Effect of Length of Storage and Chemical Additives on the Nutritive Value and Starch Degradability of Reconstituted Corn Grain Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Production and Treatments
2.2. Chemical Composition and Fermentation Profile of RCGS
2.3. Kernel Particle Size Distribution and Ruminal In Situ Starch Degradability of RCGS
2.4. Aerobic Stability Test
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of Silage
3.2. Fermentative Profile of Silage
3.3. Ruminal In Situ Degradabitily
4. Discussion
4.1. Chemical Composition of Silage
4.2. Fermentative Profile and Aerobic Stability of Silage
4.3. Ruminal In Situ Degradabitily
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes, J.; da Silva, É.B.; Carvalho-Estrada, P.D.A.; Daniel, J.L.P.; Nussio, L.G. Influence of Hybrid, Moisture, and Length of Storage on the Fermentation Profile and Starch Digestibility of Corn Grain Silages. Anim. Feed Sci. Technol. 2021, 271, 114707. [Google Scholar] [CrossRef]
- Junges, D.; Morais, G.; Spoto, M.H.F.; Santos, P.S.; Adesogan, A.T.; Nussio, L.G.; Daniel, J.L.P. Short Communication: Influence of Various Proteolytic Sources During Fermentation of Reconstituted Corn Grain Silages. J. Dairy Sci. 2017, 100, 9048–9051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcari, M.A.; de Magalhães Rodrigues Martins, C.M.; Tomazi, T.; dos Santos, M.V. Effect of the Ensiling Time of Hydrated Ground Corn on Silage Composition and In Situ Starch Degradability. Braz. J. Vet. Res. Anim. Sci. 2016, 53, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Aferri, G.; Barbosa, C.M.P.; Cação, M.M.D.F.; Duarte, A.P.; do Cravo Pereira, A.S.; Henrique, W. Whole Grain of Different Corn Hybrids in the Finishing Diet of Lambs. Rev. Bras. Milho Sorgo 2019, 18, 290–298. [Google Scholar] [CrossRef]
- Torres, R.N.S.; Ghedini, C.P.; Coelho, L.M.; Ezequiel, J.M.B.; Júnior, G.A.A.; Almeida, M.T.C. Meta-Analysis of the Effects of Silage Additives on High-Moisture Grain Silage Quality and Performance of Dairy Cows. Livest. Sci. 2021, 251, 104618. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Jiang, Y.; Kim, D.H.; Cervantes, A.A.P.; Arriola, K.G.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Fate of Escherichia Coli O157:H7 and Bacterial Diversity in Corn Silage Contaminated with the Pathogen and Treated with Chemical or Microbial Additives. J. Dairy Sci. 2017, 100, 1780–1794. [Google Scholar] [CrossRef] [PubMed]
- Kovanda, L.; Zhang, W.; Wei, X.; Luo, J.; Wu, X.; Atwill, E.R.; Vaessen, S.; Li, X.; Liu, Y. In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria. Molecules 2019, 24, 3770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krooneman, J.; Faber, F.; Alderkamp, A.C.; Elferink, S.J.H.W.O.; Driehuis, F.; Cleenwerck, I.; Swings, J.; Gottschal, J.C.; Vancanneyt, M. Lactobacillus Diolivorans Sp. Nov., a 1,2-Propanediol-Degrading Bacterium Isolated from Aerobically Stable Maize Silage. Int. J. Syst. Evol. Microbiol. 2002, 52, 639–646. [Google Scholar] [CrossRef]
