Pelleting of Physical Dormancy Small-Seeded Species in Astragalus sikokianus Nakai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Materials
2.2. Prechilling, GA3, and Ethephon Treatments
2.3. Hot Water and Acid Scarification
2.4. Mechanical Scarification
2.5. Seed Pelleting
2.6. Germination Test
2.7. Statistical Analysis
3. Results
3.1. Effects of Seed Dormancy Breaking Treatments on Germination Characteristics
3.2. Effect of Seed Pelleting of Physical Dormant Seeds on Germination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaudhary, L.B.; Rana, T.S.; Anand, K.K. Current status of the systematics of Astragalus L.(Fabaceae) with special reference to the Himalayan species in India. Taiwania 2008, 53, 338–355. [Google Scholar] [CrossRef]
- Watrous, K.M.; Cane, J.H. Breeding biology of the threadstalk milkvetch, Astragalus filipes (Fabaceae), with a review of the genus. Am. Midl. Nat. 2011, 165, 225–240. [Google Scholar] [CrossRef]
- NatureServe Explorer: An Online Encyclopedia of Life. Available online: http://explorer.natureserve.org (accessed on 20 October 2022).
- Whitton, I.; Sharrock, S. Conservation of Threatened Japanese Plants in UK Gardens; Botanic Gardens Conservation International: Richmond, UK, 2011; p. 64. [Google Scholar]
- Checklist of Vascular Plants in Korea (Alien Plants). Available online: http//www.Nature.go.kr/kpni/index.do (accessed on 28 October 2022).
- Choi, I.; Kim, S.; Choi, B. A taxonomic revision of Astragalus L.(Fabaceae) in Korea. Korean J. Plant Taxon. 2015, 45, 227–238. [Google Scholar] [CrossRef]
- The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org (accessed on 28 October 2022).
- Miklas, P.N.; Townsend, C.E.; Ladd, S.L. Seed Coat Anatomy and the Scarification of Cicer Milkvetch Seed. Crop Sci. 1987, 27, 766–772. [Google Scholar] [CrossRef]
- Statwick, J.M. Germination pretreatments to break hard-seed dormancy in Astragalus cicer L. (Fabaceae). PeerJ 2016, 4, e2621. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Tan, D.Y.; Baskin, C.C.; Baskin, J.M. Seed dormancy and germination characteristics of Astragalus arpilobus (Fabaceae, subfamily Papilionoideae), a central Asian desert annual ephemeral. S. Afr. J. Bot. 2012, 83, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Molnár, V.A.; Sonkoly, J.; Lovas-Kiss, Á.; Fekete, R.; Takacs, A.; Somlyay, L.; Toeroek, P. Seed of the threatened annual legume, Astragalus contortuplicatus, can survive over 130 years of dry storage. Preslia 2015, 87, 319–328. [Google Scholar]
- Vicente, M.J.; Segura, F.; Aguado, M.; Migliaro, D.; Franco, J.A.; Martínez-Sánchez, J.J. Genetic diversity of Astragalus nitidiflorus, a critically endangered endemic of SE Spain, and implications for its conservation. Biochem. Syst. Ecol. 2011, 39, 175–182. [Google Scholar] [CrossRef]
- Albrecht, M.A. Seed germination ecology of three imperiled plants of rock outcrops in the southeastern United States. J. Torrey Bot. Soc. 2012, 139, 86–95. [Google Scholar] [CrossRef]
- Kim, S.; Oh, S.; Hwang, W.; Kim, S.; Choi, K.; Kang, H. Physical dormancy in seeds of Chinese milk vetch (Astragalus sinicus L.) from Korea. Korean J. Crop Sci. 2008, 53, 421–426. [Google Scholar]
- Acharya, S.N.; Kastelic, J.P.; Beauchemin, K.A.; Messenger, D.F. A review of research progress on cicer milkvetch (Astragalus cicer L.). Can. J. Plant Sci. 2006, 86, 49–62. [Google Scholar] [CrossRef]
- Chou, Y.; Cox, R.D.; Wester, D.B. Smoke water and heat shock influence germination of shortgrass prairie species. Rangel. Ecol. Manag. 2012, 65, 260–267. [Google Scholar] [CrossRef]
