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Abstract: Tea brewed from leaves of Camellia sinensis (L.) is one of the most popular worldwide non-
alcoholic beverages, and nitrogen is an essential nutrient that affects the growth and development
of the tea plant. Inorganic nitrogen and organic nitrogen are major forms of nitrogen that are
absorbed by the tea plant and also play an important role as a vital signaling molecule, which also
affects the nitrogen use efficiency (NUE) of C. sinensis in its growth and development period. In
addition, improving the NUE of C. sinensis is therefore important for the economic and environmental
sustainability of the tea plantation industry. In this review, we discuss recently identified tea plant
genes that have an essential role in the responses of different nitrogen forms in the short-term period
and in the long-term nitrogen effect. We also focus in particular on how nitrogen regulates the
growth and development of the tea plant, mainly on the aspects of root system architecture and
leaf metabolism that are important parts of root development and leaf quality. Finally, this review
concentrates recent research that has expanded the outline of the mechanisms underlying nitrogen
responses and regulation in plants, focusing in particular on tea plants.

Keywords: tea plant (Camellia sinensis (L.)); nitrogen form; nitrogen regulation; short-term nitrogen
effect; long-term nitrogen effect; root development; leaf quality

1. Introduction

The tea plant is the source of one of the worldwide’s most popular beverages, con-
sumed for both its pleasing flavor and its many beneficial health effects. Section Thea of
genus Camellia contains 12 species and 6 varieties 2 of which are widely cultivated for tea
production: Camellia sinensis (L.) O. Kuntze and Camellia sinensis var. assamica (Masters)
Kitamura [1,2]. All species in section Thea are found in China, and almost all have been used
by local people for consumption and/or tea brewing in areas where they naturally occur.

The productivity of crop plants—including tea—is strongly influenced by soil avail-
ability of nitrogen (N) [3–5], and changes in the supply of this essential macronutrient
have profound effects on plant growth and development [6]. Roots of the tea plant can
absorb inorganic nitrogen forms (such as nitrate and ammonium) and organic nitrogen
forms (such as amino acids and peptides) [7], but supplies of both are typically limited in
natural and agricultural ecosystems. As a result, crop yields are sustained only by annual
application of thousands of tons of nitrogen fertilizers. Harvest of high-yield crops then
removes N from the system, necessitating continued N applications to sustain productivity
over time [8]. Furthermore, much of the applied N is not acquired by plants but is instead
lost to leaching [9]. Because there have been no substantial improvements in crop N-use
efficiency in the past 50 years [10], high levels of N fertilizer application not only exact a
heavy economic cost but also lead to numerous environmental problems [1,11] including
global warming and water pollution [12,13]. Tea plantations are not immune to these
significant environmental consequences and economic costs, and understanding how tea
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plants sense, acquire, respond to, and use various N forms is thus critical for sustainable
tea cultivation.

Indeed, N is the most limiting factor for both tea plant growth and tea leaf quality.
Application of N fertilizer rapidly increases new shoot production as well as leaf content
of nitrogenous compounds, such as free amino acids some of which contribute directly to
tea flavor and health benefits [14,15]. Some studies have reported that ammonium has a
greater effect than nitrate on tea plant growth and tea quality [16]. Nonetheless, tea plant
roots obtain the most N from the soil as nitrate, which is at least partially reduced in the
roots before transport to the leaves [17], and nitrate concentrations in tea leaves are thus
quite low (<0.06 g NO3

− kg−1 DW) [18]. Nitrate is also the predominant N form in aerobic
soils [11] and functions as a molecular signal that mediates both short- (minutes to hours)
and long-term (days) plant responses [6,19]. In addition to nitrate and ammonium, plants
can also acquire urea and amino acids, another nitrogen forms from the soil [20], and the
latter represent a substantial N pool in some soil types [21–23]. The quality of tea is largely
dependent on the contents of polyphenols, theanine, and caffeine in the newest shoots or
leaves [24,25], which are in turn related to amino-acid uptake from the soil, especially in
organic plantations [25].

This review discusses several recently identified genes that have an essential role in the
nitrogen response some of which are involved in short-term and long-term nitrogen effects
(e.g., CsAMTs, CsNRTs, CsNPFs, CsLHTs, CsCIPKs). Finally, we focus on the importance of
nitrogen uptake and perception, effects of nitrogen signaling, fine-tuning of transcriptional
control, and events that connect nitrogen signals with developmental responses.

