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Abstract: Due to the heavy computation load of closed-loop simulations, optimal control of green-
house climate is usually simulated in an open-loop form to produce control strategies and profit
indicators. Open-loop simulations assume the model, measurements, and predictions to be per-
fect, resulting in too-idealistic indicators. The method of two-time-scale decomposition reduces
the computation load, thus facilitating the online implementation of optimal control algorithms.
However, the computation time of nonlinear dynamic programming is seldom considered in closed-
loop simulations. This paper develops a two-time-scale decomposed closed-loop optimal control
algorithm that involves the computation time. The obtained simulation results are closer to reality
since it considers the time delay in the implementation. With this algorithm, optimal control of
Venlo greenhouse lettuce cultivation is investigated in Lhasa. Results show that compared with
open-loop simulations, the corrections in yield and profit indicators can be up to 2.38 kg m−2 and
11.01 CNY m−2, respectively, through closed-loop simulations without considering the computation
time. When involving the time delay caused by the computation time, further corrections in yield
and profit indicators can be up to 0.1 kg m−2 and 0.87 CNY m−2, respectively. These conservative
indicators help investors make wiser decisions before cultivation. Moreover, control inputs and
greenhouse climate states are within their bounds most of the time during closed-loop simulations.
This verifies that the developed algorithm can be implemented in real time.

Keywords: greenhouse climate; optimal control; two-time-scale; closed-loop; computation time

1. Introduction

The greenhouse system involves the interaction between climate and crop [1]. Thus,
climate control is the fundamental way to guarantee crop yield and quality. The usual
method of climate control is to determine the climate setpoints based on growers’ experi-
ence, and then track the setpoints through feedback control [2]. However, manual settings
cannot ensure meeting the requirements of crop growth and energy reduction. Optimal
control realizes the maximization or minimization of the control objective based on the
system dynamic model. However, there are two time-scales in the greenhouse system.
Crop growth operates at the “day” level, while greenhouse climate operates at the “minute”
level [3]. Thus, optimal control of greenhouse climate usually employs the strategy of
hierarchical control, dividing the control system into “optimal-level” and “control-level”.
Setpoint trajectories are optimized at the “optimal-level”, while setpoint trajectories are
tracked at the “control-level” [4]. However, setpoint trajectories are determined by the
long-term weather predictions, which are different from the real weather data in the
implementation [5]. Thus, tracking setpoint trajectories optimized with the long-term
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weather predictions leads to high energy costs. To handle this problem, Van Henten and
Bontsema [3] introduced the method of two-time-scale decomposition, which uses the
crop state trajectory and costate trajectory optimized at the “optimal-level” as parts of the
control objective at the “control-level”. In this way, the control performance loss caused by
long-term weather prediction errors is reduced through more accurate short-term weather
predictions at the “control-level”. This realizes the decomposition of “optimal-level” and
“control-level”.

Open-loop simulations at the “optimal-level” compute only once, costing a relatively
short computation time. Thus, current research on optimal control of greenhouse climate
usually produces control strategies through open-loop simulations to guide cultivation.
Due to the problem of two time-scales, most research minimized the energy cost based
on the greenhouse climate deterministic model [6]. Van Beveren et al. [7] produced the
open-loop optimal control strategies of the combined heat and power device based on the
greenhouse heating and cooling requirements, resulting in a reduction of 29% in energy
costs. Lin et al. [8] produced open-loop optimal control strategies for greenhouse climate
under four different control objectives, which are minimization of energy costs, water
costs, CO2 costs, and total costs. Seginer et al. [9] produced open-loop climate control
strategies based on the greenhouse climate—tomato growth mechanistic model. Results
showed that the profit was increased by 3.4 EUR m−2 y−1 when the control objective was
maximizing the total profit. However, the profit was decreased by 11.5 EUR m−2 y−1 when
the control objective was minimizing the energy cost. Thus, minimizing the energy cost
cannot guarantee a high total profit. Revenues brought by increasing the crop yield and
quality should also be considered.

