Fabrication and Characterization of ZnO Nanoparticles-Based Biocomposite Films Prepared Using Carboxymethyl Cellulose, Taro Mucilage, and Black Cumin Seed Oil for Evaluation of Antioxidant and Antimicrobial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Taro Sample Collection and Preparation
2.3. Extraction of Taro Mucilage (TM)
2.4. Preparation of Biocomposite Films Based on CMC/ZnO/TM/BCS Oil
2.5. Characterization of Biocomposite Films
2.5.1. Appearance and Surface Color Measurements
2.5.2. Whiteness Index Measurement
2.5.3. Thickness and Mass
2.5.4. Moisture Content
2.5.5. Water Activity
2.5.6. Water Solubility
2.5.7. Water Uptake Capacity
2.5.8. Mechanical Properties
2.5.9. Analysis of Fourier Transform-Infrared (FT-IR) Spectroscopy
2.5.10. Scanning Electron Microscopy (SEM)
2.5.11. Thermal Properties
2.6. Antioxidant Activity of Biocomposite Films (DPPH Method)
2.7. Antimicrobial Activity of the Biocomposite Films
2.8. Statistical Analysis
3. Results and Discussion
3.1. Appearance and Surface Color of Biocomposite Film
3.1.1. Whiteness Index
3.1.2. Surface Morphology of the Biocomposite Film Using SEM
3.1.3. Chemical Structure Characteristics of the Biocomposite Film Using FT-IR
3.1.4. Thermal Properties
3.1.5. Thickness and Mass
3.1.6. Mechanical Properties
3.1.7. Moisture Content and Water Activity
3.1.8. Water Solubility and Water Uptake Capacity
3.1.9. Antioxidant Activity (DPPH Method)
3.1.10. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puscaselu, R.; Gutt, G.; Amariei, S. Biopolymer-Based Films Enriched with Stevia rebaudiana Used for the Development of Edible and Soluble Packaging. Coatings 2019, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.G.; Palezi, S.C.; Alves-Silva, G.F.; Santos, L.G. Biodegradable Packaging Materials and Techniques to Improve Their Performance. In Food Packaging: The Smarter Way; Springer: Singapore, 2022; pp. 61–105. [Google Scholar]
- Mesgari, M.; Aalami, A.H.; Sathyapalan, T.; Sahebkar, A. A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg. Chem. Appl. 2022, 2022, 7557825. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ahmed, S.; Sameen, D.E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends Food Sci. Technol. 2021, 112, 532–546. [Google Scholar] [CrossRef]
- Kostag, M.; El Seoud, O.A. Sustainable Biomaterials Based on Cellulose, Chitin and Chitosan Composites—A Review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100079. [Google Scholar] [CrossRef]
- Nesic, A.; Meseldzija, S.; Cabrera-Barjas, G.; Onjia, A. Novel Biocomposite Films Based on High Methoxyl Pectin Reinforced with Zeolite Y for Food Packaging Applications. Foods 2022, 11, 360. [Google Scholar] [CrossRef]
- Tosif, M.M.; Najda, A.; Klepacka, J.; Bains, A.; Chawla, P.; Kumar, A.; Sharma, M.; Sridhar, K.; Gautam, S.P.; Kaushik, R. A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers 2022, 14, 1163. [Google Scholar] [CrossRef]
- Briones, M.F.; Jazmin, P.F.; Pajarillaga, B.E.; Juvinal, J.G.; DeLeon, A.A.; Rustia, J.M.; Tuates, A.M. Biodegradable Film from Wild Taro Colocasia Esculenta (L.) Schott Starch. Agric. Eng. Int. CIGR J. 2020, 22, 152–155. [Google Scholar]
- Roy, S.; Rhim, J.W. Carboxymethyl Cellulose-Based Antioxidant and Antimicrobial Active Packaging Film Incorporated with Curcumin and Zinc Oxide. Int. J. Biol. Macromol. 2020, 148, 666–676. [Google Scholar] [CrossRef]