2. Short-Term Nitrogen Effects: The Genes Involved in Nitrogen Response Process

The short-term nitrogen effect, also called the primary nitrogen response, describes
the rapid regulation of numerous plant genes that occurs immediately after plant nitrogen
exposure. In recent years, a number of the molecular components that participate in
nitrogen signaling have been identified in model plants, such as Arabidopsis [26,27] and
rice [28,29]. In Arabidopsis, nitrate transporter genes (AtNRTs) have been classified on the
basis of their expression as nitrate inducible, repressible, or constitutive throughout the
whole plant [26,30], and the roles of ammonium transporters (AtAMTs) in root ammonium
uptake have been characterized [31]. OsNRT1.1b, homolog of AtNRT1.1, has also been
identified in rice, and variations in OsNRT1.1b have been shown to affect nitrate absorption
and transport [32]. Both AMT [33] and NRT genes [30] are known to regulate plant nitrogen
requirements through their roles in N acquisition, capture, transport, and/or release.

In tea plants, a number of genes whose proteins are required for nitrogen assimilation
and transport are upregulated rapidly upon N exposure [34–36] and are thus considered
to participate in the primary nitrogen response. Researchers have characterized several of
the key regulators that mediate this response using a combination of genetics and systems
biology methods.

2.1. Nitrogen Transporters

Tea plants have been reported to utilize ammonium more efficiently than nitrate,
resulting in better growth [37], and this finding has subsequently been confirmed by other
researchers using 15N labelling of hydroponically grown tea plants [38]. However, young
shoots of plants fed with nitrate had a greater total catechin content and higher expression
of genes encoding the flavonoid biosynthetic enzymes dihydroflavonol 4-reductase (DFR),
chalcone synthase (CHS), and phenylalanine ammonia-lyase (PAL) compared with shoots
from ammonium-fed plants [39]. As the main inorganic N forms absorbed by tea plants,
ammonium and nitrate also act as signals to induce rapid expression of genes involved
in the uptake and assimilation of inorganic N [40,41] and in nitrogen-carbon metabolic
pathways [41]. AMTs act as sensors of ammonium, whereas NRTs act as sensors of nitrate,
and perception of either stimulus results in N signal transduction [42].
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Homologs of the NRTs and AMTs have been identified in C. sinenesis. The Cheng
laboratory reported contrasting expression patterns of the ammonium transporter genes
CsAMT1.1 and CsAMT3.1 in response to N supply: CsAMT1.1 was upregulated in tea leaves
and buds by a short (2–6 h) N exposure, whereas CsAMT3.1 was upregulated in leaves
after a longer N exposure (72 h) [43]. A third ammonium transporter gene, CsAMT1.2,
was highly expressed in roots and strongly induced by a shorter N (ammonium) exposure
period. The latter gene may have an important role in ammonium absorption by tea plant
roots [43]. In a separate study, CsAMT1.4 was highly expressed in pollen [44] and also in
flowers, suggesting that it may participate in ammonium transport to floral organs [45].
CsAMTs were also expressed in leaves and had light-responsive promoters [45], consistent
with a previous study in which CsAMTs were suggested to regulate photorespiratory
ammonium metabolism and assimilation of C and N [46].

A number of recent studies have also examined NRT genes in C. sinenesis. Expression
of the primary nitrate response genes CsNRT1.1 and CsNRT1.2 was strongly induced as the
tea plants were cultured with NO3

− starvation for 10 days under the hydroponic system
and also showed a complementary expression pattern after nitrate resupply [47]; both
of these genes also appear to affect absorption and transportation of nitrogen dioxide in
leaves [48]. Zhang et al. examined the expression of CsNRT2 and CsNRT3 genes in tea
plants and concluded that CsNRT2.4 was mainly involved in root uptaking nitrate, whereas
CsNRT3.2 appeared to assist CsNRT2 in nitrate sensing and transport [47]. Zhang et al.
also found that overexpression of CsNRT2.4 increased the rate of root nitrate uptake at
a low nitrate concentration. Their results suggested that CsNRT2.4 is sensitive to nitrate
and encodes a high-affinity transporter (HAT) that could regulate nitrate transport in
C. sinensis [47]. Recent work has further underscored the complexity of NRT1-mediated
regulation, as Arabidopsis NRT1.1 has been shown to activate at least four different signaling
mechanisms [49].