- Kung, L.; Smith, M.L.; Benjamim da Silva, E.; Windle, M.C.; da Silva, T.C.; Polukis, S.A. An Evaluation of the Effectiveness of a Chemical Additive Based on Sodium Benzoate, Potassium Sorbate, and Sodium Nitrite on the Fermentation and Aerobic Stability of Corn Silage. J. Dairy Sci. 2018, 101, 5949–5960. [Google Scholar] [CrossRef] [Green Version]
- da Silva, T.C.; Smith, M.L.; Barnard, A.M.; Kung Jr., L. The Effect of a Chemical Additive on the Fermentation and Aerobic Stability of High-Moisture Corn. J. Dairy Sci. 2015, 98, 8904–8912. [Google Scholar] [CrossRef]
- Mohamed, A.I.A.; Sultan, A.S.; Hussein, I.A.; Al-Muntasheri, G.A. Influence of Surfactant Structure on the Stability of Water-In-Oil Emulsions Under High-Temperature High-Salinity Conditions. J. Chem. 2017, 2017, 5471376. [Google Scholar] [CrossRef]
- Sarheed, O.; Dibi, M.; Ramesh, K.V.R.N.S. Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template. Pharmaceutics 2020, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-S.; Winkler-Moser, J.K. Chapter 7—Oxidative Stability and Shelf Life of Frying Oils and Fried Foods. In Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; Hu, M., Jacobsen, C., Eds.; AOCS Press: Urbana, IL, USA, 2016; pp. 251–285. ISBN 978-1-63067-056-6. [Google Scholar]
- Vernon-Carter, E.J.; Alvarez-Ramirez, J.; Bello-Perez, L.A.; Garcia-Hernandez, A.; Roldan-Cruz, C.; Garcia-Diaz, S. In Vitro Digestibility of Normal and Waxy Corn Starch Is Modified by the Addition of Tween 80. Int. J. Biol. Macromol. 2018, 116, 715–720. [Google Scholar] [CrossRef]
- Tan, Y.-B.; Wei, J.-Y.; Tang, Y.-F.; Ye, Y.-T.; Wang, L.; Yang, L.-J.; Chen, Z.-X. Effect of Ionic and Non-Ionic Surfactants on the Pasting Characteristics and Digestive Properties of Regular and Frozen Starch for Oral Delivery. Foods 2022, 11, 3395. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Neto, A.B.; Goulart, L.B.L.; Ribeiro, A.P.; Nazato, L.M.; Santos, D.P.; Francisco, L.F.; Arthur, B.A.V.; Morais, G.; Reis, R.H.P.; Daniel, J.L.P.; et al. Propionic Acid-Based Additive with Surfactant Action on the Nutritive Value of Rehydrated Corn Grain Silage for Growing Ewe Lambs Performance. Anim. Feed Sci. Technol. 2022, 294, 115515. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 19th ed.; AOAC International: Arlington, VA, USA, 2012. [Google Scholar]
- Mertens, D.R. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Hall, M.B. Determination of Starch, Including Maltooligosaccharides, In Animal Feeds: Comparison of Methods and a Method Recommended for AOAC Collaborative Study. J. AOAC Int. 2009, 92, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiles, P.G.; Gray, I.K.; Kissling, R.C.; Delahanty, C.; Evers, J.; Greenwood, K.; Grimshaw, K.; Hibbert, M.; Kelly, K.; Luckin, H.; et al. Routine Analysis of Proteins by Kjeldahl and Dumas Methods: Review and Interlaboratory Study Using Dairy Products. J. AOAC Int. 1998, 81, 620–632. [Google Scholar] [CrossRef]
- Pryce, J.D. A Modification of the Barker-Summerson Method for the Determination of Lactic Acid. Analyst 1969, 94, 1151–1152. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Weissbach, F. Correction of Dry Matter Content of Silages Used as Substrate for Biogas Production. In Proceedings of the 15th International Silage Conference, Madison, WI, USA, 27–29 July 2009; US Dairy Forage Research Center: Madison, WI, USA, 2009; pp. 483–484. [Google Scholar]
