Grapevine Phenology of White Cultivars in Rueda Designation of Origin (Spain) in Response to Weather Conditions and Potential Shifts under Warmer Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vineyard Definition
2.3. Climate Data and Analysis
2.3.1. Current Climate
2.3.2. Projected Climate
2.4. Phenology–Climate Relationship Analysis
3. Results
3.1. Variability in the Weather Conditions Recorded in Rueda DO in the Period 2008–2021
3.2. Phenology Variability in the Period 2008–2021
3.3. Climate–Phenology Relationships
3.4. Projected Changes in Temperature and Precipitation
3.5. Thermal Requirements to Reach Each Phenological Stage and Projected Shifts in Phenology
4. Discussion
4.1. Present and Projected Climate and Its Influence on Phenology
4.2. Climate Influence on Phenology
4.3. Projected Shifts of Phenology in Rueda DO under Warmer Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marta, A.D.; Grifoni, D.; Mancini, M.; Storchi, P.; Zipoli, G.; Orlandini, S. Analysis of the Relationships between Climate Variability and Grapevine Phenology in the Nobile Di Montepulciano Wine Production Area. J. Agric. Sci. 2010, 148, 657–666. [Google Scholar] [CrossRef]
- Urhausen, S.; Brienen, S.; Kapala, A.; Simmer, C. Must Quality Estimation Based on Climate Data in the Upper Moselle Region. Meteorol. Zeitschrift 2011, 20, 479–485. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Bhend, J.; Darbyshire, R.; Briggs, P.R.; Barlow, E.W.R. Earlier Wine-Grape Ripening Driven by Climatic Warming and Drying and Management Practices. Nat. Clim. Chang. 2012, 2, 259–264. [Google Scholar] [CrossRef]
- Koufos, G.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Jones, G.V. Viticulture-Climate Relationships in Greece: The Impacts of Recent Climate Trends on Harvest Date Variation. Int. J. Climatol. 2014, 34, 1445–1459. [Google Scholar] [CrossRef]
- Hall, A.; Mathews, A.J.; Holzapfel, B.P. Potential Effect of Atmospheric Warming on Grapevine Phenology and Post-Harvest Heat Accumulation across a Range of Climates. Int. J. Biometeorol. 2016, 60, 1405–1422. [Google Scholar] [CrossRef] [PubMed]
- Mameli, M.G.; De Pau, L.; Satta, D.; Ventroni, G.; Zurru, R. Study of the Effects of Different Irrigation Scheduling on Some Vegetative and Productive Characteristics of “Vermentino”. Acta Hortic. 2014, 1038, 545–552. [Google Scholar] [CrossRef]
- De Rességuier, L.; Le Roux, R.; Petitjean, T.; Mary, S.; Quénol, H.; Van Leeuwen, C. Variability of Climate, Water and Nitrogen Status and Its Influence on Vine Phenology and Grape Composition inside a Small Winegrowing Estate. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 50. [Google Scholar] [CrossRef]
- Bonada, M.; Edwards, E.J.; McCarthy, M.G.; Sepúlveda, G.C.; Petrie, P.R. Impact of Low Rainfall during Dormancy on Vine Productivity and Development. Aust. J. Grape Wine Res. 2020, 26, 325–342. [Google Scholar] [CrossRef]