- Foghara, S.K.; Jafarian, S.; Zomorodi, S.; Asl, A.K.; Nasiraei, L.R. Fabrication and Characterization of an Active Bionanocomposite Film Based on Basil Seed Mucilage and ZnO Nanoparticles. J. Food Meas. Charact. 2020, 14, 3542–3550. [Google Scholar] [CrossRef]
- Sabbah, M.; Altamimi, M.; Di Pierro, P.; Schiraldi, C.; Cammarota, M.; Porta, R. Black Edible Films from Protein-Containing Defatted Cake of Nigella sativa Seeds. Int. J. Mol. Sci. 2020, 21, 832. [Google Scholar] [CrossRef] [Green Version]
- Andrade, L.A.; de Oliveira Silva, D.A.; Nunes, C.A.; Pereira, J. Experimental Techniques for the Extraction of Taro Mucilage with Enhanced Emulsifier Properties Using Chemical Characterization. Food Chem. 2020, 327, 127095. [Google Scholar] [CrossRef]
- Wang, L.-F.; Rhim, J.-W.; Hong, S.-I. Preparation of Poly (Lactide)/Poly (Butylene Adipate-Co-Terephthalate) Blend Films Using a Solvent Casting Method and Their Food Packaging Application. LWT-Food Sci. Technol. 2016, 68, 454–461. [Google Scholar] [CrossRef]
- Monjazeb Marvdashti, L.; Koocheki, A.; Yavarmanesh, M. Characterization, Release Profile and Antimicrobial Properties of Bioactive Polyvinyl Alcohol-Alyssum Homolocarpum Seed Gum-Nisin Composite Film. Food Biophys. 2019, 14, 120–131. [Google Scholar] [CrossRef]
- Ghamari, M.A.; Amiri, S.; Rezazadeh-Bari, M.; Rezazad-Bari, L. Physical, Mechanical, and Antimicrobial Properties of Active Edible Film Based on Milk Proteins Incorporated with Nigella sativa Essential Oil. Polym. Bull. 2022, 79, 1097–1117. [Google Scholar] [CrossRef]
- Binti Che Wan, N.H.; Nafchi, A.M.; Huda, N. Tensile Strength, Elongation at Breaking Point and Surface Color of a Biodegradable Film Based on a Duck Feet Gelatin and Polyvinyl Alcohol Blend. Asia Pac. J. Sustain. Agric. Food Energy 2018, 6, 16–21. [Google Scholar]
- Rhim, J.-W.; Wang, L.-F. Mechanical and Water Barrier Properties of Agar/κ-Carrageenan/Konjac Glucomannan Ternary Blend Biohydrogel Films. Carbohydr. Polym. 2013, 96, 71–81. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Romani, V.P.; da Silva Filipini, G.; Martins, V.G. Chia Seeds to Develop New Biodegradable Polymers for Food Packaging: Properties and Biodegradability. Polym. Eng. Sci. 2020, 60, 2214–2223. [Google Scholar] [CrossRef]
- Ghazihoseini, S.; Alipoormazandarani, N.; Nafchi, A.M. The Effects of Nano-SiO2 on Mechanical, Barrier, and Moisture Sorption Isotherm Models of Novel Soluble Soybean Polysaccharide Films. Int. J. Food Eng. 2015, 11, 833–840. [Google Scholar] [CrossRef]
- ASTM D882-10; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials: West Conshohocken, PA, USA, 2010; Volume 87.
- Govari, M.; Tryfinopoulou, P.; Panagou, E.Z.; Nychas, G.-J.E. Application of Fourier Transform Infrared (FT-IR) Spectroscopy, Multispectral Imaging (MSI) and Electronic Nose (E-Nose) for the Rapid Evaluation of the Microbiological Quality of Gilthead Sea Bream Fillets. Foods 2022, 11, 2356. [Google Scholar] [CrossRef]
- Ibrahim, S.; Elsayed, H.; Hasanin, M. Biodegradable, Antimicrobial and Antioxidant Biofilm for Active Packaging Based on Extracted Gelatin and Lignocelluloses Biowastes. J. Polym. Environ. 2021, 29, 472–482. [Google Scholar] [CrossRef]