- Dias Junior, G.S.; Ferraretto, L.F.; Salvati, G.G.S.; de Resende, L.C.; Hoffman, P.C.; Pereira, M.N.; Shaver, R.D. Relationship Between Processing Score and Kernel-Fraction Particle Size in Whole-Plant Corn Silage. J. Dairy Sci. 2016, 99, 2719–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung, L. The Effect of Lactobacillus Buchneri 40788 or Lactobacillus Plantarum MTD-1 on the Fermentation and Aerobic Stability of Corn Silages Ensiled at Two Dry Matter Contents. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, G.; Daniel, J.L.P.; Kleinshmitt, C.; Carvalho, P.A.; Fernandes, J.; Nussio, L.G. Additives for Grain Silages: A Review. Slovak J. Anim. Sci. 2017, 50, 42–54. [Google Scholar]
- Ferraretto, L.F.; Crump, P.M.; Shaver, R.D. Effect of Ensiling Time and Exogenous Protease Addition to Whole-Plant Corn Silage of Various Hybrids, Maturities, and Chop Lengths on Nitrogen Fractions and Ruminal In Vitro Starch Digestibility. J. Dairy Sci. 2015, 98, 8869–8881. [Google Scholar] [CrossRef] [Green Version]
- Castro-Montoya, J.; Witzig, M.; Rahman, M.; Westreicher-Kristen, E.; Dickhoefer, U. In Vitro Rumen Fermentation, Microbial Protein Synthesis and Composition of Microbial Community of Total Mixed Rations Replacing Maize Silage with Red Clover Silage. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1450–1463. [Google Scholar] [CrossRef]
- Bernardi Zardin, P.; Pedro Velho, J.; Cabreira Jobim, C.; Moro Alessio, D.R.; Pereira Haygert-Velho, I.M.; Menegazzi da Conceição, G.; Gois Almeida, P.S. Chemical Composition of Corn Silage Produced by Scientific Studies in Brazil—A Meta-Analysis. Semin. Ciências Agrárias 2017, 38, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, P.C.; Esser, N.M.; Shaver, R.D.; Coblentz, W.K.; Scott, M.P.; Bodnar, A.L.; Schmidt, R.J.; Charley, R.C. Influence of Ensiling Time and Inoculation on Alteration of the Starch-Protein Matrix in High-Moisture Corn. J. Dairy Sci. 2011, 94, 2465–2474. [Google Scholar] [CrossRef] [Green Version]
- Ferraretto, L.F.; Silva Filho, W.I.; Fernandes, T.; Kim, D.H.; Sultana, H. Effect of Ensiling Time on Fermentation Profile and Ruminal In Vitro Starch Digestibility in Rehydrated Corn with Or Without Varied Concentrations of Wet Brewers Grains. J. Dairy Sci. 2018, 101, 4643–4649. [Google Scholar] [CrossRef] [Green Version]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Hadinia, N.; Edalatian Dovom, M.R.; Yavarmanesh, M. The Effect of Fermentation Conditions (Temperature, Salt Concentration, and pH) with Lactobacillus Strains for Producing Short Chain Fatty Acids. LWT 2022, 165, 113709. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Ávila, C.L.S.; Bernardes, T.F.; Pereira, M.N.; Santos, C.; Schwan, R.F. Fermentation Profile and Identification of Lactic Acid Bacteria and Yeasts of Rehydrated Corn Kernel Silage. J. Appl. Microbiol. 