Nitrate transporter 1/peptide transporter family (NPF) proteins are another type
of nitrate and peptide transporter in plants [50,51] and have previously been character-
ized in Arabidopsis [52] and wheat [50]. Recent research revealed that both CsNPF2.3 and
CsNPF6.1 are localized to the plasma membrane in C. sinenesis, consistent with their hy-
pothesized function as transmembrane nitrate transporters [53]. Transcription of CsNPF4.1
and CsNPF4.8 appeared to be suppressed under high-nitrate conditions [53] (Figure 1).

2.2. Transcription Factors

A number of key transcription factors are known to coordinate plant N responses.
Among them are the plant-specific lateral organ boundaries domain (LBD) proteins, a major
family of transcription factors that contain a zinc finger-like domain. The LBD proteins have
crucial roles in lateral organ and pollen development, plant regeneration, and pathogen
and hormone responses [54,55]. A total of 31 CsLBD genes were originally identified in the
tea genome database [56], and that number has now increased to 54 [57]. Several CsLBDs
have been functionally characterized. CsLBD37 and CsLBD39 were shown to be important
nitrate-response regulators [58,59], and expression of CsLBD37/39 is strongly induced by
nitrate [58,59]. CsLBD37, a homolog of Arabidopsis AtLBD37, belongs to class II [58], the
second of two LBD subfamilies [55]. Teng and colleagues revealed that CsLBD37 overexpres-
sion downregulates nitrate transport genes, and it thus appears to function as a negative
regulator in nitrate signaling [58]. CsLBD39 also belongs to LBD class II [59]. Its overexpres-
sion in transgenic Arabidopsis led to reductions in nitrate content and downregulation of
genes involved in nitrate transport and regulation, suggesting that CsLBD39 may also act as
a negative regulator during nitrate signal transduction in C. sinensis [59] (Figure 1).
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Figure 1. Schematic representation of some genes involved in the nitrogen response under different nitrogen forms (ammonium, nitrate, amino acid 
and peptides). The yellow box indicates nitrogen or a nitrogen form; the blue box indicates a nitrogen transporter factor; the orange box indicates 
protein kinases; the green box indicates a transcription factor; the light green dashed box indicates CsNRT genes family (CsNRTs). Arrow indicates 
positive regulation; blunted line indicates negative regulation. 

Figure 1. Schematic representation of some genes involved in the nitrogen response under different nitrogen forms (ammonium, nitrate, amino acid and peptides).
The yellow box indicates nitrogen or a nitrogen form; the blue box indicates a nitrogen transporter factor; the orange box indicates protein kinases; the green box
indicates a transcription factor; the light green dashed box indicates CsNRT genes family (CsNRTs). Arrow indicates positive regulation; blunted line indicates
negative regulation.
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2.3. Genes Related to N Assimilation

Genes encoding the first major enzymes of primary nitrate assimilation, such as nitrate
reductase (NR) and nitrite reductase (NiR), are also differentially regulated by different N
forms [60]. When tea plants were fed with 15N-labelled ammonium or nitrate, CsNR and
CsNiR in roots showed similar expression patterns during the experimental course [61].
However, root expression of not only CsNR and, CsNiR, but also CsGDH and CsGOGAT
was affected more strongly by ammonium than by nitrate. The results suggested that nitrate
assimilation was inefficient in tea roots, helping to explain why more N was absorbed from
ammonium than nitrate [61] (Figure 1).

2.4. Protein Kinases

Protein kinases and their interaction partners are also involved in the primary nitrate
response. These include the calcineurin B-like (CBL) Ca2+-binding proteins and the CBL-
interacting protein kinases (CIPKs), whose interactions play a central part in calcium signal
transduction, thereby regulating growth, development, and environmental stress responses
in the tea plant [62,63]. In total, 8 CsCBLs and 25 CsCIPKs have been identified in the
tea plant genome [63]. CsCIPK8 (GENE ID: TEA022816.1), also called CsCIPK7 [64], is
homologous to AtCIPK8. AtCIPK8 controls nitrate-induced expression of NRTs under
higher (but not lower) nitrate conditions and thus acts as a positive regulator of the primary
nitrate response [65]. CsCIPK23a (GENE ID: TEA006044.1) and CsCIPK23c (GENE ID:
TEA006064.1), also called CsCIPK11 and CsCIPK12 [64], are both homologous to AtCIPK23,
whose encoded protein modulates the transport function of NRT1.1 in response to nitrate
supply. AtCIPK23 phosphorylates NRT1.1 under low nitrate concentrations, enabling it
to function as a nitrate-HAT, but it dephosphorylates NRT1.1 when nitrate is sufficient,
switching it to a low-affinity nitrate transporter [66] (Figure 1).