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed coating: Science or marketing spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Pedrini, S.; Balestrazzi, A.; Madsen, M.D.; Bhalsing, K.; Hardegree, S.P.; Dixon, K.W.; Kildisheva, O.A. Seed enhancement: Getting seeds restoration-ready. Restor. Ecol. 2020, 28, S266–S275. [Google Scholar] [CrossRef]
- Gornish, E.; Arnold, H.; Fehmi, J. Review of seed pelletizing strategies for arid land restoration. Restor. Ecol. 2019, 27, 1206–1211. [Google Scholar] [CrossRef]
- Pérez, D.R.; González, F.; Ceballos, C.; Oneto, M.E.; Aronson, J. Direct seeding and outplantings in drylands of Argentinean Patagonia: Estimated costs, and prospects for large-scale restoration and rehabilitation. Restor. Ecol. 2019, 27, 1105–1116. [Google Scholar] [CrossRef]
- Killough, J.R. Reseeding the Range by Airplane. Rangel. Ecol. Manag. 1950, 3, 33–41. [Google Scholar] [CrossRef]
- Ott, J.E.; Cox, R.D.; Shaw, N.L. Comparison of postfire seeding practices for Wyoming big sagebrush. Rangel. Ecol. Manag. 2017, 70, 625–632. [Google Scholar] [CrossRef]
- Hoose, B.W.; Call, R.S.; Bates, T.H.; Anderson, R.M.; Roundy, B.A.; Madsen, M.D. Seed conglomeration: A disruptive innovation to address restoration challenges associated with small-seeded species. Restor. Ecol. 2019, 27, 959–965. [Google Scholar] [CrossRef]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Bassersdorf, Switzerland, 2019. [Google Scholar]
- Ranal, M.A.; Santana, D.G. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Townsend, C.E.; McGinnies, W.J. Mechanical Scarification of Cicer Milkvetch (Astragalus Cicer L.) Seed. Crop Sci. 1972, 12, 392–394. [Google Scholar] [CrossRef]
- Patanè, C.; Gresta, F. Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques. J. Arid Environ. 2006, 67, 165–173. [Google Scholar] [CrossRef]
- Bhatt, A.; Carón, M.M.; Souza-Filho, P.R.; Gallacher, D.J. Maternal source affects seed germination of a rare Arabian deert species (Astragalus sieberi). Botany 2021, 99, 293–301. [Google Scholar] [CrossRef]
- Carleton, A.E.; Austin, R.D.; Stroh, J.R.; Wiesner, L.E.; Scheetz, J.G. Cicer milkvetch (Astragalus cicer L.): Seed germination, scarification and field emergence studies. Mont. Agric. Exp. Stn. Bull. 1971, 655, 21. [Google Scholar]
- Kaye, T.N. From flowering to dispersal: Reproductive ecology of an endemic plant, Astragalus australis var. olympicus (Fabaceae). Am. J. Bot. 1999, 86, 1248–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Jeon, Y.S. Critical seed moisture content for germination in crop species. Korean J. Intl. Agri. 2009, 21, 159–164. [Google Scholar]
- Joyce, G.; Melissa, L. Comparative studies of seed priming and pelleting on percentage and meantime to germination of seeds of tomato (Lycopersicon esculentum Mill.). Afr. J. Agric. Res. 2008, 3, 725–731. [Google Scholar]
- Vaughn, K.J.; Young, T.P. Short-term priority over exotic annuals increases the initial density and longer-term cover of native perennial grasses. Ecol. Appl. 2015, 25, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Madsen, M.D.; Davies, K.W.; Boyd, C.S.; Kerby, J.D.; Svejcar, T.J. Emerging seed enhancement technologies for overcoming barriers to restoration. Restor. Ecol. 2016, 24, S77–S84. [Google Scholar] [CrossRef]
- Madsen, M.D.; Hulet, A.; Phillips, K.; Staley, J.L.; Davies, K.W.; Svejcar, T.J. Extruded seed pellets: A novel approach for enhancing sagebrush seedling emergence. Native Plants J. 2016, 17, 230–243. [Google Scholar] [CrossRef]