2017, 122, 589–600. [Google Scholar] [CrossRef]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of Air Exposure, Temperature and Additives on Fermentation Characteristics, Yeast Count, Aerobic Stability and Volatile Organic Compounds in Corn Silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Shen, Y.; Weng, P.; Zhao, G.; Feng, F.; Zheng, X. Antimicrobial Activity of a Food-Grade Fully Dilutable Microemulsion Against Escherichia Coli and Staphylococcus Aureus. Int. J. Food Microbiol. 2009, 135, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, Y.; Wu, L.; Zheng, X.; Zhu, S.; Feng, F.; Shen, L. Anti-Yeast Activity of a Food-Grade Dilution-Stable Microemulsion. Appl. Microbiol. Biotechnol. 2010, 87, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Ávila, C.L.S.; Carvalho, B.F. Silage Fermentation—Updates Focusing on the Performance of Micro-Organisms. J. Appl. Microbiol. 2019, 128, 966–984. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Carvalho-Estrada, P.; Fernandes, J.; da Silva, É.B.; Tizioto, P.; Paziani, S.d.F.; Duarte, A.P.; Coutinho, L.L.; Verdi, M.C.Q.; Nussio, L.G. Effects of Hybrid, Kernel Maturity, and Storage Period on the Bacterial Community in High-Moisture and Rehydrated Corn Grain Silages. Syst. Appl. Microbiol. 2020, 43, 126131. [Google Scholar] [CrossRef] [PubMed]
- Ranaei, V.; Pilevar, Z.; Khaneghah, A.M.; Hosseini, H. Propionic Acid: Method of Production, Current State and Perspectives. Food Technol. Biotechnol. 2020, 58, 115–127. [Google Scholar] [CrossRef]
- Racchi, I.; Scaramuzza, N.; Hidalgo, A.; Berni, E. Combined Effect of Water Activity and pH on the Growth of Food-Related Ascospore-Forming Molds. Ann. Microbiol. 2020, 70, 69. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Du, Z.; Risu, N.; Gentu, G.; Jia, Y.; Cai, Y. Dynamic Changes and Characterization of the Protein and Carbohydrate Fractions of Native Grass Grown in Inner Mongolia During Ensiling and the Aerobic Stage. Asian-Australas. J. Anim. Sci. 2020, 33, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Kung Jr., L.; Windle, M.C.; Walker, N. The Effect of An Exogenous Protease on the Fermentation and Nutritive Value of High-Moisture Corn. J. Dairy Sci. 2014, 97, 1707–1712. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Hendriks, W.H.; Xiong, B.; Pellikaan, W.F. Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms. Animals 2022, 12, 3020. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Alexander, T.W.; McAllister, T.A. In Vitro Effects of Monensin and Tween 80 on Ruminal Fermentation of Barley Grain: Barley Silage-Based Diets for Beef Cattle. Anim. Feed Sci. Technol. 2004, 116, 197–209. [Google Scholar] [CrossRef]
Item | Mean | SD 1 |
---|---|---|
Dry matter, % as fed | 63.62 | 0.16 |
Crude protein, % of DM | 8.68 | 0.42 |
Neutral detergent fiber, % of DM | 9.39 | 1.24 |
Acid detergent fiber, % of DM | 2.57 | 0.31 |
Ether extract, % of DM | 3.14 | 0.15 |
Ash, % of DM | 1.20 | 0.06 |
Starch, % of DM | 66.8 | 2.89 |
Soluble protein, % of CP | 16.8 | 3.39 |
Treatment | Storage Length | p-Value 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | CON | POL | PRO | MYC | SEM | 15 | 30 | 60 | SEM | A | S | A × S |