- Kim, H.; Yang, H.-J.; Lee, K.-Y.; Beak, S.-E.; Bin Song, K. Characterization of Red Ginseng Residue Protein Films Incorporated with Hibiscus Extract. Food Sci. Biotechnol. 2017, 26, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, S.K.; Chand, N.; Chaurasia, V. Nano Zinc Oxide-Loaded Calcium Alginate Films with Potential Antibacterial Properties. Food Bioprocess Technol. 2012, 5, 1871–1881. [Google Scholar] [CrossRef]
- Ross, J.E.; Scangarella-Oman, N.; Jones, R.N. Determination of Disk Diffusion and MIC Quality Control Guidelines for GSK2251052: A Novel Boron-Containing Antibacterial. Diagn. Microbiol. Infect. Dis. 2013, 75, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Safira, K.R.; Rawdkuen, S. [5-1130-P-07] Properties of Rice Starch-Based Film Incorporated with Zinc Oxide Nanoparticles. In Proceedings of the [5-1130-P] Postharvest/Food Technology and Process Engineering (5th), Sapporo, Japan, 5 September 2019. [Google Scholar]
- Mohammadi, H.; Kamkar, A.; Misaghi, A. Nanocomposite Films Based on CMC, Okra Mucilage and ZnO Nanoparticles: Physico Mechanical and Antibacterial Properties. Carbohydr. Polym. 2018, 181, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.L.; Rodrigues, A.A.; Neves, I.C.O.; Lago, A.M.T.; Borges, S.V.; de Resende, J.V. Development and Characterization of Biodegradable Films Based on Pereskia Aculeata Miller Mucilage. Ind. Crops Prod. 2019, 130, 499–510. [Google Scholar] [CrossRef]
- Fabra, M.J.; Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A. Antiviral and Antioxidant Properties of Active Alginate Edible Films Containing Phenolic Extracts. Food Hydrocoll. 2018, 81, 96–103. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and Evaluation of a Novel Biodegradable Film Made from Chitosan and Cinnamon Essential Oil with Low Affinity toward Water. Food Chem. 2010, 122, 161–166. [Google Scholar] [CrossRef]
- Atarés, L.; Bonilla, J.; Chiralt, A. Characterization of Sodium Caseinate-Based Edible Films Incorporated with Cinnamon or Ginger Essential Oils. J. Food Eng. 2010, 100, 678–687. [Google Scholar] [CrossRef]
- Wulandari, Y.; Warkoyo, N.H. Characterization of Edible Film from Starch of Taro (Colocasia Esculenta (L.) Schott) with Addition of Chitosan on Dodol Substituted Seaweed (Eucheuma Cottonii L.). Food Technol. Halal Sci. J. 2018, 1, 22–32. [Google Scholar] [CrossRef]
- Pang, J.; Liu, X.; Zhang, X.; Wu, Y.; Sun, R. Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-Methylimidaxolium Chloride (AmimCl). Materials 2013, 6, 1270–1284. [Google Scholar] [CrossRef] [Green Version]
- Srikandace, Y.; Andayani, D.G.S.; Karina, M. Preliminary Study of the Degradation of Biocellulose Based Film Using Soil Fungi Aspergillus Unguis TP3 and Paecilomyces Marquandii TP4 Producing Cellulose. IOP Conf. Ser. Earth Environ. Sci. 2019, 277, 12001. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.-W. Properties and Characterization of Bionanocomposite Films Prepared with Various Biopolymers and ZnO Nanoparticles. Carbohydr. Polym. 2014, 106, 190–199. [Google Scholar] [CrossRef]
- Shankar, S.; Teng, X.; Rhim, J.-W. Effects of Concentration of ZnO Nanoparticles on Mechanical, Optical, Thermal, and Antimicrobial Properties of Gelatin/ZnO Nanocomposite Films. Korean J. Packag. Sci. Technol. 2014, 20, 41–49. [Google Scholar]