2.5. Amino Acid Transporters CsLHT1 and CsLHT6

Because the level of amino acid is much lower in soil than in root cells, amino acid
uptake requires the presence of specific plasma membrane transporters [67] most of which
belong to the amino acid permease (AAP), proton-dependent oligopeptide transporter
(ProT), and lysine–histidine-like transporter (LHT) families in the amino acid/auxin per-
mease (AAAP) superfamily [68–72]. In Arabidopsis, the LHT family members, AtLHT1 and
AtLHT6, are critical for root amino-acid uptake, particularly acidic and neutral types of
amino acids, under soil concentrations [69].

Li et al. recently cloned seven CsLHTs from C. sinensis and grouped them into two
clusters based on their phylogenetic relationships with the Arabidopsis LHTs [35]. Ex-
periments in transgenic yeast demonstrated that CsLHT1 and CsLTH6 from cluster I of
C. sinensis genome functioned as amino-acid transporters [35]; both genes encoded plasma
membrane proteins, were in high expression in root part, and were upregulated in response
to glutamate feeding, consistent with a function in amino-acid uptake from root soil [35].
The transport activity of CsLHT1 and CsLHT6 was higher at low pH but significantly
lower at alkaline and/or neutral pH, and their glutamate uptake was nearly abolished
by addition of the protonophore CCCP and the H+-ATPase inhibitor DES. These results
are consistent with the function of CsLHT1 and CsLHT6 as amino acid-proton cotrans-
porters [35]. CsLHT1 was ultimately shown to be a HAT for a wide variety of amino acids
(Km ~40 µM for Glu-N), whereas CsLHT6 was characterized as a low-affinity transporter
(Km ~2.5 mM for Glu-N) with higher substrate specificity [35]. In field production, tea
plantation soils typically have amino acid concentrations less than 30 µM, and CsLHT1 may
therefore have a greater role than CsLHT6 in amino acid uptake under such conditions [35]
(Figure 1).
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3. Long-Term Nitrogen Effects
3.1. Nitrogen and Root System Architecture

Changes in root architecture growth and nutrient content in response to localized
nutrient supply have been documented in numerous species, with greater lateral root
density and elongation reported in nutrient-rich soil patches [73–77]. However, the extent
of root proliferation in response to nutrient heterogeneity differs among species [78]. The
highest N application rate produced the highest feeder root N content in clones UPASI-3
and UPASI-17, and the lowest N rate had a negative effect on feeder root N content of
UPASI-3, suggesting that root N uptake increased with increasing N application [79].
Nonetheless, there was also evidence for a negative effect of applied nitrogen on tea root
morphology and nitrogen uptake [79]. The timing of N usage influenced root growth,
and application of ammonium sulfate in the pre-monsoon season had a positive influence
on total nutrient content of feeder roots [79]. There was a significant genotype × N rate
interaction effect on root architecture growth, as some genotypes were highly responsive to
the N application whereas others were not [79]. These differences may have been related
to root cation exchange capacity (CEC): unlike nitrate, ammonium can bind to root cation
exchange sites, and roots may therefore have had greater access to of ammonium-N than
nitrate-N, particularly in heavily leached tea growing areas (Figure 2A).

