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Abstract: Excessive zinc (Zn) is toxic to plants, but the effect of zinc-stressed plants on herbivorous
insects is still unclear. Hence, we assessed the effect of zinc-stressed rice plants on its feeding pest,
Nilaparvata lugens. The soil–rice–N. lugens system was treated with Zn2+ solution. Sugar content
in rice was measured, and the reproduction and trehalose metabolism in N. lugens were assessed.
The trehalase activity in rice significantly decreased at 100 mg·kg−1 Zn2+, and the trehalose content
increased. The glucose and starch content increased at higher Zn2+ concentrations. The fecundity and
trehalose content of N. lugens decreased after feeding on zinc-stressed rice, and the glucose content
in the high Zn2+ group was significantly higher than that in the low Zn2+ group. In addition, the
soluble trehalase activity of N. lugens significantly decreased under the 125 mg·kg−1 treatment, while
the activity of membrane-bound trehalase significantly increased under the 150 mg·kg−1 treatment.
Quantitative RT-PCR indicated significantly lower expressions of NlTre1-1, NlTre2, and NITps after Zn
treatment. In conclusion, Zn2+ treatment significantly altered the sugar content in rice plants; it also
decreased the fecundity of N. lugens, which may be mediated by alterations in trehalose metabolism.

Keywords: carbohydrate metabolism; fecundity; heavy metal; pest; planthopper; agriculture

1. Introduction

Rice (Oryza sativa L.) is a major staple crop worldwide, supporting the diets and
livelihoods of more than 3.5 billion people and other animals [1,2]. Non-essential elements,
such as cadmium, lead, and arsenic, are toxic to rice plants as well as to humans [3–5].
However, the hazards of essential trace elements cannot be ignored. Zinc (Zn), an essential
trace element, plays a catalytic or regulatory role as a structural cofactor of many enzymes
and regulatory proteins, and it is indispensable in the growth and development of rice
plants [6]. The known Zn-containing proteins in plants include carbonic anhydrase, alcohol
dehydrogenase, copper/zinc superoxide dismutase, and a large numbers of zinc finger
domain proteins with transcriptional regulation [7]. Although Zn deficiency in plants
is common due to high pH, low redox potential, organic matter, and other factors [6],
excessive Zn is found in certain areas. The sampling results of farmland in China showed
that although zinc pollution is slight in China, 6.55% of the areas still exceed the standard [8].
Excessive Zn inhibits seed germination and root and aerial growth [9,10]. However, limited
studies have been conducted on the accumulation characteristics of Zn and its effect on
the metabolism in rice plants. Furthermore, herbivorous insects are exposed to heavy
metal pollution [11], which affects their behavior, development, and reproduction [12]. The
brown planthopper Nilaparvata lugens, a key pest in paddy fields, has a short growth period
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and exhibits rapid reproduction and strong environmental adaptability [13–15]. The results
of isotopic research showed Zn enrichment in N. lugens [13]. Therefore, it is necessary to
assess the effects of zinc pollution on N. lugens at macro and micro levels.

Carbohydrates and their metabolism play key roles in animals and plants. Glucose,
a product of photosynthesis, is a substrate of cellular respiration and acts as a signal
molecule that regulates gene expression and metabolite production [16,17]. Although
glucose is the primary source of energy in plants and animals, trehalose is the main player
in insect hemolymph [18]. Trehalose is a soluble sugar composed of two glucose molecules
and is widely found in bacteria, fungi, plants, and invertebrates [19,20]. It provides the
energy necessary for flight and other physiological activities in insects [18,21,22]. Although
trehalose content in plants is extremely low, it plays an important role in drought and low-
temperature stress [23,24]. In addition to glucose and trehalose, starch and glycogen are
important energy-storing carbohydrates in plants and animals, respectively [25]. Previous
studies have shown that the content of trehalose, glucose, and starch in rice plants were
significantly changed after N. lugens sucking [26], and the sugar content in N. lugens
significantly decreased after feeding on the resistant varieties [27]. These results suggest
that carbohydrates play an important role in plant–insect interactions. Carbohydrate
metabolism, in turn, is affected by heavy metals; for example, the soluble sugar content
of Aster tripolium significantly decreased under Cd and Pb stress [28]. It remains unclear
how the sugar content of rice plants changes under heavy metal stress. Additionally, the
trehalase inhibitor, validamycin, stimulates reproduction in N. lugens, and it increases
the glucose content in rice plants [29]. Hence, these raise important questions, such as
(1) whether heavy metal stress alters carbohydrate content and metabolism in rice plants,
and (2) whether the fecundity of N. lugens changes with the carbohydrate content of the
heavy-metal-contaminated rice. Therefore, in this study, we firstly explored the effects
of excessive Zn2+ on the sugar content of rice plants; secondly, we determined effects of
feeding on Zn-stressed rice plants on the fecundity and trehalose metabolism of N. lugens.