- Arshadi, J.; Asgharipour, M.R. The effects of seed size on germination and early seedling growth of pelleted seeds of sugar beet. J. Appl. Sci. Res. 2011, 7, 1257–1260. [Google Scholar]
- Tuğrul, K.M.; Kaya, R. The effect of seed coating thickness on sugar beet (Beta vulgaris L.) yield and quality under different irrigation conditions. Appl. Ecol. Env. Res. 2020, 18, 6969–6979. [Google Scholar] [CrossRef]
- Podlaski, S.Z.; Wzorek, H.; Chomontowski, C.M. Effects of the physicochemical properties of pellets on the germination of pelleted sugar beet seeds. Int. Agrophys. 2019, 33, 175–183. [Google Scholar] [CrossRef]
- Blunk, S.; Hoffer, J.; Brosda, S.; de Heer, M.I.; Sturrock, C.J.; Mooney, S.J. Impact of fruit orientation and pelleting material on water uptake and germination performance in artificial substrate for sugar beet. PLoS ONE 2020, 15, e0232875. [Google Scholar] [CrossRef]
- Nawrot-Chorabik, K.; Osmenda, M.; Słowiński, K.; Latowski, D.; Tabor, S.; Woodward, S. Stratification, scarification and application of phytohormones promote dormancy breaking and germination of pelleted scots pine (Pinus sylvestris L.) seeds. Forests 2021, 12, 621. [Google Scholar] [CrossRef]
Treatment | Soaking Time (min) | GP (%) | MGT (Day) | GR (%∙Day−1) | GU | HS (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Untreated | 0 | 0 | c Z | - | ns | - | ns | - | ns | 0 | ns |
H2SO4 | 10 | 0 | c | - | - | - | 0 | ||||
20 | 1 | bc | 3.0 | 2.1 | −0.25 | 0 | |||||
30 | 0 | c | - | - | - | 0 | |||||
60 | 9 | a | 7.3 | 14.1 | 0.26 | 0 | |||||
HCl | 5 | 1 | bc | 0.5 | 12.5 | −0.25 | 0 | ||||
10 | 2 | bc | 2.5 | 10.4 | −0.50 | 0 | |||||
20 | 0 | c | - | - | - | 0 | |||||
Hot water | 5 | 4 | b | 5.8 | 11.3 | −0.50 | 4 | ||||
10 | 4 | b | 7.3 | 8.5 | −0.50 | 4 | |||||
20 | 0 | c | - | - | - | 0 | |||||
30 | 4 | b | 3.2 | 8.1 | 0.56 | 2 |
Pellet Size (Diameter, mm) | GP (%) | MGT (Day) | GR (%∙Day−1) | GU | HS (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2.0–2.5 | 100 | a Z | 2.3 | d | 44.5 | a | 1.03 | ns | 100 | a |
2.5–3.0 | 97 | ab | 2.8 | cd | 35.8 | b | 1.74 | 96 | ab | |
3.0–3.5 | 94 | ab | 3.3 | c | 30.5 | bc | 4.41 | 94 | ab | |
3.5–4.0 | 90 | b | 4.4 | b | 22.9 | c | 3.15 | 88 | b | |
Unpelleted SP | 100 | a | 2.9 | cd | 35.3 | b | 5.75 | 100 | a | |
Unpelleted CON | 3 | c | 16.3 | a | 6.2 | d | −0.88 | 3 | c |
Factor | df | GP | MGT | GR | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
Substrate (S) | 2 | 4.32 | 0.0191 | 17.95 | <0.0001 | 45.57 | <0.0001 |
Pellet size (PS) | 5 | 9.48 | <0.0001 | 1.29 | 0.2835 | 4.67 | 0.0016 |
S × PS | 9 | 1.89 | 0.0769 | 1.37 | 0.2300 | 0.00 | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.-J.; Jeong, H.-J.; Kim, S.-Y.; Cho, S.-H.; Lee, J.-H.; Kim, D.-H. Pelleting of Physical Dormancy Small-Seeded Species in Astragalus sikokianus Nakai. Agronomy 2023, 13, 206. https://doi.org/10.3390/agronomy13010206
Jin Y-J, Jeong H-J, Kim S-Y, Cho S-H, Lee J-H, Kim D-H. Pelleting of Physical Dormancy Small-Seeded Species in Astragalus sikokianus Nakai. Agronomy. 2023; 13(1):206. https://doi.org/10.3390/agronomy13010206
Chicago/Turabian StyleJin, Yea-Jung, Han-Jin Jeong, Soo-Young Kim, Seong-Hyun Cho, Jin-Hwan Lee, and Du-Hyun Kim. 2023. "Pelleting of Physical Dormancy Small-Seeded Species in Astragalus sikokianus Nakai" Agronomy 13, no. 1: 206. https://doi.org/10.3390/agronomy13010206
APA StyleJin, Y. -J., Jeong, H. -J., Kim, S. -Y., Cho, S. -H., Lee, J. -H., & Kim, D. -H. (2023). Pelleting of Physical Dormancy Small-Seeded Species in Astragalus sikokianus Nakai. Agronomy, 13(1), 206. https://doi.org/10.3390/agronomy13010206