- Zaldea, G.; Nechita, A.; Damian, D.; Ghiur, A.D.; Cotea, V.V. Climate Changes in Recent Decades, the Evolution of the Drought Phenomenon and Their Influence on Vineyards in North-Eastern Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12448. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Malheiro, A.C.; Oliveira, A.A.; Moutinho-Pereira, J.; Jones, G.V. Climatic Suitability of Portuguese Grapevine Varieties and Climate Change Adaptation. Int. J. Climatol. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; Ramos, M.C. Projected Effects of Climate Change on Tempranillo and Chardonnay Varieties in La Mancha Designation of Origin. Agron. Sustain. Dev. 2021, 41, 24. [Google Scholar] [CrossRef]
- Ramos, M.C.; Jones, G.V. Relationships between Cabernet Sauvignon Phenology and Climate in Two Spanish Viticultural Regions: Observations and Predicted Future Changes. J. Agric. Sci. 2018, 156, 1079–1089. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez de Toda, F. Macabeo (Viura) Grape Response to Climate Variability in Areas Located at Different Elevations in the Rioja Designation of Origin. J. Sci. Food Agric. 2022, 102, 5670–5679. [Google Scholar] [CrossRef] [PubMed]
- Barnuud, N.N.; Zerihun, A.; Mpelasoka, F.; Gibberd, M.; Bates, B. Responses of Grape Berry Anthocyanin and Titratable Acidity to the Projected Climate Change across the Western Australian Wine Regions. Int. J. Biometeorol. 2014, 58, 1279–1293. [Google Scholar] [CrossRef] [Green Version]
- Greer, D.H.; Weston, C. Heat Stress Affects Flowering, Berry Growth, Sugar Accumulation and Photosynthesis of Vitis Vinifera Cv. Semillon Grapevines Grown in a Controlled Environment. Funct. Plant Biol. 2010, 37, 206–214. [Google Scholar] [CrossRef]
- Sadras, V.O.; Moran, M.A. Elevated Temperature Decouples Anthocyanins and Sugars in Berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Bock, A.; Sparks, T.H.; Estrella, N.; Menzel, A. Climate-Induced Changes in Grapevine Yield and Must Sugar Content in Franconia (Germany) between 1805 and 2010. PLoS One 2013, 8, e69015. [Google Scholar] [CrossRef]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry Phenolics of Grapevine under Challenging Environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Martínez de Toda, F. Variability of Tempranillo Grape Composition in the Rioja DOCa (Spain) Related to Soil and Climatic Characteristics. J. Sci. Food Agric. 2018, 99, 1153–1165. [Google Scholar] [CrossRef]
- Ojeda, H.; Deloire, A.; Carbonneau, A. Influence of Water Deficits on Grape Berry Growth. Vitis 2001, 40, 141–145. [Google Scholar]
- Zhang, R.; Cheng, Z.; Wang, W.; Wu, Y.; Niu, L.; Zhang, X.; Gao, Y.; Chen, N.; Ma, Q. Effect of Water Stress in Different Growth Stages on Grape Yield and Fruit Quality under Delayed Cultivation Facility. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2014, 30, 105–113. [Google Scholar] [CrossRef]