- Muñoz-Tébar, N.; Carmona, M.; de Elguea-Culebras, G.; Molina, A.; Berruga, M.I. Chia Seed Mucilage Edible Films with Origanum Vulgare and Satureja Montana Essential Oils: Characterization and Antifungal Properties. Membranes 2022, 12, 213. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Liu, L.; Chen, W.; Bai, J.; Ma, F.; Liu, X.; Kang, W. Preparation and Characterization of Edible Films Composed of Dioscorea Opposita Thunb. Mucilage and Starch. Polym. Test. 2020, 90, 106708. [Google Scholar] [CrossRef]
- Tosif, M.M.; Najda, A.; Bains, A.; Zawiślak, G.; Maj, G.; Chawla, P. Starch–Mucilage Composite Films: An Inclusive on Physicochemical and Biological Perspective. Polymers 2021, 13, 2588. [Google Scholar] [CrossRef]
- Li, X.; Ren, Z.; Wang, R.; Liu, L.; Zhang, J.; Ma, F.; Khan, M.Z.H.; Zhao, D.; Liu, X. Characterization and Antibacterial Activity of Edible Films Based on Carboxymethyl Cellulose, Dioscorea Opposita Mucilage, Glycerol and ZnO Nanoparticles. Food Chem. 2021, 349, 129208. [Google Scholar] [CrossRef]
- Yan, Q.-L.; Cohen, A.; Petrutik, N.; Shlomovich, A.; Burstein, L.; Pang, S.-P.; Gozin, M. Highly Insensitive and Thermostable Energetic Coordination Nanomaterials Based on Functionalized Graphene Oxides. J. Mater. Chem. A 2016, 4, 9941–9948. [Google Scholar] [CrossRef] [Green Version]
- Esteghlal, S.; Niakousari, M.; Hosseini, S.M.H. Physical and Mechanical Properties of Gelatin-CMC Composite Films under the Influence of Electrostatic Interactions. Int. J. Biol. Macromol. 2018, 114, 1–9. [Google Scholar] [CrossRef]
- Araújo, A.; Galvão, A.; Silva Filho, C.; Mendes, F.; Oliveira, M.; Barbosa, F.; Sousa Filho, M.; Bastos, M. Okra Mucilage and Corn Starch Bio-Based Film to Be Applied in Food. Polym. Test. 2018, 71, 352–361. [Google Scholar] [CrossRef]
- Mujtaba, M.; Akyuz, L.; Koc, B.; Kaya, M.; Ilk, S.; Cansaran-Duman, D.; Martinez, A.S.; Cakmak, Y.S.; Labidi, J.; Boufi, S. Novel, Multifunctional Mucilage Composite Films Incorporated with Cellulose Nanofibers. Food Hydrocoll. 2019, 89, 20–28. [Google Scholar] [CrossRef]
- Dick, M.; Costa, T.M.H.; Gomaa, A.; Subirade, M.; de Oliveira Rios, A.; Flôres, S.H. Edible Film Production from Chia Seed Mucilage: Effect of Glycerol Concentration on Its Physicochemical and Mechanical Properties. Carbohydr. Polym. 2015, 130, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tantiwatcharothai, S.; Prachayawarakorn, J. Property Improvement of Antibacterial Wound Dressing from Basil Seed (O. Basilicum L.) Mucilage-ZnO Nanocomposite by Borax Crosslinking. Carbohydr. Polym. 2020, 227, 115360. [Google Scholar] [CrossRef] [PubMed]
- Kurd, F.; Fathi, M.; Shekarchizadeh, H. Basil Seed Mucilage as a New Source for Electrospinning: Production and Physicochemical Characterization. Int. J. Biol. Macromol. 2017, 95, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Damas, M.S.P.; Pereira Junior, V.A.; Nishihora, R.K.; Quadri, M.G.N. Edible Films from Mucilage of C Ereus Hildmannianus Fruits: Development and Characterization. J. Appl. Polym. Sci. 2017, 134, 45223. [Google Scholar] [CrossRef]
- López-Garciia, F.; Arzate-Vázquez, I.; Guzmán-Lucero, D.; Terrés-Rojas, E.; Cabrero-Palomino, D.; Maciel-Cerda, A.; Jiménez-Martínez, C.; Delgado-Macuil, R. Physical and Chemical Characterization of a Biopolymer Film Made with Corn Starch and Nopal Xoconostle (Opuntia Joconsotle) Mucilage. Rev. Mex. Ing. Química 2017, 16, 147–158. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Structural, Morphological and Thermal Behaviour Characterisations of Fish Gelatin Film Incorporated with Basil and Citronella Essential Oils as Affected by Surfactants. Food Hydrocoll. 2014, 41, 33–43. [Google Scholar] [CrossRef]