Closed-loop optimal control at the “control-level” usually employs the form of re-
ceding horizon control [10]. Model prediction control is widely researched with the aim
of tracking setpoints optimized at the “optimal-level” [11–14]. Ren et al. [15] proposed
an economic model predictive control (EMPC) method for a greenhouse to manage the
energy–water–carbon–food nexus for cleaner production and sustainable development.
Chen et al. [16] proposed a novel nonlinear model predictive control (NMPC) framework
for greenhouse climate control to minimize the total control cost mainly coming from
energy use. Su et al. [17] developed an online optimization algorithm for the daily mean
temperature according to different tomato growth stages at the “control-level”. However,
model prediction control cannot guarantee a maximum profit because of the influence of
long-term weather prediction errors.

The method of two-time-scale decomposition [3] mitigates the influence of external
weather on the setpoints. Tap [18] investigated the control performance loss caused by
“lazy-man” short-term weather predictions, which assume the external weather to be the
same as measured during the control horizon. Comparisons showed that the performance
loss of optimal control is limited with the “lazy-man” predictions when the control horizon
is within 1 h. This facilitates the online implementation of optimal control algorithms.
Xu et al. [19] researched the profitability of Chinese solar greenhouse lettuce cultivation
based on closed-loop simulations and the method of “lazy-man” short-term weather
prediction. The optimal control strategy of the thermal blanket is achieved with the aim of
maximizing profit. Xu et al. [20] also quantified the profit increase through a double closed-
loop framework that can correct long-term prediction errors by repeatedly solving the
optimization problem at the “optimal-level”. The real-time implementations are validated
through the CPU time. However, the CPU time increases drastically when the model
becomes more complex.

As one of the cities with the highest altitudes (3650 m) in the world, Lhasa (29◦65′ N,
91◦13′ E) is characterized by high solar radiation resources (about 3100 h annual sunshine
duration and 6700 MJ m−2 annual global solar radiation) and low temperature (1.6 ◦C
average temperature of the coldest month) throughout the year [21]. Because of the barren
soil caused by the special weather pattern, protected horticulture acts as a supplement to
provide fresh vegetables to residents. Although optimal control can realize the maximum
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profit of greenhouse cultivation in mild climates such as the Netherlands [1], whether
introducing this advanced technology into the high-altitude area brings profits remains
a question. Without the government subsidy, the quantification of earned profit is a way
to evaluate the sustainability of greenhouse cultivation. Closed-loop optimal control
simulations are closer to real implementations, but the computation time of nonlinear
dynamic programming at the “control-level” is seldom considered. In this paper, a two-
time-scale decomposed closed-loop optimal control algorithm that incorporates the time
delay is simulated in Lhasa for a feasibility study. The main contributions of this paper are
as follows: 1. The difference between open-loop and closed-loop simulations is quantified
and illustrated. 2. The influence of the time delay on the performance of the closed-loop
algorithm is analyzed. 3. The special optimal control patterns in Lhasa are explained and
further suggestions are given for better greenhouse cultivation.

2. Materials and Methods
2.1. Greenhouse Climate—Lettuce Growth Mechanistic Model

The accuracy of a dynamic mechanistic model is important for the performance of
the optimal control algorithm [22]. To achieve a better balance between crop harvest and
climate control, the model has to be calibrated with the measured data of both crop harvest
and greenhouse climate [23]. To achieve a good performance with the optimal control
algorithm in Lhasa, a calibrated greenhouse climate—crop growth model was chosen for
the feasibility study.

Venlo greenhouses are usually thought to be high-tech and have been researched
intensively with respect to the optimal control algorithm [24,25] because of massive in-
vestigations into its dynamic modelling [26]. Lettuce is a typical greenhouse vegetable
with a short growing period and a high nutrient value. For the feasibility study this paper
investigates the optimal control of Venlo greenhouse lettuce cultivation in Lhasa. The
structure of a Venlo greenhouse in Lhasa is assumed to remain the same as that in the
Netherlands. Thus, the greenhouse climate dynamics can be simulated properly given the
same greenhouse structure and collected external weather data in Lhasa. The mechanistic
model of greenhouse climate—lettuce growth follows one that has been calibrated in the
Netherlands [27].

