmark. Eur. J. Agron. 2008, 29, 191–199. [CrossRef]

29. Ayu Purnamasari, R.; Noguchi, R.; Ahamed, T. Land Suitability Assessments for Yield Prediction of Cassava Using Geospatial
Fuzzy Expert Systems and Remote Sensing. Comput. Electron. Agric. 2019, 166, 105018. [CrossRef]

30. Pronti, A.; Coccia, M. Multicriteria Analysis of the Sustainability Performance between Agroecological and Conventional Coffee
Farms in the East Region of Minas Gerais (Brazil). Renew. Agric. Food Syst. 2021, 36, 299–306. [CrossRef]

31. Binte Mostafiz, R.; Noguchi, R.; Ahamed, T. Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived
Soil-Vegetation Indices. Land 2021, 10, 223. [CrossRef]

32. Wotlolan, D.L.; Lowry, J.H.; Wales, N.A.; Glencross, K. Land Suitability Evaluation for Multiple Crop Agroforestry Planning
Using GIS and Multi-Criteria Decision Analysis: A Case Study in Fiji. Agrofor. Syst. 2021, 95, 1519–1532. [CrossRef]

33. Mandal, V.P.; Rehman, S.; Ahmed, R.; Masroor, M.; Kumar, P.; Sajjad, H. Land Suitability Assessment for Optimal Cropping
Sequences in Katihar District of Bihar, India Using GIS and AHP. Spat. Inf. Res. 2020, 28, 589–599. [CrossRef]

34. Singha, C.; Swain, K.C.; Swain, S.K. Best Crop Rotation Selection with GIS-AHP Technique Using Soil Nutrient Variability.
Agriculture 2020, 10, 213. [CrossRef]

35. Mugiyo, H.; Chimonyo, V.G.P.; Sibanda, M.; Kunz, R.; Nhamo, L.; Masemola, C.R.; Dalin, C.; Modi, A.T.; Mabhaudhi, T.
Multi-Criteria Suitability Analysis for Neglected and Underutilised Crop Species in South Africa. PLoS ONE 2021, 16, e0244734.
[CrossRef] [PubMed]

36. Shaloo; Singh, R.P.; Bisht, H.; Jain, R.; Suna, T.; Bana, R.S.; Godara, S.; Shivay, Y.S.; Singh, N.; Bedi, J.; et al. Crop-Suitability
Analysis Using the Analytic Hierarchy Process and Geospatial Techniques for Cereal Production in North India. Sustainability
2022, 14, 5246. [CrossRef]

37. Layomi Jayasinghe, S.; Kumar, L.; Sandamali, J. Assessment of Potential Land Suitability for Tea (Camellia Sinensis (L.) O. Kuntze)
in Sri Lanka Using a GIS-Based Multi-Criteria Approach. Agriculture 2019, 9, 148. [CrossRef]

38. Kilic, O.M.; Ersayin, K.; Gunal, H.; Khalofah, A.; Alsubeie, M.S. Combination of Fuzzy-AHP and GIS Techniques in Land
Suitability Assessment for Wheat (Triticum Aestivum) Cultivation. Saudi J. Biol. Sci. 2022, 29, 2634–2644. [CrossRef]
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