Nitrogen efficiency of plants can be divided into two components: uptake efficiency
and utilization efficiency [80]. Compared with the primary root, lateral roots have a greater
surface area; their growth markedly increases the extent of the root system and enables the
plant to absorb many more nutrients from soils [81–83]. Wu’s group recently compared root
growth and gene expression in two contrasting tea genotypes: Longjing43 (LJ-43, low-N
tolerant) and Liyou002 (LY-002, high-N tolerant). They assessed plant growth phenotypes
as well as free amino acids and N contents of the soil. Low-N tolerant LJ-43 produced
more lateral roots than LY-002, suggesting that an enhanced capacity for lateral root pro-
duction may support greater N capture in this genotype [84]. The expression of several
genes involved in N transport and assimilation (such as CsNRT2.5 and CsGS2) was upregu-
lated in roots of LJ-43 sampled far from the site of fertilization, supporting the higher N
transport ability and NUE of this genotype [84]. CsAsPAT1, CsAsPAT3, CsAMT1-1, CsNR,
CsGs(CsTS)1, and CsPDC2 were upregulated in both LJ-43 and LY-002 in response to fertil-
ization, and this upregulation was greater in LY-002 than in LJ-43. By contrast, CsNRT1.7,
CsGAD1, and CsGAD2 were downregulated in LJ-43 but upregulated in LY-002, suggesting
increased activity of glutamate decarboxylase in LY-002 but reduced activity in LJ-43 [84].
CsGABA-T, CsNRT2.5, CsGS2, and CsAlaAT were upregulated in LJ-43 but downregulated
in LY-002 [84]. The glutamate decarboxylate CsGAD1 and CsGAD2 catalyze a crucial
step in γ-aminobutyric acid (GABA) biosynthesis [85–87]. The subsequent conversion of
GABA to alanine is catalyzed by γ-aminobutyric acid transaminase (GABA-T) [88], and
a GABA-T knockdown mutant showed substantial GABA accumulation [89]. Alanine
aminotransferase (AlaAT) transfers an amino group from alanine to 2-oxoglutarate, pro-
ducing glutamic acid and pyruvate [90]. Both CsGABA-T and CsAlaAT were upregulated
in LJ-43 whereas repressed in LY-002, suggesting that transformations of GABA to alanine
and alanine to glutamic acid were promoted in LJ-43 but supressed in LY-002. There was
greater GABA and alanine accumulation in LY-002 than in LJ-43, whereas glutamic acid
and theanine levels were higher in LJ-43 than in LY-002 under low-N conditions. Overall,
genotype differences in free amino acid transformations appeared to reflect differential
regulation of CsGAD1, CsGAD2, CsGABA-T, and CsAlaAT [84] (Figure 2A).
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Figure 2. Schematic representation of nitrogen regulation on root system architecture and leaf metabolism. (A) The schematic for nitrogen regulation on primary
and lateral root growth of tea plant. (B) The schematic for nitrogen regulation on leaf metabolism. The yellow box indicates nitrogen or a nitrogen form; the blue
box indicates genes involved in the nitrogen response; light red boxes indicate metabolites of tea plant; light gray indicates biological response. Arrows indicate
positive regulation. Blunted lines indicate negative regulation. CsGAD1/2, glutamic acid decarboxylase 1/2 in Camellia sinensis; CsGABA-T, γ-aminobutyric acid in
Camellia sinensis; CsAlaAT, alanine aminotransferase in Camellia sinensis; CsGS(CsTS), glutamine synthetase (theanine synthetase) in Camellia sinensis; CsNRT2.5,
nitrate transporter 2.5 in Camellia sinensis; CsNRT2.4/1, nitrate transporter 2.4/1 in Camellia sinensis; CsAMT1.4, ammonium nitrogen transporter 1.4 in Camellia
sinensis; CsMYB, MYB transcription factors in Camellia sinensis; GsGOGAT, glutamate synthase in Camellia sinensis; CsAAP, amino acid permeases in Camellia sinensis.
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N affects lateral root development via N signaling and regulates biosynthesis and
transport of hormones, such as ABA, GA, and IAA. Xinghui Li’s lab identified 296 dif-
ferentially expressed genes (DEGs) in lateral roots of tea plants exposed to different N
concentrations and auxin treatments. These genes were enriched in functions related to N
metabolism, hormone signaling, and glutathione metabolism and encoded a number of
transcription factors [91]. DEGs related to N metabolism included those encoding ammo-
nium transporters (CsAMTs), high-affinity nitrate transporters (CsNRTs), and NRT1/PTR
family proteins (CsNPFs). DEGs related to hormone signaling included auxin-related genes,
such as Aux/IAAs, auxin response factor 2 (CsARF2), and GH3 (IAA-amidosynthetase);
cytokinin-related genes encoding cytokinin dehydrogenases, cytokinin hydroxylases, and
adenylate isopentenyltransferase; and a number of genes involved in ethylene biosynthe-
sis and metabolism. Differentially expressed transcription factor genes (DEGs) encoded
members of MADS-box, NAC, WRKY, and MYB families. DEGs also included glutathione
S-transferase genes (CsGSTs) and F-box/kelch genes, whose products participate in ubiqui-
tin/26S proteasomal protein degradation [91] (Figure 2A).