The structure of the model is shown in Equations (1)–(4). Lettuce dry mass Xd is
relevant with photosynthesis cαβ ϕphot,c and respiration cresp,dXd2(0.1XT−2.5). Internal CO2

concentration Xc is relevant with photosynthesis ϕphot,c, respiration cresp,dXd2(0.1XT−2.5),
CO2 supply Uc, and ventilation ϕvent,c. Internal temperature XT is relevant with heating
supply Uq, ventilation Qvent,q, and solar radiation Qrad,q. Internal humidity Xh is relevant
with transpiration ϕtransp,h and ventilation ϕvent,h. The values, units, and physical meanings
of parameters, as well as detailed descriptions of the elements in Equations (1)–(4), can be
found in reference [27].

dXd
dt

= cαβ ϕphot,c − cresp,dXd2(0.1XT−2.5) (1)

dXc

dt
=

1
ccap,c

[
−ϕphot,c + cresp,dXd2(0.1XT−2.5) + Uc − ϕvent,c

]
(2)

dXT
dt

=
1

ccap,q

[
Uq −Qvent,q + Qrad,q

]
(3)

dXh
dt

=
1

ccap,h

[
ϕtransp,h − ϕvent,h

]
(4)
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The state space mapping (state x, control input u, external input d) of the control
system is shown in Equation (5), with meanings and units shown in Table 1. Note that the
unit of ventilation rate m3 m−2 s−1 is derived from the volume of ventilated air per square
meter of greenhouse area per second.

x =


Xd
Xc
XT
Xh

, u =

Uc
Uq
Uv

, d =


Vrad
VT
Vc
Vh

 (5)

Table 1. Physical meanings and units in the state space mapping.

Symbol Physical Meaning Unit

Xd Lettuce dry mass Kg [DM] m−2

Xc Internal CO2 concentration kg m−3

XT Internal temperature ◦C
Xh Internal humidity kg m−3

Uc CO2 supply rate kg m−2 s−1

Uq Heating rate W m−2

Uv Ventilation rate m3 m−2 s−1

Vrad External solar radiation W m−2

Vc External CO2 concentration kg m−3

VT External temperature ◦C
Vh External humidity kg m−3

Due to the input load of control actuators, there should be upper and lower bounds
on the control inputs, as shown in Table 2. These bounds follow reference [3].

Table 2. Bounds of control inputs.

Bound Uc(kg m−2 s−1) Uq(W m−2) Uv(m3 m−2 s−2)

Upper bound 1.2 × 10−6 150 7.5 × 10−3

Lower bound 0 0 0

2.2. Control Objective

The control objective is the performance to be minimized or maximized by the optimal
control algorithm. In this paper, the control objective is the profit P to be maximized in
the control process, as shown in Equation (6). Harvesting the lettuce with a certain weight
would turn the optimal control problem into one with a free final time that can also be
solved. However, scheduling arrangements concerning the delivery of lettuce to sellers or
customers generally demand a fixed harvest time. Moreover, vegetables are mostly sold by
weight in China while their size may vary greatly [19]. Thus, a fixed harvest time t f is set
in the control objective. Through market investigation, parameters of the control objective
are specified based on the local cost in Lhasa. cpri = 9 is the price of lettuce fresh weight (¥
kg[FW]−1). c f w = 21 is the ratio of lettuce fresh weight to dry mass [24]. cCO2 = 17 is the
price of CO2 supply (¥ kg−1). cq = 1.75 is the price of the heating supply (¥ kWh−1). The
cost associated with natural ventilation is assumed to be negligible.

P(u(t)) = cpric f wXd

(
t f

)
−

t f∫
t0

(
cCO2Uc(t) + cqUq(t)

)
dt (6)
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Extreme greenhouse climate might lead to diseases that damage the quality of the
lettuce. However, it is difficult to quantify the profit loss caused by this damage. Thus,
there should be bounds on greenhouse climate, as shown in Table 3 [3].

