Detoxification of Toxic Organic Dye by Heteroatom-Doped Fluorescent Carbon Dots Prepared by Green Hydrothermal Method Using Garcinia mangostana Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of G. mangostana Extract
2.3. Synthesis of NOFCDs Using G. mangostana Extract
2.4. Characterization Method
2.5. Evaluation of Catalytic Detoxification of Methylene Blue by NOFCDs
3. Results and Discussion
3.1. UV Spectroscopy for G. mangostana Extract and NOFCDs
3.2. Fluorescence Spectroscopy for G. mangostana NOFCDs
3.3. HRTEM Analysis of Biogenic NOFCDs
3.4. EDX Analysis
3.5. FTIR Spectra of G. mangostana Extract and NOFCDs
3.6. XRD Spectra for Synthesized NOFCDs
3.7. Catalytic Activity of NOFCDs in the Reduction Reaction of Methylene Blue Using NaBH4
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yogeswari, B.; Khan, I.; Kumar, M.S.; Vijayanandam, N.; Devarani, P.A.; Anandaram, H.; Chaturvedi, A.; Misganaw, W. Role of carbon-based nanomaterials in enhancing the performance of energy storage devices: Design small and store big. J. Nanomater. 2022, 2022, 4949916. [Google Scholar] [CrossRef]
- Rathinam, R.; Singh, D.P.; Dutta, A.; Rudresha, S.; Ali, S.R.; Chatterjee, P. TiO2nanoparticles based peroxidase mimics for colorimetric sensing of cholesterol and hydrogen peroxide. Adv. Sci. Technol. 2022, 117, 85–90. [Google Scholar]
- Maheshna, N.; Roopa, D.; Karthick, R.; Anandaram, H.; Antony, J.P.; Sangeetha, R.K.; Anusuya, M. Green synthesis of titanium dioxide nanoparticles and their multifaceted applications. Int. J. Health Sci. 2022, 6, 5665–5680. [Google Scholar] [CrossRef]
- Al-Douri, Y. Graphene, Nanotubes and Quantum Dots-Based Nanotechnology: Fundamentals and Applications; Elsevier: Cambridge, MA, USA, 2022. [Google Scholar]
- Perumal, S.; Edison, T.N.J.I.; Atchudan, R.; Sundramoorthy, A.K.; Lee, Y.R. Green-routed carbon dot-adorned silver nanoparticles for the catalytic degradation of organic dyes. Catalysts 2022, 2, 937. [Google Scholar] [CrossRef]
- Singh, R.P.; Khan, R.; Singh, J.; Singh, K.R.B. Carbon Dots–Next-Generation Materials for Biomedical Applications; IOP Publishing Ltd.: Philadelphia, PA, USA, 2022. [Google Scholar]
- Sakdaronnarong, C.; Sangjan, A.; Boonsith, S.; Kim, D.C.; Shin, H.S. Recent developments in synthesis and photocatalytic applications of carbon dots. Catalysts 2020, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Atchudan, R.; Edison, T.N.J.I.; Sethuraman, M.G.; Lee, Y.R. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl. Surf. Sci. 2016, 384, 432–441. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Kong, B.; Feng, S.; Wang, J.; Wang, L.; Yang, J.; Zhang, F.; Wu, P.; Zhao, D. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem. Int. Ed. 2013, 52, 8151–8155. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ye, T.; Mao, C. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475. [Google Scholar] [CrossRef]
- Wang, C.I.; Periasamy, A.I.; Chang, H.T. Photoluminescent C-dots@RGO probe for sensitive and selective detection of acetylcholine. Anal. Chem. 2013, 85, 3263–3270. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, X.; Pang, A.; Yang, J. Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots. Nanotechnology 2016, 27, 165704. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhang, Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection. Sens. Actuators B Chem. 2014, 196, 647–652. [Google Scholar] [CrossRef]
- Yin, B.; Deng, J.; Peng, X.; Long, Q.; Zhao, J.; Lu, Q.; Chen, Q.; Li, H.; Tang, H.; Zhang, Y.; et al. Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 2013, 138, 6551–6557. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.S. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal. Chem. 2014, 86, 8902–8905. [Google Scholar] [CrossRef]