2. Materials and Methods

2.1. Zn2+ Treatment, Sampling, and Zn Detection

The rice variety tested in this experiment was Oryza sativa L. Taichung Native 1
(TN1). According to the references and Risk Control Standards for Soil Contamination
of Agricultural Land in China, ZnCl2 powder was dissolved in running water to prepare
the Zn2+ solutions (0, 75, 100, 125, and 150 mg·kg−1). Plastic basins (50 × 40 cm) were
filled with 10 kg soil, irrigated with solutions with different concentrations of Zn2+ solution,
and the 3-week-old seedlings were carefully inserted into the soil. Nine rice plants were
inserted into each pot in a 3 × 3 arrangement, and each treatment was repeated three
times. No insecticides or zinc-containing fertilizers were used. The soil and rice plants
were collected during the stooling stage to determine the Zn content, and the rice stems
were used to determine sugar content and trehalase (Tre) activity. The collected soil was
air-dried in the dark, ground, and assessed for Zn content. The rice plants were rinsed with
distilled water and deionized water, heated for 30 min at 105 ◦C to inactivate enzymes, and
dried at 70 ◦C before the estimation of Zn content.

2.2. Insect Rearing, Sampling, and Fecundity Measurement

The N. lugens maintained in the laboratory were used as the experimental insect, and
they were obtained from local rice fields at the China National Rice Research Institute,
Hangzhou, Zhejiang, China. The rearing conditions in the artificial climate chamber were
set as follows: temperature 25± 1 ◦C, relative humidity 70± 5%, and photoperiod 14L:10D.
At the stooling stage, the three rice plants in the center row were covered with a clear
plastic hard membrane with a gauze top to ensure ventilation and prevent the N. lugens
from escaping (Figure 1). Three emerging females and three males were put in the cover,
and the adults were removed after free mating for 7 d (Figure 1). The number of nymphs
was recorded when the first nymphs appeared until almost no nymphs hatched. The
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experiment was conducted in three biological replicates. After the hatched N. lugens grew
to the fifth instar, thirty nymphs from each replicate were selected for assessment of sugar
content and enzyme activity; five nymphs were used to determine the relative expression
of trehalose metabolism-related genes.
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Figure 1. Zinc-treated soil–rice–Nilaparvata lugens pattern. Soil was irrigated with different concentra-
tions of Zn2+ solution (0, 75, 100, 125, and 150 mg·kg−1). Three rice plants during the stooling stage
in the middle of the plastic pot were covered with a clear plastic hard membrane, and the top was
covered with gauze to ensure ventilation and prevent the N. lugens from escaping. Three emerging
females and three males were put into the cover, and the adults were removed after free mating
for 7 d.

2.3. Determination of Sugar Content and Trehalase Activity in Rice Plants and N. lugens

The rice stems were ground into powder under liquid nitrogen, and 100 mg of powder
was placed into 1.5 mL EP tubes containing 200 µL PBS. Similarly, 15 fifth-instar nymphs
were placed into 1.5 mL EP tubes containing 200 µL PBS and ground using an electric
homogenizer. The homogenates of N. lugens and rice plants were lysed using an Bioruptor
UCD-200 (Diagenode, Seraing, Belgium) for 30 min at 320 W, 800 µL PBS was added, and
the mixture was centrifuged at 1000× g for 20 min at 4 ◦C to obtain a clear supernatant [30].