Table 3. Bounds of greenhouse climate.

Bound Xc(ppm) XT(◦C) RXh(%)

Upper bound 1400 40 90
Lower bound 0 6.5 0

2.3. Control Algorithm

The framework of optimal control of greenhouse cultivation based on two-time-scale
decomposition is shown in Figure 1. Open-loop optimal control is solved only once to
produce the rough control strategy. In simulations of the open-loop optimal control, the
greenhouse climate state is not fed back into the control system. In simulations of the
closed-loop optimal control, the greenhouse climate state is fed back repeatedly into the
receding horizon optimal controller.

Figure 1. Closed-loop optimal control of greenhouse climate based on two-time-scale decomposition.

The open-loop optimal control is solved with the control objective of maximizing the
profit P as shown in Equation (6). t0 is the start of the growing period and specified to be
0 s. As the growing period is 50 days, t f is specified to be 4.32 × 106 s. Long-term weather
prediction d is taken from the smoothed weather data. The method of quasi-steady state is
used to reduce the computation load. This method assumes the greenhouse climate state to

be static, which means dxg
dt =


dXc
dt

dXT
dt

dXh
dt

 = 0 in Equations (2)–(4). Then, the greenhouse climate

state xg, the long-term weather prediction d, the bounds on greenhouse climate as shown
in Table 3, and the bounds on control inputs as shown in Table 2 are expressed in algebraic
form in the lettuce growth model as shown in Equation (1). Details of the quasi-steady
state computations are shown in [28]. In this way, the number of states in the greenhouse
system model is reduced to 1, which is the lettuce state xc = Xd. Then, the pseudo-spectral
algorithm is used to solve the open-loop optimal control problem with the software Tomlab.
To increase the computing speed, the greenhouse system state x and the control input u
should be scaled so that their maximal value equals 1. In addition, the number of collocation
points should be gradually increased to 600. Since the growing period is 50 days, on average
there is one collocation point each 2 h. The average sampling interval of 2 h in 50 days
cannot be shorter in the current simulations because the computation load increases with
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the number of collocation points. On the other hand, the maximum number of collocation
points in Tomlab is 608 [29].

In the method of two-time-scale decomposition [3], the crop state trajectory xc and the
costate trajectory λc computed from the “optimal-level” are transferred to the “control-level”
as parts of the control objective as shown in Equation (7). Optimal control at the “control-
level” only concerns the greenhouse climate model as shown in Equations (2)–(4). In this
way, the optimal control of the whole problem is decomposed into a slow subproblem
dealing with crop dynamics at the slow time-scale and a fast subproblem dealing with
greenhouse climate dynamics at the fast time-scale. In closed-loop simulations, the fast
subproblem is repeatedly solved with the measured data.

J(u(t)) =

t f∫
t0

[
−
(
cCO2Uc(t) + cqUq(t)

)
+ λd

T
(

cαβ ϕphot,c − cresp,dXd2(0.1XT−2.5)
)]

dt (7)

Due to unavoidable model deficiencies and sensor errors, the optimal control algorithm
is usually implemented in a closed-loop form. Receding horizon optimal control (RHOC)
is used in this research with the control horizon H being 1 h. The method of “lazy-man” is
used for the short-term weather prediction [18]. The update interval of the receding horizon
optimal controller is set to 10 min to match the variance frequency of the external weather
in China. A longer update interval will lead to heavier greenhouse climate bound (shown
in Table 3) violations due to short-term weather prediction errors. Moreover, the profit
losses due to these violations are difficult to quantify in the control objective (6). That is
also why these bounds are treated as hard constraints in the optimal control algorithm. The
sampling interval of the control input u in the control horizon H is set to 20 min to increase
the sensitivity of the control objective to control inputs in the first sampling interval [30].