CsNRT2.4 and CsNRT2.5 were upregulated in lateral roots of tea seedlings under
low-N conditions; because NRT1/2 also transport auxin under such conditions, these results
suggest that low N levels can increase CsNRT expression and thus support auxin production
and accumulation, contributing to tea plant lateral root formation [91]. Although previous
studies reported that ammonia improved tea root nitrate uptake, a separate study reported
that CsAMT and CsNRT genes had opposite expression patterns under low-N and high-N
conditions [92]. Although AtAMT1.4 is expressed in pollen of Arabidopsis [44], CsAMT1.4
(CSA018499) was expressed in lateral roots of the tea plant [91]. Expression of CsAMT,
CsNRT, and CsNPF genes revealed a synergistic effect of auxin and N signaling on lateral
root development. Low-N treatment induced auxin biosynthesis and levels of related
transcripts and also affected cytokinin metabolism and ethylene biosynthesis, thereby
enhancing lateral root formation [91]. Transcription factors from the NAC, MADS-box,
MYB and WRKY families also promoted lateral root gowth in tea plants through their
effects on secondary cell wall biosynthesis [91]. N deficiency and auxin inhibited secondary
wall formation by suppressing CsMYB expression to facilitate lateral root production. N
deficiency and auxin also synergistically modulated the GSH/GSSG ratio through their
effects on glutathione metabolism. CsMADS, CsNAC, and CsWRKY gene expression was
also influenced by auxin and N treatments, as was the expression of early auxin response
genes, such as GH3 and Aux/IAAs [91], indicating that auxin content is increased under
low-N conditions in lateral roots of C. sinenesis [93–96] (Figure 2A).

A recent study examined the effects of N nutrition on flavonoid metabolism in tea
plant roots [97]. They reported upregulation of multiple flavonoid biosynthesis genes
(e.g., CsANSs, CsANRs, CsCHSs, CsDFR, and CsPALs), which likely contributed to greater
flavonoid content in roots under low-N conditions [97]. Proanthocyanidin (PA) contents in
tea plant roots may also be affected by N availability; in contrast to tea leaves, which contain
abundant catechins, tea roots typically contain more PAs. PA precursors are synthesized
in ER, but the PAs themselves are stored in the vacuole [98], and a number of proteins are
involved in these polymerization and subcellular transport processes: ABC transporters,
glutathione transferases (GSTs), and UDP glycosyltransferases (UGTs) [99]. A recent study
reported that four UGTs were induced at the transcriptional or translational level under
low-N conditions three of which were also ubiquitinated. Transcript and protein levels
of numerous CsABCs and CsGSTs also changed significantly, and their proteins showed
differential ubiquitination [97] (Figure 2A).

3.2. Nitrogen and Leaf Metabolism

Leaf senescence, which is thought to reflect a balance between generation and scaveng-
ing of intracellular reactive oxygen species (ROS) and accumulation of ROS-related cellular
damage [100], may also be influenced by N nutrition in tea. For example, a recent study
by Xiao et al. indicated that activity of SOD, an important ROS scavenging enzyme [101],
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increased in response to N treatment in leaves of ‘Wuniuzao’ tea, although it declined again
at the very highest N level [102]. Likewise, the content of MDA, a peroxidation product
indicative of ROS damage [101], decreased as N fertilization increased, although it declined
slightly at the highest N level [102]. These results were consistent with a previous study in
which excess N affected the balance of plant C and N metabolism and inhibited enzyme
activity [103]. Nonetheless, the findings of Xiao et al. suggest that moderate N fertilization
can increase SOD activity, enhancing ROS scavenging capacity and delaying leaf senescence.
They also found that N fertilization increased free amino acid and caffeine content [102],
consistent with previous studies that showed similar increases in caffeine [104] and tea
polyphenols [105] (Figure 2B).