For the N. lugens samples, 350 µL supernatant was used to determine trehalose and
glycogen concentration as well as protein. The remaining 350 µL supernatant was ultra-
centrifuged at 20,800× g for 1 h at 4 ◦C. The ultracentrifuged supernatant was used to
determine the glucose and protein contents and soluble trehalase (Tre1) activity, while the
ultracentrifuged precipitate was resuspended in 300 µL PBS and used to measure glucose
and protein contents and membrane-bound trehalase (Tre2) activity [30]. Rice samples
were treated in a similar manner as the N. lugens samples, except that, instead of glycogen,
the starch content was determined in the 1000× g centrifuged supernatant.

Sugar content and enzyme activity are expressed by their ratio to the total protein.
BCA Protein Assay kit (Beyotime, Haimen, China) was used to determine the total protein.
Glucose content was measured using the Glucose Assay Kit (Sigma-Aldrich, St. Louis,
MO, USA). Trehalose content was determined by the anthrone method [30]. The glyco-
gen content was determined according to the instructions of Glucose Assay Kit after the
1000× supernatant (containing glycogen or starch) was treated with amylotransglucosidase
(Sigma-Aldrich, St. Louis, MO, USA). In principle, trehalose is decomposed into glucose by
trehalase. A glucose–standard curve was generated, the ultracentrifuged supernatants and
precipitates were incubated with 40 mmol/L trehalose for 1 h (Sigma-Aldrich, St. Louis,
MO, USA), and the trehalase activity was determined using the standard curve [21,30].

2.4. Gene Expression Levels Pertaining to Trehalose Metabolism in N. lugens

The total RNA from N. lugens nymphs was extracted with trizol and resolved by 1%
agarose gel electrophoresis to determine its quality. RNA concentration and purity were
determined by NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA). The first
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strand of cDNA was synthesized by reverse transcription with Prime Script®RT reagent Kit
with gDNA Eraser (TaKaRa, Kyoto, Japan). The expression of trehalose metabolism-related
genes in N. lugens was determined by qRT-PCR using cDNA as a template, actin gene as an
internal control, and specific primers (Table 1) [30,31]. The qRT-PCR mixture was 10 µL and
consisted of 10 pmol forward primer, 10 pmol reverse primer, 5 µL SYBR buffer (TaKaRa,
Kyoto, Japan), 3.2 µL ddH2O, and 1 µL template cDNA. The reaction was performed on
Bio-Rad CFX96TM real-time PCR detection system (Bio-Rad, Hercules, CA, USA) using
the following protocol: initial denaturation at 95 ◦C for 3 min, 35 cycles of denaturing at
95 ◦C for 5 s, annealing at 60 ◦C for 10 min, and extending at 72 ◦C for 30 s, followed by a
final extension at 72 ◦C for 10 min. The specificity of primers was detected according to
the dissolution curve, and technical experiments were repeated three times. The relative
mRNA levels were calculated using the 2−44CT method [32].

Table 1. Primers for quantitative real-time polymerase chain reaction.

Primer Name Forward Primer (5′–3′) Reverse Primer (5′–3′)

NlTre1-1 CCTCGGCTCTATTCGTTC ACCGCTTGACCAGTGAGA
NlTre1-2 GATCGCACGGATGTTTA AATGGCGTTCAAGTCAA
NlTre2-2 CGTGCCAGGTGGACGGTTTA ATGGGAGCGAGCAGAGGGAG
NlTps1 AAGACTGAGGCGAATGGT AAGGTGGAAATGGAATGTG
NlTps2 GACAGGCGGTTGAAGAAGA CAGTAGTCGCTGATGTGGAA
Actin CCGAGATTTGACCGATTAC GGTTGCCATTTCCTGTTC

2.5. Statistical Analyses

All the figures in this study are presented as mean± SEs (n = 3). The relative expression
of genes in N. lugens was analyzed by the t-test; a double asterisk indicates an extremely
significant difference in mRNA levels (p < 0.01), and a single asterisk indicates a significant
difference (p < 0.05). All the remaining data were analyzed using one-way analysis of
variance (ANOVA) and Tukey’s test. In addition, the Zn content in soil and rice plants after
Zn2+ irrigation was analyzed with regression analysis.