- Arul, V.; Edison, T.N.J.I.; Lee, Y.R.; Sethuraman, M.G. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereusundatus. J. Photochem. Photobiol. B Biol. 2017, 168, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Kasibabu, B.S.; D’souza, S.L.; Jha, S.; Singhal, R.K.; Basu, H.; Kailasa, S.K. One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Anal. Methods 2015, 7, 2373–2378. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.N.J.I.; Aseer, K.R.; Perumal, S.; Karthik, N.; Lee, Y.R. Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosens. Bioelectron. 2018, 99, 303–311. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Lee, Y.R. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Appl. Surf. Sci. 2017, 393, 276–286. [Google Scholar] [CrossRef]
- Kumar, J.V.; Kavitha, G.; Arulmozhi, R.; Arul, V.; Abirami, N. Cyan color-emitting nitrogen-functionalized carbon nanodots (NFCNDs) from Indigoferatinctoria and their catalytic reduction of organic dyes and fluorescent ink applications. RSC Adv. 2021, 11, 27745–27756. [Google Scholar] [CrossRef]
- Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008, 46, 3227–3239. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dandin, V.S.; Dalawai, D.; Park, S.-Y.; Paek, K.-Y. Breeding of Garcinia spp. In Advances in Plant Breeding Strategies: Fruits; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Chapter 19. [Google Scholar] [CrossRef]
- Ovalle-Magallanes, B.; Eugenio-Pérez, D.; Pedraza-Chaverri, J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem. Toxicol. 2017, 109, 102–122. [Google Scholar] [CrossRef]
- Ansori, A.N.M.; Fadholly, A.; Hayaza, S.; Susilo, R.J.K.; Inayatillah, B.; Winarni, D.; Husen, S.A. A review on medicinal properties of mangosteen (Garcinia mangostana L.). Res. J. Pharm. Tech. 2020, 13, 974–982. [Google Scholar] [CrossRef]
- Wathoni, N.; Shan, C.Y.; Shan, W.Y.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2019, 5, 02299. [Google Scholar] [CrossRef] [PubMed]
- El-Kenawy, A.E.; Hassan, S.M.A.; Osman, H.H. Mangosteen (Garcinia mangostana L.). In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; Chapter 3.29; pp. 313–319. [Google Scholar] [CrossRef]
- Ketsa, S.; Paul, R.E. Mangosteen (Garcinia mangostana L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Philadelphia, PA, USA, 2011; pp. 1–30, 31e–32e. [Google Scholar] [CrossRef]
- Arul, V.; Sethuraman, M.G. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt. Mater. 2018, 78, 181–190. [Google Scholar] [CrossRef]
- Kumar, J.V.; Arul, V.; Arulmozhi, R.; Abirami, N. Boron doped fluorescent carbon nanodots for the reduction of ionic dyes and as encryption/decryption QR security code labels. New J. Chem. 2022, 46, 7464–7476. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Arul, V.; Sethuraman, M.G. Ecofriendly synthesis of fluorescent nitrogen-doped carbon dots from Cocciniagrandis and its efficient catalytic application in the reduction of methyl orange. J. Fluoresc. 2020, 30, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, A.; Gopinath, P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants. Analyst 2015, 140, 4260–4269. [Google Scholar] [CrossRef]
- Hu, S.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem. Int. Ed. 2015, 54, 2970–2974. [Google Scholar] [CrossRef]
- Shen, R.; Song, K.; Liu, H.; Li, Y.; Liu, H. Dramatic fluorescence enhancement of bare carbon dots through facile reduction chemistry. Chem. Phys. Chem. 2012, 13, 3549–3555. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, M.; Liu, Y.; He, F.; Gao, F.; Su, Y.; Wei, H.; Zhang, Y. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 2014, 6, 1890–1895. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Mehta, V.N.; Hasan, N.; Wu, H.F. Applications of carbon dots in biosensing and cellular imaging. Nanobiomaterials Med. Imaging 2016, 8, 339–364. [Google Scholar]
- Mehta, V.N.; Jha, S.; Basu, H.; Singhal, R.K.; Kailasa, S.K. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens. Actuators B 2015, 213, 434–443. [Google Scholar] [CrossRef]