Since the control inputs in this closed-loop optimal controller are piecewise constant,
optimal control in this controller is first solved quickly with the pseudo-spectral algorithm
in Tomlab. Then, the results are further improved in a digital optimal control algorithm
that uses a nonlinear dynamic programming function “fmincon” in Matlab. This speeds
up the solving of the digital optimal control problem [31]. Since the technology of online
feedback of the crop state is not matured [32], this paper will not research the strategy of
double-closed-loop optimal control [20]. The flow chart of the optimal control algorithm is
shown in Figure 2. The computation time is considered in this research so that the closed-
loop optimal control algorithm is closer to real implementations. When the computation
time of the pseudo-spectral algorithm and the digital optimal control algorithm is within
10 min, the time delay of implementing the control equals the computation time. When the
computation time is over 10 min, control inputs remain the same as those at the previous
update instant. The investigation of computation time was performed on a commercial PC
(CPU: i5-10500 @3.1 GHz, RAM: 8 GB).
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Figure 2. Flow chart of the optimal control algorithm.

3. Results and Discussion
3.1. External Weather

The external weather data in Lhasa were collected every 10 min during the first 50 days
of the year 2022, as shown in Figure 3. Note that in open-loop simulations the weather data
are smoothed at each 2 h to cut down on computation load, while in closed-loop simulations
the weather data are those collected every 10 min. From boxplots of the external weather,
we can see that the selected period is cold (with a median of −2.7 ◦C for temperature) and
dry (with a median of 25.2% for relative humidity). The solar radiation during the day can
be as high as 1154 W m−2, although the median is 0 W m−2 because the dark period is
longer than the light period.

The growing period of lettuce grown in a greenhouse without LED lighting can last
for 40 to 60 days. In winter the lettuce’s growing period can be up to 60 days, but in an
optimally controlled greenhouse the lettuce can grow faster [24]. Therefore, 50 days of
data were chosen to simulate the optimally controlled greenhouse in winter. The selected
period covers the coldest days in Lhasa when the highest energy is spent on heating.
Verification during this period is a guarantee of feasibility for the rest of the year. The choice
of 50 days matches the reality of lettuce growth and is also adopted in relevant simulation
research [19,20,24,27,28].
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Figure 3. External weather in Lhasa. (a) External solar radiation, (b) External CO2 concentration,
(c) External temperature, (d) External relative humidity.

3.2. Open-Loop Simulations

Based on the order-reduced model through the method of quasi-steady state, open-
loop optimal control is solved with the pseudo-spectral algorithm. Only the crop state
trajectory xc and the costate trajectory λc are used in the control objective of the closed-loop
optimal controller, as shown in Figure 2. The crop state trajectory and costate trajectory are
shown in Figure 4. The costate trajectory represents the sensitivity of the control objective
P in the open-loop optimal control to the lettuce state xc = Xd. We can see that the costate
is very high in the beginning and gradually increases in the later stage. This indicates that
the increase in lettuce state in the early stage is very important for the profit of the whole
growing period. The slow increase in the latter part indicates that it is gradually becoming
more important to increase the lettuce state for a higher profit.

Figure 4. Crop state trajectory and costate trajectory. (a) Crop state trajectory, (b) Costate trajectory.

The yield and profit indicators obtained from open-loop simulations are 14.49 kg [FW]
m−2 and 13.72 CNY m−2 respectively. One should note that these indicators are obtained
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with the assumption that the model perfectly describes the behavior of the greenhouse–
lettuce system. However, due to the performance loss caused by a shorter control horizon
and short-term weather prediction errors in the closed-loop simulations, these indicators
might be too idealistic and need to be corrected through closed-loop simulations. In closed-
loop simulations, the performance loss caused by shorter sampling intervals, short-term
weather predictions, and the computation time will be considered.

3.3. Closed-Loop Simulations

The closed-loop simulations involving the time delay caused by the computation
process of nonlinear dynamic programming are performed over the whole growing period.
The unavoidable shorter control horizon and the use of “lazy-man” short-term weather
predictions lead to certain performance losses in the closed-loop simulations because of
inadequate capture of the climate dynamics [19]. The inadequate capture of the climate
dynamics leads to the difference between measured and computed states. Then the feed-
back in the closed-loop algorithm helps to correct the difference. Control inputs and the
greenhouse climate during 2 days are shown in Figures 5 and 6. We can see that all control
inputs and the greenhouse climate are within their upper and lower bounds as shown in
Tables 2 and 3.