- El-Sayed, S.; Mahmoud, K.H.; Fatah, A.A.; Hassen, A. DSC, TGA and Dielectric Properties of Carboxymethyl Cellulose/Polyvinyl Alcohol Blends. Phys. B Condens. Matter 2011, 406, 4068–4076. [Google Scholar] [CrossRef]
- Archana, G.; Sabina, K.; Babuskin, S.; Radhakrishnan, K.; Fayidh, M.A.; Babu, P.A.S.; Sivarajan, M.; Sukumar, M. Preparation and Characterization of Mucilage Polysaccharide for Biomedical Applications. Carbohydr. Polym. 2013, 98, 89–94. [Google Scholar] [CrossRef]
- Perdones, Á.; Vargas, M.; Atarés, L.; Chiralt, A. Physical, Antioxidant and Antimicrobial Properties of Chitosan–Cinnamon Leaf Oil Films as Affected by Oleic Acid. Food Hydrocoll. 2014, 36, 256–264. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Physico-Chemical Properties, Morphology and Antioxidant Activity of Film from Fish Skin Gelatin Incorporated with Root Essential Oils. J. Food Eng. 2013, 117, 350–360. [Google Scholar] [CrossRef]
- Praseptiangga, D.; Mufida, N.; Panatarani, C.; Joni, I.M. Enhanced Multi Functionality of Semi-Refined Iota Carrageenan as Food Packaging Material by Incorporating SiO2 and ZnO Nanoparticles. Heliyon 2021, 7, e06963. [Google Scholar] [CrossRef]
- Lee, J.Y.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Antibacterial and Antioxidant Properties of Hydroxypropyl Methylcellulose-Based Active Composite Films Incorporating Oregano Essential Oil Nanoemulsions. LWT 2019, 106, 164–171. [Google Scholar] [CrossRef]
- Aji, A.I.; Praseptiangga, D.; Rochima, E.; Joni, I.M.; Panatarani, C. Optical Transparency and Mechanical Properties of Semi-Refined Iota Carrageenan Film Reinforced with SiO2 as Food Packaging Material. AIP Conf. Proc. 2018, 1927, 030039. [Google Scholar]
- Venkatesan, R.; Rajeswari, N.; Thendral Thiyagu, T. Preparation, Characterization and Mechanical Properties of k-Carrageenan/SiO2 Nanocomposite Films for Antimicrobial Food Packaging. Bull. Mater. Sci. 2017, 40, 609–614. [Google Scholar] [CrossRef] [Green Version]
- Sani, I.K.; Pirsa, S.; Tağı, Ş. Preparation of Chitosan/Zinc Oxide/Melissa Officinalis Essential Oil Nano-Composite Film and Evaluation of Physical, Mechanical and Antimicrobial Properties by Response Surface Method. Polym. Test. 2019, 79, 106004. [Google Scholar] [CrossRef]
- Ngo, T.M.P.; Dang, T.M.Q.; Tran, T.X.; Rachtanapun, P. Effects of Zinc Oxide Nanoparticles on the Properties of Pectin/Alginate Edible Films. Int. J. Polym. Sci. 2018, 2018, 5645797. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Barkauskaite, S.; Jaiswal, S.; Duffy, B.; Jaiswal, A.K. Development of Essential Oil Incorporated Active Film Based on Biodegradable Blends of Poly (Lactide)/Poly (Butylene Adipate-Co-Terephthalate) for Food Packaging Application. J. Packag. Technol. Res. 2020, 4, 235–245. [Google Scholar] [CrossRef]
- Luo, M.; Cao, Y.; Wang, W.; Chen, X.; Cai, J.; Wang, L.; Xiao, J. Sustained-Release Antimicrobial Gelatin Film: Effect of Chia Mucilage on Physicochemical and Antimicrobial Properties. Food Hydrocoll. 2019, 87, 783–791. [Google Scholar] [CrossRef]
- Müller, C.M.O.; Laurindo, J.B.; Yamashita, F. Effect of Nanoclay Incorporation Method on Mechanical and Water Vapor Barrier Properties of Starch-Based Films. Ind. Crops Prod. 2011, 33, 605–610. [Google Scholar] [CrossRef]