- Wenter, A.; Zanotelli, D.; Montagnani, L.; Tagliavini, M.; Andreotti, C. Effect of Different Timings and Intensities of Water Stress on Yield and Berry Composition of Grapevine (Cv. Sauvignon Blanc) in a Mountain Environment. Sci. Hortic. 2018, 236, 137–145. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez de Toda, F. Variability in the Potential Effects of Climate Change on Phenology and on Grape Composition of Tempranillo in Three Zones of the Rioja DOCa (Spain). Eur. J. Agron. 2020, 115, 126014. [Google Scholar] [CrossRef]
- Robinson, J.; Harding, J.; Vouillamoz, J. A Complete Guide to 1368 Vine Varieties, including Their Origins and Flavours; Penguin: London, UK, 2013; p. 1280. [Google Scholar]
- Ramos, M.C. Projection of Phenology Response to Climate Change in Rainfed Vineyards in North-East Spain. Agric. For. Meteorol. 2017, 247, 104–115. [Google Scholar] [CrossRef]
- Sotés, V.; Gómez-Miguel, V. Delimitación Cartográfica de Zonas Vitícolas en la Denominación de Origen Rueda; UPM: Madrid, Spain, 2002. [Google Scholar]
- Baillod, M.; Baggiolini, M. Les stades repères de la vigne. Revue Suisse de Viticulture Arboriculture. Horticulture 1993, 25, 10–12. [Google Scholar]
- Allen, R.G.; Pereira, L.S. Estimating Crop Coefficients from Fraction of Ground Cover and Height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Fishman, S.; Erez, A.; Couvillon, G.A. The temperature dependence of dormancy breakingin plants: Mathematical analysis of a two-step model involvingacooperative transition. J. Theor. Biol. 1987, 124, 473–483. [Google Scholar] [CrossRef]
- Anderson, J.L.; Richardson, E.A.; Kesner, C.D. Validation of chill unit and flower bud phenology models for “Montmercy” sourcherry. Acta Hortic. 1986, 184, 71–78. [Google Scholar] [CrossRef]
- Parker, A.K.; De Cortázar-Atauri, I.G.; Van Leeuwen, C.; Chuine, I. General Phenological Model to Characterise the Timing of Flowering and Veraison of Vitis vinifera L. Aust. J. Grape Wine Res. 2011, 17, 206–216. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Andreoli, V.; Cassardo, C.; Iacona, T.L.; Spanna, F. Description and Preliminary Simulations with the Italian Vineyard Integrated Numerical Model for Estimating Physiological Values (IVINE). Agronomy 2019, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Go, D.T.H.C.; Castro, S. Spatial and Temporal Variability of Cv. Tempranillo Response within the Toro DO (Spain) and Projected Changes under Climate Change. Oeno One 2021, 55, 346–366. [Google Scholar] [CrossRef]
- Fila, G.; Gardiman, M.; Belvini, P.; Meggio, F.; Pitacco, A. A Comparison of Different Modelling Solutions for Studying Grapevine Phenology under Present and Future Climate Scenarios. Agric. For. Meteorol. 2014, 195-196, 192–205. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water Deficits Accelerate Ripening and Induce Changes in Gene Expression Regulating Flavonoid Biosynthesis in Grape Berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C.; Roby, J.