- Gupta, B.; Singh, H.P.; Sharma, R.K. Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect. J. Mol. Catal. A Chem. 2011, 335, 248–252. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.; Lü, J.; Lü, C. A facile construction of Au nanoparticles stabilized by thermo-responsive polymer-tethered carbon dots for enhanced catalytic performance. Appl. Surf. Sci. 2018, 454, 181–191. [Google Scholar] [CrossRef]
- Kamaraj, M.; Srinivasan, N.R.; Assefa, G.; Adugna, A.T.; Kebede, M. Facile development of sunlit ZnO nanoparticles-activated carbon hybrid from pernicious weed as an operative nano-adsorbent for removal of methylene blue and chromium from aqueous solution: Extended application in tannery industrial wastewater. Environ. Technol. Innov. 2020, 17, 100540. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Sethuraman, M.G. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 2012, 47, 1351–1357. [Google Scholar] [CrossRef]
- Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water. J. Colloid. Interf. Sci. 2017, 493, 85–93. [Google Scholar] [CrossRef]
- Sreekanth, T.V.M.; Jung, M.J.; Eom, I.Y. Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity. Appl. Surf. Sci. 2016, 361, 102–106. [Google Scholar] [CrossRef]
- Hamedi, S.; Shojaosadati, S.A.; Mohammadi, A. Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. J. Photochem. Photobiol. B 2017, 167, 36–44. [Google Scholar] [CrossRef]
- Suvith, V.S.; Philip, D. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 526–532. [Google Scholar] [CrossRef]
- Kumari, M.M.; Philip, D. Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 111, 154–160. [Google Scholar] [CrossRef]
- Vidhu, V.K.; Philip, D. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 2014, 56, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Li, Q.; Zhao, W.; Pang, Q.; Gao, H.; Xu, Z. In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl. Catal. A Gen. 2018, 549, 102–111. [Google Scholar] [CrossRef]
Serial No. | Catalyst Material/Source | MB Reduction Time (min) | References |
---|---|---|---|
1 | ZnONPs/Plant extract | 150 min | [39] |
2 | AgNPs/Fruit extract | 30 min | [40] |
3 | AgNPs/Seed extract | 30 min | [41] |
4 | AgNPs/Bark extract | 30 min | [42] |
5 | AgNPs/Leaf extract | 20 min | [43] |
6 | Ag andAuNPs/GK kashayam1 | 20 min | [44] |
7 | Ag andAuNPs/Coconut oil | 20 min | [45] |
8 | AgNPs/Seed extract | 19 min | [46] |
9 | Ag/PSNM nanocomposite2 | 18 min | [47] |
10 | NOFCDs | 16 min | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arul, V.; Radhakrishnan, K.; Sampathkumar, N.; Vinoth Kumar, J.; Abirami, N.; Inbaraj, B.S. Detoxification of Toxic Organic Dye by Heteroatom-Doped Fluorescent Carbon Dots Prepared by Green Hydrothermal Method Using Garcinia mangostana Extract. Agronomy 2023, 13, 205. https://doi.org/10.3390/agronomy13010205
Arul V, Radhakrishnan K, Sampathkumar N, Vinoth Kumar J, Abirami N, Inbaraj BS. Detoxification of Toxic Organic Dye by Heteroatom-Doped Fluorescent Carbon Dots Prepared by Green Hydrothermal Method Using Garcinia mangostana Extract. Agronomy. 2023; 13(1):205. https://doi.org/10.3390/agronomy13010205
Chicago/Turabian StyleArul, Velusamy, Kothalam Radhakrishnan, Natarajan Sampathkumar, Jothi Vinoth Kumar, Natarajan Abirami, and Baskaran Stephen Inbaraj. 2023. "Detoxification of Toxic Organic Dye by Heteroatom-Doped Fluorescent Carbon Dots Prepared by Green Hydrothermal Method Using Garcinia mangostana Extract" Agronomy 13, no. 1: 205. https://doi.org/10.3390/agronomy13010205
APA StyleArul, V., Radhakrishnan, K., Sampathkumar, N., Vinoth Kumar, J., Abirami, N., & Inbaraj, B. S. (2023). Detoxification of Toxic Organic Dye by Heteroatom-Doped Fluorescent Carbon Dots Prepared by Green Hydrothermal Method Using Garcinia mangostana Extract. Agronomy, 13(1), 205. https://doi.org/10.3390/agronomy13010205