- Vaezi, K.; Asadpour, G.; Sharifi, H. Effect of ZnO Nanoparticles on the Mechanical, Barrier and Optical Properties of Thermoplastic Cationic Starch/Montmorillonite Biodegradable Films. Int. J. Biol. Macromol. 2019, 124, 519–529. [Google Scholar] [CrossRef]
- Pirnia, M.; Shirani, K.; Yazdi, F.T.; Moratazavi, S.A.; Mohebbi, M. Characterization of Antioxidant Active Biopolymer Bilayer Film Based on Gelatin-Frankincense Incorporated with Ascorbic Acid and Hyssopus Officinalis Essential Oil. Food Chem. X 2022, 14, 100300. [Google Scholar] [CrossRef] [PubMed]
- RM, V.; Nair, B.R. Development and characterisation of edible films based on the mucilage of hibiscus rosa-sinensis linn. (malvaceae). Int. J. Creat. Res. Thoughts 2018, 6, 542–556. [Google Scholar]
- Rezaei, M.; Pirsa, S.; Chavoshizadeh, S. Photocatalytic/Antimicrobial Active Film Based on Wheat Gluten/ZnO Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2654–2665. [Google Scholar] [CrossRef]
- Amin, M.H.H.; Elbeltagy, A.E.; Mustafa, M.; Khalil, A.H. Development of Low Fat Mayonnaise Containing Different Types and Levels of Hydrocolloid Gum. J. Agroaliment. Process. Technol. 2014, 20, 54–63. [Google Scholar]
- Tee, Y.B.; Tee, L.T.; Daengprok, W.; Talib, R.A. Chemical, Physical, and Barrier Properties of Edible Film from Flaxseed Mucilage. BioResources 2017, 12, 6656–6664. [Google Scholar] [CrossRef]
- Tong, Q.; Xiao, Q.; Lim, L.-T. Preparation and Properties of Pullulan–Alginate–Carboxymethylcellulose Blend Films. Food Res. Int. 2008, 41, 1007–1014. [Google Scholar] [CrossRef]
- Ma, F.; Wang, R.; Li, X.; Kang, W.; Bell, A.E.; Zhao, D.; Liu, X.; Chen, W. Physical Properties of Mucilage Polysaccharides from Dioscorea Opposita Thunb. Food Chem. 2020, 311, 126039. [Google Scholar] [CrossRef]
- Hafsa, J.; Smach, M.A.; Ben Khedher, M.R.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Physical, Antioxidant and Antimicrobial Properties of Chitosan Films Containing Eucalyptus Globulus Essential Oil. LWT-Food Sci. Technol. 2016, 68, 356–364. [Google Scholar] [CrossRef]
- Guadarrama-Lezama, A.Y.; Castaño, J.; Velázquez, G.; Carrillo-Navas, H.; Alvarez--Ramírez, J. Effect of Nopal Mucilage Addition on Physical, Barrier and Mechanical Properties of Citric Pectin-Based Films. J. Food Sci. Technol. 2018, 55, 3739–3748. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Nassiri, R.; Sheibani, S.; Ariffin, F.; Karim, A.A. Preparation and Characterization of Bionanocomposite Films Filled with Nanorod-Rich Zinc Oxide. Carbohydr. Polym. 2013, 96, 233–239. [Google Scholar] [CrossRef]
- Sihombing, N.; Elma, M.; Thala’ah, R.N.; Simatupang, F.A.; Pradana, E.A.; Rahma, A. Garlic Essential Oil as an Edible Film Antibacterial Agent Derived from Nagara Sweet Potato Starch Applied for Packaging of Indonesian Traditional Food-Dodol. IOP Conf. Ser. Earth Environ. Sci. 2022, 999, 12026. [Google Scholar] [CrossRef]
- Syafiq, R.; Sapuan, S.M.; Zuhri, M.R.M. Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm Based Nanocellulose/Starch Biocomposite Films Incorporated with Cinnamon Essential Oil. J. Mater. Res. Technol. 2021, 11, 144–157. [Google Scholar] [CrossRef]
- Figuerola, F.; Hurtado, M.L.; Estévez, A.M.; Chiffelle, I.; Asenjo, F. Fibre Concentrates from Apple Pomace and Citrus Peel as Potential Fibre Sources for Food Enrichment. Food Chem. 2005, 91, 395–401. [Google Scholar] [CrossRef]