3. Results

3.1. Zn Concentration in Soil and Rice Plants after Zn2+ Irrigation

Zn content in the soil increased with the increase in Zn2+ irrigation concentration
(Figure 2A,B). The linear regression analysis also indicated that the Zn content in soil had
significant correction with Zn2+ concentrations (Table 2). However, the Zn content in rice
stem was non-linear. Within a certain range, the Zn content in the rice stem increased with
the increase in Zn2+ irrigation concentration. However, when Zn2+ concentrations were
125 and 150 mg·kg−1, a slight decrease of Zn content was observed in rice plants compared
with 100 mg·kg−1 concentration, and it may indicate that the Zn content is relatively stable
in rice plant irrigated with solution containing higher Zn2+ concentrations (Figure 2B). The
results of curve-fitting also showed that the relationship between Zn content in rice stem
and Zn irrigation concentration was closer to the growth curve (Table 2).

3.2. Nymph Numbers of N. lugens

Since the first day (Day 1), N. lugens nymphs began hatching; the hatching number
in the control (CK) group was the highest on Day 4, while those in the Zn75, Zn125, and
Zn150 groups were the highest on Day 3, and that in Zn100 group was the highest on Day 5
(Figure 3A). In addition, the daily hatching number and total hatching number of N. lugens
in the Zn treatment groups were lower than in those in the CK group, and the hatching
number of N. lugens in the Zn75 group was the lowest (Figure 3A). However, compared
with the Zn75 group, the number of nymphs increased with the increase in Zn2+, and in
the Zn150 group, the number of nymphs recovered to almost the same as that in the CK
group (Figure 3B).
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Table 2. Regression analysis of Zn accumulation in soil and rice stem.

Zn2+ Concentrations Regression Type

Zn content in soil

Pearson correlation 0.957

Linear

Sig. 0.005

R2 0.917

N 5

Regression equation y = 0.675x + 118.48

Zn content in rice stem

Model Growth curve

Curvilinear
Sig. 0.028

R2 0.842

Regression equation y = e(3.957+0.06)·x
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Figure 3. Effects of Zn-treated rice plants on reproduction of N. lugens. The figure on the left
(A) represents the number of nymphs hatched by three females in a single day, and the figure on the
right (B) represents the total number of nymphs hatched by three females in 9 days. The data are
represented as mean ± SE (n = 3).
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3.3. Sugar Content and Tre Activity in Rice Plants under Zn Stress

The trehalose content in the rice stems of the Zn100 group significantly increased
compared with that in other treatment groups (Figure 4A). Glucose content significantly
increased when Zn2+ irrigation concentration reached 125 mg·kg−1 and 150 mg·kg−1, but
there was no significant difference between the control group and the group subjected to
lower Zn concentrations (Figure 4B). Similarly, the starch content was significantly higher in
the Zn125 group, while there were no significant differences among the other Zn treatment
groups and the control group (Figure 4C). In agreement with the trehalose content, Tre
activity was significantly lower in the Zn100 group than in the CK group (Figure 4D).
However, no significant differences in trehalose content and Tre activities were observed
among the other Zn treatment groups (Figure 4A,D).
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3.4. Comparison of Sugar Content in N. lugens Feeding on Zn-Stressed Rice

The trehalose content of N. lugens decreased moderately after feeding on rice plants
exposed to Zn concentrations lower than 150 mg·kg−1 (Figure 5A). Compared with the CK
group, the glucose content of N. lugens in Zn-treated groups did not change significantly,
but the glucose content in the Zn150 group was significantly higher than those in the Zn75
and Zn100 groups (Figure 5B). However, no differences were observed in the glycogen
content among all the groups (Figure 5C).