DM, 1 % as fed | 63.1 | 63.2 | 63.6 | 63.3 | 0.14 | 63.7 a | 63.4 a | 62.9 b | 0.12 | 0.12 | <0.01 | 0.65 |
CP, 2 % of DM | 8.46 a | 8.40 a | 8.40 a | 7.88 b | 0.05 | 8.53 a | 8.27 b | 8.06 c | 0.04 | <0.01 | <0.01 | 0.15 |
Ash, % of DM | 1.16 a | 1.08 ab | 0.92 c | 1.05 b | 0.03 | 0.98 b | 1.06 a | 1.12 a | 0.02 | <0.01 | <0.01 | 0.09 |
Starch, % of DM | 68.2 | 68.2 | 67.5 | 68.4 | 1.54 | 70.7 | 66.3 | 67.3 | 1.32 | 0.97 | 0.06 | 0.79 |
Treatment | Storage Length | p-Value 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | CON | POL | PRO | MYC | SEM | 15 | 30 | 60 | SEM | A | S | A × S |
Sieve, 1 mm | ||||||||||||
2.36 | 1.7 | 1.7 | 1.7 | 1.6 | 0.07 | 1.5 b | 1.8 a | 1.8 a | 0.06 | 0.56 | <0.01 | 0.18 |
1.7 | 7.0 a | 7.1 a | 7.3 a | 6.2 b | 0.21 | 6.3 b | 7.0 a | 7.4 a | 0.18 | <0.01 | <0.01 | 0.28 |
1.18 | 18.9 a | 19.1 a | 18.4 a | 16.5 b | 0.45 | 17.2 b | 18.3 ab | 19.2 a | 0.39 | <0.01 | <0.01 | 0.15 |
0.59 | 44.9 a | 44.8 a | 43.3 b | 42.4 b | 0.37 | 43.2 b | 43.4 b | 44.9 a | 0.32 | <0.01 | <0.01 | 0.40 |
Pan | 27.2 b | 26.8 b | 29.4 b | 33.3 a | 0.92 | 31.6 a | 29.3 ab | 26.6 b | 0.80 | <0.01 | <0.01 | 0.15 |
GMPS, μm | 94.5 a | 93.9 a | 80.3 ab | 60.8 b | 5.64 | 69.1 b | 79.5 b | 98.5 a | 4.89 | <0.01 | <0.01 | 0.09 |
Surface area, cm2·g−1 | 106.2 b | 106.2 b | 110.5 ab | 116.5 a | 1.59 | 113.8 a | 110.6 a | 105.1 b | 1.38 | <0.01 | <0.01 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, K.d.S.; Salvati, G.G.d.S.; Morais, G.d.; Carvalho-Estrada, P.d.A.; Santos, W.P.d.; Salvatte, J.M.S.; Gritti, V.C.; Salvo, P.A.R.; Arthur, B.A.V.; Nazato, L.M.; et al. Effect of Length of Storage and Chemical Additives on the Nutritive Value and Starch Degradability of Reconstituted Corn Grain Silage. Agronomy 2023, 13, 209. https://doi.org/10.3390/agronomy13010209
Oliveira KdS, Salvati GGdS, Morais Gd, Carvalho-Estrada PdA, Santos WPd, Salvatte JMS, Gritti VC, Salvo PAR, Arthur BAV, Nazato LM, et al. Effect of Length of Storage and Chemical Additives on the Nutritive Value and Starch Degradability of Reconstituted Corn Grain Silage. Agronomy. 2023; 13(1):209. https://doi.org/10.3390/agronomy13010209
Chicago/Turabian StyleOliveira, Késia da Silva, Gustavo Gonçalves de Souza Salvati, Greiciele de Morais, Paula de Almeida Carvalho-Estrada, Willian Pereira dos Santos, Jéssica Mariane Silveira Salvatte, Viviane Carnaval Gritti, Pedro Augusto Ribeiro Salvo, Bruno Augusto Valverde Arthur, Larissa Maniero Nazato, and et al. 2023. "Effect of Length of Storage and Chemical Additives on the Nutritive Value and Starch Degradability of Reconstituted Corn Grain Silage" Agronomy 13, no. 1: 209. https://doi.org/10.3390/agronomy13010209
APA StyleOliveira, K. d. S., Salvati, G. G. d. S., Morais, G. d., Carvalho-Estrada, P. d. A., Santos, W. P. d., Salvatte, J. M. S., Gritti, V. C., Salvo, P. A. R., Arthur, B. A. V., Nazato, L. M., & Nussio, L. G. (2023). Effect of Length of Storage and Chemical Additives on the Nutritive Value and Starch Degradability of Reconstituted Corn Grain Silage. Agronomy, 13(1), 209. https://doi.org/10.3390/agronomy13010209