- Abdolsattari, P.; Rezazadeh-Bari, M.; Pirsa, S. Smart Film Based on Polylactic Acid, Modified with Polyaniline/ZnO/CuO: Investigation of Physicochemical Properties and Its Use of Intelligent Packaging of Orange Juice. Food Bioprocess Technol. 2022, 15, 2803–2825. [Google Scholar] [CrossRef]
- Saemi, R.; Taghavi, E.; Jafarizadeh-Malmiri, H.; Anarjan, N. Fabrication of Green ZnO Nanoparticles Using Walnut Leaf Extract to Develop an Antibacterial Film Based on Polyethylene–Starch–ZnO NPs. Green Process. Synth. 2021, 10, 112–124. [Google Scholar] [CrossRef]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; DeCaterina, R.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella Sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Taami, B.; Rostami Zadeh, K.; Aminzare, M.; Hassanzad Azar, H. Antioxidant Efficacy of Biodegradable Starch Film Containing of Bunium persicum Essential Oil Nanoemulsion Fortified with Cinnamaldehyde. J. Med. Plants By-Prod. 2021, 2, 2–9. [Google Scholar] [CrossRef]
- Mohite, A.M.; Chandel, D. Formulation of Edible Films from Fenugreek Mucilage and Taro Starch. SN Appl. Sci. 2020, 2, 1900. [Google Scholar] [CrossRef]
- Makhloufi, N.; Chougui, N.; Rezgui, F.; Benramdane, E.; Silvestre, A.J.D.; Freire, C.S.R.; Vilela, C. Polysaccharide-Based Films of Cactus Mucilage and Agar with Antioxidant Properties for Active Food Packaging. Polym. Bull. 2022, 79, 11369–11388. [Google Scholar] [CrossRef]
- Capitani, M.I.; Matus-Basto, A.; Ruiz-Ruiz, J.C.; Santiago-García, J.L.; Betancur-Ancona, D.A.; Nolasco, S.M.; Tomás, M.C.; Segura-Campos, M.R. Characterization of Biodegradable Films Based on Salvia Hispanica L. Protein and Mucilage. Food Bioprocess Technol. 2016, 9, 1276–1286. [Google Scholar] [CrossRef]
- Lefatshe, K.; Muiva, C.M.; Kebaabetswe, L.P. Extraction of Nanocellulose and In-Situ Casting of ZnO/Cellulose Nanocomposite with Enhanced Photocatalytic and Antibacterial Activity. Carbohydr. Polym. 2017, 164, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Anitha, S.; Brabu, B.; Thiruvadigal, D.J.; Gopalakrishnan, C.; Natarajan, T.S. Optical, Bactericidal and Water Repellent Properties of Electrospun Nano-Composite Membranes of Cellulose Acetate and ZnO. Carbohydr. Polym. 2012, 87, 1065–1072. [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Yang, S.; Fu, G.; Wang, T.; Su, Z. Chitosan Kills Escherichia coli through Damage to Be of Cell Membrane Mechanism. Carbohydr. Polym. 2010, 79, 493–499. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural Products as Antimicrobial Agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Emeka, L.B.; Emeka, P.M.; Khan, T.M. Antimicrobial Activity of Nigella sativa L. Seed Oil against Multi-Drug Resistant Staphylococcus Aureus Isolated from Diabetic Wounds. Pak. J. Pharm. Sci. 2015, 28, 1985–1990. [Google Scholar]
Batch Code | CMC (g/100 mL) | TM (g/100 mL) | ZnO (g/100 mL) | Glycerol (g/100 mL) | BCS Oil (g/100 mL) |
---|---|---|---|---|---|
F1 | 2.0 | - | - | 1.0 | - |
F2 | 2.0 | - | 0.5 | 1.0 | - |
F3 | 2.0 | - | 0.5 | 1.0 | 1.0 |
F4 | 1.4 | 0.6 | 0.5 | 1.0 | 1.0 |
F5 | 1.2 | 0.8 | 0.5 | 1.0 | 1.0 |
F6 | 1.0 | 1.0 | 0.5 | 1.0 | 1.0 |
Parameters | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