Figure 5. Control inputs during 2 days. (a) Supply rate of CO2, (b) Energy supply, (c) Ventilation rate.

We can also see from Figure 5 that CO2 is usually supplied more as the solar radiation is
higher. However, ventilation also happens during the day to lower the internal temperature.
As a result, CO2 concentration is far from its upper bound, as shown in Figure 6. This is a
trade-off between costs associated with prices. Because of the low external temperature
and high solar radiation, the optimal controls in Lhasa are quite different from those
in the Netherlands [19]. It is better to make use of cooling devices that can keep CO2
concentration at a higher level for better crop growth, such as the heat pump, but the
feasibility of introducing such high-cost devices needs to be further researched. One may
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wonder why the maximum energy supply is close to midday as shown in Figure 5. This is
relevant to the external temperature during these 2 days as shown in Figure 7.

Figure 6. Greenhouse climate during 2 days. (a) Internal CO2 concentration, (b) Internal temperature,
(c) Internal relative humidity.

Figure 7. External temperature during 2 days.

Numbers in closed-loop simulations without and with the computation time (denoted
as RHOC and RHOCt) are shown in Table 4. When comparing the yield and profit in RHOC
of Table 4 with their indicators in the open-loop simulations as shown in Section 3.2, we
can see that they are all corrected to be lower (2.38 kg [FW] m−2 in yield, 11.01 CNY m−2 in
profit). These corrections are consequences of the short-term weather prediction errors, the
inadequate capture of climate dynamics due to a shorter control horizon, and the stricter
satisfactions of greenhouse climate bounds due to a shorter sampling interval.
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Table 4. Numbers in closed-loop simulations without and with the computation time.

Control
Pattern

Yield
(kg [FW] m−2)

Crop
Revenue

(CNY m−2)

CO2
(kg m−2)

CO2 Cost
(CNY m−2)

Energy
(kWh m−2)

Energy
Cost

(CNY m−2)

Profit
(CNY m−2)

RHOC 12.11 109.03 0.74 12.54 53.60 93.78 2.71
RHOCt 12.01 108.13 0.74 12.50 53.61 93.79 1.84

Closed-loop simulations seldom consider the time delay caused by the computation
time of nonlinear dynamic programming in the receding horizon optimal controller, but
the performance loss caused by the computation time is unavoidable. We can see from
Table 4 that the yield and profit are further corrected to be lower (0.1 kg [FW] m−2 in yield,
0.87 CNY m−2 in profit) if we compare their numbers in RHOC and RHOCt. Although
these corrections are not very high, they provide more realistic indicators for investors to
make decisions. Moreover, the algorithm can be implemented in a real optimal controller
because the computation time is unavoidable. One can see that the changes in CO2 cost
and energy cost are very little, but the time delay leads to a slower response of the control
system to the climate dynamics. This leads to a decrease in the actual yield and a resultant
decrease in profit. One reason for the relatively sensitive response of the optimal control
to the latency is that the crop model is sensitive to the climate. Another reason is that the
latency leads to more effort to satisfy the greenhouse climate bounds in the closed-loop
simulations. One should note that the profit is computed from the control objective in
Equation (6) with local prices.