3.5. Tre Activity of N. lugens Feeding on Zn-Stressed Rice

Tre1 activities in the Zn100 and Zn150 groups of N. lugens were significantly higher
than those in Zn75 groups, but there was no significant difference compared with the CK
group (Figure 6A). In addition, Tre1 activity in the Zn125 group of N. lugens was significantly
more reduced than those in the Zn100 and Zn150 groups (Figure 6A). Compared with the
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CK group, Tre2 activity significantly increased in the Zn150 group, which corroborated the
change in trehalose content (Figure 6B).
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3.6. Expression of Genes Related to Trehalose Metabolism in N. lugens

The relative expression levels of NlTre1-1 and NlTre2 were significantly lower in the
Zn125 group than the CK group, and there was no significant difference among the other
Zn-treated groups and the CK group (Figure 7A). However, there were no significant
differences in the expression of NlTre1-2 among any of the groups (Figure 7A). When
compared with the CK group, NlTps1 was significantly downregulated in the Zn75 and
Zn100 groups, but not in the Zn125 and Zn150 groups (Figure 7B). When compared with
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the CK group, NlTps2 was significantly downregulated in the Zn75, Zn100, and Zn125
groups, but not in the Zn150 group (Figure 7B).
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4. Discussion

Cd, As, and Zn are known to exhibit high mobility from soil to rice roots, indicating
their high bioavailability [33]. Our study also indicated that the Zn content in soil signifi-
cantly increased as Zn2+ concentration increased in the irrigation water. Correspondingly,
we found that the Zn accumulated in the rice plants treated with irrigation water with
100 mg·kg−1 Zn2+ concentration. However, unlike the hyperaccumulator plants, such as
Sedum plumbizincicola [10,34], the rice plant has a limited uptake of Zn. According to the
regression analysis, we have speculated that when the concentration of Zn2+ in irrigation
water reaches a certain value, the accumulated Zn content in rice stems tends to be satu-
rated, but it will not decrease significantly. Metal transporters, such as OsZIP1, promote
the outflow of Zn, Cu, and Cd metal ions in rice [35]. This might be the reason why the Zn
accumulation in rice did not increase at higher Zn concentrations. However, the range of
zinc concentration gradient set in this study is limited, so more accurate conclusions need
to be further explored.

Previous studies have shown that the fecundity of female gypsy moth larvae decreased
after feeding on poplar trees planted in Zn2+-contaminated soil (500 mg·kg−1) [36], and
heavy metal exposure reduced the hatching success of Acartia pacifica resting eggs in the
sediment [37]. In our study, lower hatching was observed in N. lugens nymphs feeding
on Zn-stressed rice than that in the control, likely due to the accumulation of Zn in the
N. lugens. However, it was noteworthy that among the Zn-stressed groups, increase in
Zn2+ concentration led to increase in hatching of N. lugens nymphs; it recovered to that
of the control group when the Zn2+ concentration was 150 mg·kg−1. Similar results were
obtained in a Zn stress study using Harmonia axyridis, wherein low Zn levels prevented
egg-laying, but high Zn levels increased the number of eggs [38]. Thus, insects may
increase reproduction after heavy metal exposure to cope with the impact of stress on
the population. However, previous studies focused mostly on the effects of heavy metals
on insect reproduction by incorporating heavy metals in artificial diets, while this study
adopted the plant-mediated method. Plant metabolism also has a significant effect on
the brown planthopper [39]. Therefore, the decreased fecundity of the N. lugens may be
attributed to physiological changes of the Zn-stressed plant. Considering this reason, we
also tested the change of sugar content in rice plants after zinc treatment.