Mass (g) | 0.75 ± 0.13 a | 0.96 ± 0.13 ab | 1.37 ± 0.19 c | 1 ± 0.08 b | 0.86 ± 0.02 ab | 0.96 ± 0.03 ab |
Thickness (mm) | 0.13 ± 0.02 a | 0.15 ± 0.04 a | 0.20 ± 0.03 a | 0.20 ± 0.09 a | 0.17 ± 0.05 a | 0.15 ± 0.03 a |
Moisture content (%) | 25.38 ± 0.10 a | 22.07 ± 0.19 b | 20.43 ± 0.34 c | 29.30 ± 0.22 d | 33.21 ± 0.44 e | 38.32 ± 0.12 f |
Water activity (%) | 0.21 ± 0.01 a | 0.06 ± 0.01 b | 0.09 ± 0.02 c | 0.10 ± 0.01 c | 0.20 ± 0.02 a | 0.21 ± 0.02 a |
Water solubility (%) | 88.96 ± 4.00 a | 75.33 ± 2.52 b | 57.45 ± 0.51 c | 45.89 ± 2.77 d | 34 ± 2.65 e | 37.33 ± 3.21 e |
Water uptake capacity (%) | 274.67 ± 43.59 a | 215.70 ± 49.75 b | 152.81 ± 35.41 c | 158.19 ± 5.97 c | 365 ± 12.87 d | 363.92 ± 5.55 d |
Antioxidative activity (%) | 20.76 ± 0.03 a | 24.14 ± 0.01 b | 31.11 ± 0.04 c | 37.61 ± 0.02 d | 44.04 ± 0.04 e | 65.63 ± 0.01 f |
Tensile strength (MPa) | 7.54 ± 1.03 ab | 11.80 ± 4.94 c | 13.17 ± 0.48 c | 14.41 ± 0.65 c | 11.29 ± 1.92 bc | 6.29 ± 0.64 a |
Elongation at break (%) | 12.39 ± 4.60 a | 45.52 ± 11.59 b | 31.54 ± 6.25 c | 52.8 ± 1.92 b | 65.64 ± 4.86 d | 50.99 ± 6.04 b |
Surface color | ||||||
L* | 81.45 ± 0.43 a | 88.33 ± 0.77 b | 88.48 ± 0.36 b | 77.21 ± 0.99 c | 78.39 ± 1.18 c | 88.28 ± 0.20 b |
a* | 7.90 ± 0.01 a | 7.90 ± 0.01 a | 8.19 ± 0.03 a | 9.82 ± 0.01 b | 10.77 ± 0.09 c | 11.38 ± 0.35 d |
b* | −4.00 ± 0.01 a | 0.06 ± 0.01 b | 7.27 ± 0.04 c | 8.32 ± 0.09 d | 10.47 ± 0.04 e | 13.15 ± 0.21 f |
Color difference (ΔE) | 6.96 ± 0.42 a | 8.28 ± 3.68 a | 12.83 ± 0.04 b | 17.28 ± 0.36 c | 16.30 ± 0.02 c | 22.55 ± 0.30 d |
Whiteness index | 79.44 ± 0.39 a | 89.90 ± 0.63 b | 85.91 ± 0.17 c | 80.96 ± 0.10 d | 74.60 ± 1.12 e | 71.33 ± 0.85 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, A.; Ahmed, T.; Rana, M.R.; Hoque, M.M.; Ahmed, M.F.; Sharma, M.; Sridhar, K.; Ara, R.; Stephen Inbaraj, B. Fabrication and Characterization of ZnO Nanoparticles-Based Biocomposite Films Prepared Using Carboxymethyl Cellulose, Taro Mucilage, and Black Cumin Seed Oil for Evaluation of Antioxidant and Antimicrobial Activities. Agronomy 2023, 13, 147. https://doi.org/10.3390/agronomy13010147
Biswas A, Ahmed T, Rana MR, Hoque MM, Ahmed MF, Sharma M, Sridhar K, Ara R, Stephen Inbaraj B. Fabrication and Characterization of ZnO Nanoparticles-Based Biocomposite Films Prepared Using Carboxymethyl Cellulose, Taro Mucilage, and Black Cumin Seed Oil for Evaluation of Antioxidant and Antimicrobial Activities. Agronomy. 2023; 13(1):147. https://doi.org/10.3390/agronomy13010147
Chicago/Turabian StyleBiswas, Abonti, Tanvir Ahmed, Md Rahmatuzzaman Rana, Md Mozammel Hoque, Md Farid Ahmed, Minaxi Sharma, Kandi Sridhar, Rowshon Ara, and Baskaran Stephen Inbaraj. 2023. "Fabrication and Characterization of ZnO Nanoparticles-Based Biocomposite Films Prepared Using Carboxymethyl Cellulose, Taro Mucilage, and Black Cumin Seed Oil for Evaluation of Antioxidant and Antimicrobial Activities" Agronomy 13, no. 1: 147. https://doi.org/10.3390/agronomy13010147
APA StyleBiswas, A., Ahmed, T., Rana, M. R., Hoque, M. M., Ahmed, M. F., Sharma, M., Sridhar, K., Ara, R., & Stephen Inbaraj, B. (2023). Fabrication and Characterization of ZnO Nanoparticles-Based Biocomposite Films Prepared Using Carboxymethyl Cellulose, Taro Mucilage, and Black Cumin Seed Oil for Evaluation of Antioxidant and Antimicrobial Activities. Agronomy, 13(1), 147. https://doi.org/10.3390/agronomy13010147