-P.; De Rességuier, L. Soil-Related Terroir Factors: A Review. OENO One 2018, 52, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, C.; Tregoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillére, J.P. Vine Water Status Is a Key Factor in Grape Ripening and Vintage Quality for Red Bordeaux Wine. How Can It Be Assessed for Vineyard Management Purposes? J. Int. Des Sci. La Vigne Du Vin 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Lowrey, W.D.; Tomek, L.; Hakimi, J.; De Savigny, C. Influence of Irrigation on Vine Performance, Fruit Composition, and Wine Quality of Chardonnay in a Cool, Humid Climate. Am. J. Enol. Vitic. 2007, 58, 217–228. [Google Scholar] [CrossRef]
- Caffarra, A.; Eccel, E. Projecting the Impacts of Climate Change on the Phenology of Grapevine in a Mountain Area. Aust. J. Grape Wine Res. 2011, 17, 52–61. [Google Scholar] [CrossRef]
- Izquierdo Cañas, P.M.; García Romero, E.; Mena Morales, A.; Chacón Vozmediano, J.L.; Martínez Gascueña, J. Vidueños autorizados en Castilla-La Mancha. La Sem. Vitivinícola 2013, 3398, 1–7. [Google Scholar]
- Bock, A.; Sparks, T.; Estrella, N.; Menzel, A. Changes in the Phenology and Composition of Wine from Franconia, Germany. Clim. Res. 2011, 50, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Santos, J.A.; Mouthino-Pereira, J.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Mota, T.; Malheiro, A.C. Statistical modelling of grapevine phenology in Portuguese wine regions: Observed trends and climate change projections. J. Agric. Sci. 2016, 154, 795–811. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Menz, C.; Fraga, H.; Costafreda-Aumedes, S.; Leolini, L.; Ramos, M.C.; Molitor, D.; van Leeuwen, C.; Santos, J.A. Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions. Agricul. Water Manag. 2021, 261, 107349. [Google Scholar] [CrossRef]
C (Budbreak) | I (Flowering) | M (Véraison) | N (Ripening) | ||||
---|---|---|---|---|---|---|---|
Verdejo | |||||||
R2 = 0.511 | R2 = 0.680 | R2 = 0.451 | R2 = 0.670 | ||||
P-ETc D Tm in-BB | − *** (27.8%) − *** (23.3%) | Tm in-BB | − *** (57.7%) | P-ETc F-V Tmax F-V Tmin F-V | − *** (15.7%) + *** (17.6%) − ** (11.8%) | Tmin V-Mat P-ETc V-Mat | − *** (59.2%) + *** (7.8%) |
Viura | |||||||
R2 = 0.673 | R2 = 0.556 | R2 = 0.383 | R2 = 0.598 | ||||
Tm in-BB P-ETc D | − *** (42.0%) − *** (25.3%) | Tm in-BB | − *** (55.6%) | P-ETc F-V | − ** (38%) | P-ETc F-V Tmax V-Mat | − ** (19.56%) − *** (40.2%) |
Sauvignon Blanc | |||||||
R2 = 0.730 | R2 = 0.468 | R2 = 0.413 | R2 = 0.553 | ||||
Tm in-BB | − *** (73%) | Tm in-BB | − *** (46.8%) | P-ETc F-V | − ** (41.3%) | P-ETc F-V Tmin V-Mat | − ** (16.3%) − *** (38.9%) |
Scenario | Year | Variable | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCP4.5 | 2050 | TMax (°C) | 1.8 | 1.9 | 1.7 | 2.2 | 2.8 | 3.3 | 3.8 | 3.7 | 3.4 | 2.8 | 2.1 | 1.7 |
TMin (°C) | 1.4 | 1.2 | 1.1 | 1.2 | 1.6 | 2.4 | 3 | 3.1 | 2.8 | 2.1 | 1.4 | 1.3 | ||
P (mm) | −6.9 | 1.0 | −4.0 | −6.1 | −5.9 | −8.3 | −9.4 | −9.3 | −1.3 | −5.4 | −5.1 | −3.6 | ||
2070 | TMax (°C) | 2.3 | 2.3 | 2.2 | 2.5 | 3.4 | 4.0 | 4.5 | 4.5 | 4.3 | 3.3 | 2.5 | 2.1 | |
TMin (°C) | 1.7 | 1.4 | 1.6 | 1.5 | 2.2 | 3.0 | 3.6 | 3.8 | 3.5 | 2.5 | 1.6 | 1.7 | ||