Characteristic nitrogenous secondary metabolites of tea (e.g., theanine and caffeine)
not only contribute important flavors and aromas but also affect leaf metabolism. A
2020 study by Zhang et al. reported that genes related to theanine synthesis, including
CsGOGAT, CsGS(TS), CsAlaAT, CsAspAT, CsAS, and CsAAP, showed coordinated regu-
lation and were more highly expressed in the high-theanine variety ZM [106]. GOGAT1
and GOGAT2 are involved in leaf ammonium assimilation [107], and Liu et al. found
that CsGOGAT expression correlated with theanine content of tea leaves exposed to differ-
ent temperatures and shading levels [108]. Likewise, Liu’s group also reported positive
correlations between CsGOGAT activity and theanine content in multiple tissues of the
tea plant [109], consistent with the findings of Zhang et al. [106] AlaAT, AspAT, and AS
catalyze the reversible interconversions of multiple amino acids, including Asp, Ala, Asn,
Glu, and Gln, which also serve as precursors for theanine biosynthesis [109]. Cheng et al.
reported that glutamine synthetase (GS) and theanine synthetase (TS) of tea are highly
homologous (>97%) with similar enzymatic activities [110]. Negative correlations of Asp,
Glu, and Gln contents with theanine-related gene expression were also observed in the ZM
variety [106], suggesting that Asp, Glu, and Gln in ZM serve as substrates for synthesis
of other nitrogenous compounds, such as theanine. Both CsGS(CsTS)1 and CsGS(CsTS)2
showed greater expression in older leaves of ZM, but CsGS(CsTS) expression and theanine
content were not correlated [106]. Expression of CsAAPs, whose protein products transport
theanine between plant organs [111], was greater in ZM and was in positive correlation
with theanine content, suggesting more active theanine could transport from older leaves
to younger leaves in this variety (Figure 2B).

N assimilation into amino acids in the leaves of the different varieties was greater after
N fertilizer input, consistent with significantly greater expression of the N uptake genes
AQP, AMT, and NRT in leaves. Ammonium taken up by the roots is assimilated into Gln
by GS through the root Gln-Glu cycle, then transported to leaves [112], and GS expression
is induced in response to ammonium [113]. Li revealed a significant correlation between
CsGS expression and Glu content in leaves [34], suggesting that leaf CsGS expression
may play a crucial part in mediating Glu levels in tea leaves. CsGOGAT expression
was negatively correlated with that of CsNRT and CsAQP in leaves, suggesting feedback
repression of CsGOGAT by high ammonium levels which also serves to release ammonium
from Gln [34]. Greater expression of CsGS and CsAMT was accompanied by a greater
capacity for ammonium uptake and increased N assimilation [34]. After N application, Glu
content increased in the high-amino-acid HJ variety but decreased in the commonly planted
FD variety [34], suggesting a balance between production of Glu and its consumption as a
substrate in other metabolic processes, including theanine synthesis [113]. Thus, contents of
Glu and theanine in tea are regulated by both N transporter genes and assimilation-related
genes such as CsGS and CsGOGAT (Figure 2B).

4. Conclusions

There are many studies on the absorption and transfer of nitrogen in tea plants at
present, as well as how nitrogen levels and nitrogen forms affect the growth and devel-
opment of tea plants. However, there are few in-depth studies on how nitrogen regulates
the physiological metabolism of tea plants as a whole and how nitrogen affects the genetic
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changes of tea plants. In the future, the use of omics technology to explore the effects of
nitrogen on the whole tea plant (such as metabolomics, proteomics, epigenomics, long
non-coding RNA analysis, etc.) is an important direction for tea plant scientific research. In
addition, in-depth study of the effect of nitrogen on the key genes of tea plant by molec-
ular techniques will also be an important part of revealing the mechanism of nitrogen
affecting tea plant. Thirdly, the picking of tea trees is mainly based on new shoots, and
nitrogen is the most needed nutrient element for tea trees, but the utilization efficiency of
tea trees for nitrogen is very low. At present, the utilization efficiency of nitrogen is mainly
improved by reasonable cultivation measures combined with fertilization methods in tea
garden production. In the future, it will be an important research direction to study the
nitrogen absorption and utilization of tea trees to excavate the related genes that improve
the nitrogen utilization efficiency of tea trees and screen tea varieties with high nitrogen
utilization efficiency.
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