Growing lettuce in a heated and CO2-dosed Venlo greenhouse seems unprofitable
when involving the fixed costs associated with the rent, labour, fertilizers, seeds, etc.
However, we should keep in mind that the selected period covers the coldest days that cost
the highest energy for heating. It can be expected that the profit can be higher during one
cultivation period in the rest of the year. Further exploitation of the abundant solar energy
in Lhasa can be investigated with the low-cost active solar water wall [33–35]. According to
Xu etc. [34], the active solar water wall releases on average 22.6 W m−2 heat in Beijing daily.
With stronger solar radiation in Lhasa, more than 27.12 kWh m−2 energy can be saved
for heating for 50 days. This accounts for 47.49 CNY m−2 based on the energy price of
1.75 ¥ kWh−1 in Lhasa. As a result, the profit can be increased to 49.30 CNY m−2 according
to Table 4. Moreover, the obtained profit represents the lowest level during the year because
of the higher energy cost for heating in winter. For the rest of the year, a higher profit might
compensate for the winter heating costs of greenhouse cultivation in Lhasa. The use of
Chinese solar greenhouses might also help to cut down on energy costs [14]. However,
dynamic modelling of the Chinese solar greenhouse climate should be validated before
implementing the optimal control algorithm.

3.4. Summary of Time

As this paper deals with different time-scales and the computation time, a summary
of different durations of time is shown in Table 5. The growing period of 50 days was
fixed in this research because scheduling arrangements concerning the delivery of lettuce
to sellers or customers generally demand a fixed harvest time [30]. The 2 h sampling
interval of the weather data in open-loop simulations was smoothed from the collected
weather data to cut down on computation load [27]. The 1 h horizon of “lazy-man” weather
prediction equals the control horizon in closed-loop simulations, and this is decided by
the performance loss through research [18]. The 20 min sampling interval of controls is
longer than the 10 min update interval to increase the sensitivity of performance to controls
in the update interval [29]. The update interval of control inputs is related to the varying
frequency of the external weather [29]. The longest computation time is within the update
interval of 10 min. If the time delay caused by the computation time is longer than the
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update interval, the algorithm will keep the control inputs as previously computed until
the current computation finishes as shown in Figure 2.

Table 5. Different durations of time.

Time Type Duration

Growing period 50 days
Sampling interval of weather data in open-loop simulations 2 h

Prediction horizon of lazy-man weather prediction 1 h
Control horizon in closed-loop simulations 1 h

Sampling interval of controls in closed-loop simulations 20 min
Update interval of the control inputs 10 min

Sampling interval of weather data in closed-loop simulations 10 min
Longest computation time in closed-loop simulations 32 s
Average computation time in closed-loop simulations 11 s

Although the computation time seems trivial compared with the update interval, it
grows drastically with the increase in the number of model states or control inputs [20].
Therefore, it is important to quantify the influence of computation time before cultivation.
One should note that the uncertainties in the model can be handled by an adaptive optimal
controller [28] and this will further increase the computation time. However, this is out of
the scope of this paper and will be researched in the future with real implementations.

4. Conclusions

1. Open-loop simulations of the optimal control of greenhouse lettuce cultivation in
Lhasa generate yield and profit indicators of 14.49 kg m−2 and 13.72 CNY m−2, respec-
tively. In closed-loop simulations, these indicators are corrected to 2.38 kg m−2 and
11.01 CNY m−2 lower, respectively, because of short-term weather prediction errors
and a shorter sampling interval than that in the open-loop. When the computation
time of the nonlinear dynamic programming is considered, further corrections in
yield and profit indicators from closed-loop simulations can be up to 0.1 kg m−2 and
0.87 CNY m−2, respectively. These indicators are closer to real implementations and
can help investors make wiser decisions before cultivation.

2. Due to the low temperature and high solar radiation in Lhasa, a mix of simultaneous
ventilation and CO2 supply occurs as a trade-off between costs associated with prices.
As a result, the CO2 concentration is far from its upper bound although the CO2
supply is maximum at noon. Although the external temperature is low, ventilation
is needed at noon for reducing the internal temperature because of the high solar
radiation.

3. The profit in optimal control of Venlo greenhouse lettuce cultivation can be as low as
1.84 CNY m−2 on the coldest days in Lhasa. However, if the abundant solar energy
in Lhasa can be further exploited, such as with an active solar water wall, the profit
can be increased to more than 49.30 CNY m−2. For future applications, low-cost
solar-heating devices should be modelled and incorporated into the optimal control
algorithm to increase profit and sustainability.
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