P (mm) | −1.9 | 0.9 | −5.6 | −9.6 | −9.3 | −8.4 | −9.8 | −8.9 | −4.9 | −9.1 | −3.5 | −3.2 | ||
RCP8.5 | 2050 | TMax (°C) | 2.3 | 2.5 | 2.3 | 2.8 | 3.6 | 4.1 | 4.6 | 4.8 | 4.3 | 3.5 | 2.7 | 2.2 |
TMin (°C) | 1.7 | 1.5 | 1.3 | 1.5 | 2.3 | 3.1 | 3.6 | 3.7 | 3.5 | 2.6 | 1.9 | 1.8 | ||
P (mm) | −3.1 | −3.5 | −7.9 | −10.5 | −9.7 | −8.6 | −9.8 | −8.0 | −3.2 | −8.7 | −3.8 | 1.3 | ||
2070 | TMax (°C) | 3.3 | 3.4 | 3.2 | 3.8 | 5.4 | 6.0 | 6.6 | 6.6 | 6.4 | 5.1 | 3.8 | 3.3 | |
TMin (°C) | 2.5 | 2.4 | 2.1 | 2.4 | 3.3 | 4.5 | 5.3 | 5.4 | 5.5 | 3.9 | 2.9 | 2.8 | ||
P (mm) | −7.9 | 0.9 | −5.8 | −13 | −17.3 | −13.7 | −9.1 | −10 | −3.5 | −11.3 | −4.9 | −2.1 |
Variety | BB | F | V | H | |
---|---|---|---|---|---|
Verdejo | Tb GDD | 5.4 °C 127 ± 36 | 5.4 °C 660 ± 56 | 5.8 °C 1765 ± 75 | 4.9 °C 2365 ± 80 |
RSME d | 5.41 0.85 | 3.70 0.95 | 6.10 0.84 | 5.90 1.0 | |
Viura | Tb GDD | 5.4 °C 162 ± 24 | 5.4 °C 665 ± 36 | 5.7 °C 1882 ± 100 | 4.4 °C 2484 ± 92 |
RSME d | 3.10 0.97 | 2.53 0.98 | 5.87 0.89 | 5.10 0.99 | |
Sauvignon Blanc | Tb GDD | 6.1 °C 104 ± 23 | 5.7 °C 619 ± 52 | 5.4 °C 1593 ± 53 | 3.4 °C 2471 ± 77 |
RSME d | 3.72 0.92 | 3.61 0.95 | 3.10 0.98 | 4.98 0.99 |
Emission Scenario | Variety | Year | BB (Days) | F (Days) | V (Days) | Mat (Days) |
---|---|---|---|---|---|---|
RCP4.5 | Verdejo | 2050 | −7 ± 1 | −7 ± 1 | −13 ± 2 | −20 ± 2 |
2070 | −8 ± 1 | −8 ± 2 | −15 ± 5 | −23 ± 3 | ||
Viura | 2050 | −6 ± 1 | −7 ± 2 | −14 ± 2 | −18 ± 3 | |
2070 | −7 ± 2 | −10 ± 3 | −18 ± 3 | −22 ± 4 | ||
Sauvignon Blanc | 2050 | −8 ± 1 | −7 ± 1 | −13 ± 2 | −15 ± 5 | |
2070 | −9 ± 1 | −10 ± 2 | −16 ± 3 | −18 ± 4 | ||
RCP8.5 | Verdejo | 2050 | 8 ± 1 | −9 ± 2 | −16 ± 4 | −25 ± 3 |
2070 | −8 ± 2 | −15 ± 2 | −22 ± 7 | −27 ± 4 | ||
Viura | 2050 | −8 ± 2 | −11 ± 3 | −19 ± 2 | −23 ± 3 | |
2070 | −14 ± 2 | −16 ± 3 | −25 ± 3 | −29 ± 3 | ||
Sauvignon Blanc | 2050 | −9 ± 1 | −11 ± 2 | −18 ± 2 | −19 ± 4 | |
2070 | −11 ± 2 | −16 ± 4 | −24 ± 4 | −24 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, M.C.; Yuste, J. Grapevine Phenology of White Cultivars in Rueda Designation of Origin (Spain) in Response to Weather Conditions and Potential Shifts under Warmer Climate. Agronomy 2023, 13, 146. https://doi.org/10.3390/agronomy13010146
Ramos MC, Yuste J. Grapevine Phenology of White Cultivars in Rueda Designation of Origin (Spain) in Response to Weather Conditions and Potential Shifts under Warmer Climate. Agronomy. 2023; 13(1):146. https://doi.org/10.3390/agronomy13010146
Chicago/Turabian StyleRamos, María Concepción, and Jesús Yuste. 2023. "Grapevine Phenology of White Cultivars in Rueda Designation of Origin (Spain) in Response to Weather Conditions and Potential Shifts under Warmer Climate" Agronomy 13, no. 1: 146. https://doi.org/10.3390/agronomy13010146
APA StyleRamos, M. C., & Yuste, J. (2023). Grapevine Phenology of White Cultivars in Rueda Designation of Origin (Spain) in Response to Weather Conditions and Potential Shifts under Warmer Climate. Agronomy, 13(1), 146. https://doi.org/10.3390/agronomy13010146