Our study showed that Zn accumulation (Zn100) in rice led to a decrease in Tre activity
and an increase in trehalose content. High concentrations of exogenous trehalose decreased
the absorption of lead by Lemna Gibba [40] and significantly mitigated the toxic effects of
excessive Cu on photosynthesis and plant-growth-related parameters [41]. Thus, trehalose
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may play an important role in heavy metal stress response. Previous studies have shown
that the total amount of carbohydrates in plant leaves significantly increased under Pb
stress [42], and glucose increased under Cd and As stress [43] Our study also showed that
the glucose and starch contents in rice were significantly higher in high Zn-stress than in
low Zn-stress. On the one hand, it may be due to the accumulation of heavy metals in
rice tissues, which affects physiological processes, such as transpiration and production of
reactive oxygen species (ROS) [42,44], resulting in a lower utilization of sugars in rice [45].
On the other hand, starch and glucose accumulation may be a physiological adaptation
of rice to heavy metal stress because carbohydrate accumulation in leaves helps plants
to maintain osmotic pressure and eliminate reactive oxygen species under abiotic stress
conditions [42,43,46]. Previous research reported that trehalase inhibitor validamycin
stimulated the reproduction of N. lugens by increasing the glucose content of rice plants [29].
Similarly, in our study, a moderate recovery in the fecundity of N. lugens was observed with
the increase of glucose content in rice plant, as mentioned, indicating that Zn-mediated
sugar changes in plants affected the reproduction of N. lugens.

N. lugens suck the juice from phloem of rice plants, which is rich in carbohydrates,
amino acids, and other nutrients and has a great influence on the physiological metabolism
of N. lugens. Results showed that the trehalose content in rice stem increased under Zn stress,
but the trehalose content of N. lugens significantly decreased in the Zn150 group, which was
contrary to Aedes albopictus, in which the trehalose content significantly increased under Cd
stress [47]. The trehalose metabolism is closely related to reproduction. For example, as a
synergistic substance in artificial diets, trehalose significantly improved the reproduction
of H. axyridis [48], and hypertrehalosemic hormone and adipokines increased the egg
production by increasing trehalose [49,50]. Hence, the falling of N.lugens nymphs may be
caused by decreased trehalose content in N.lugens. As for the inconformity of trehalose
content between N.lugens and rice stem, it may be attributed to trehalase. Trehalase in
insects include the soluble trehalase (Tre1) and membrane-bound trehalase (Tre2) [18,21,51].
Tre1 acts on endogenous trehalose found in circulatory and digestive systems, while Tre2
acts on exogenous trehalose expressed in fat body, midgut, and Malpighian tubes [18].
Our results demonstrated differences in the enzyme activities of Tre1 and Tre2 in N. lugens
fed on zinc-stressed rice plant. A lower Tre1 activity was observed in the Zn125 group,
while higher Tre2 activity was observed in the Zn150 group when compared with the
control group. These results suggested that Tre2 of N. lugens likely degraded an excess of
exogenous trehalose from rice plant to cope with Zn stress. Meanwhile, Zn accumulation
had minimal effect on glycogen in N. lugens, but the glucose content in high-Zn group was
significantly higher than that in the low-Zn group, which was conductive to restoration of
fecundity [52]. Obviously, this is consistent with the change of glucose content in rice plant.
Therefore, the increased glucose in rice plant under high-Zn treatment may have led to the
increased absorption of glucose by N. lugens. Certainly, it was also possible that Zn directly
acts on N.lugens, such as regulating the transcription level of glucose-regulated protein [53].
The change of sugar content changed the trehalose metabolism gene expression. Soluble
trehalase of N.lugens has two coding genes, namely Tre1-1 and Tre1-2 [54]. The expressions
of NlTre1-1 and NlTre2 were significantly decreased when the Zn2+ concentration was
125 mg·kg−1, which relieved the rate of trehalose degradation to maintain the balance of
trehalose concentration. In addition, the genes responsible for trehalose biosynthesis, Tps1
and Tps2 [55], were also downregulated after feeding on Zn-stressed rice plants, indicating
that the trehalose metabolic rate of N. lugens decreased.

5. Conclusions

Zinc effectively accumulated in rice plants, and high concentration of Zn increased
the content of trehalose and glucose in rice plants. Meanwhile, the Zn-stressed rice plants
altered the trehalose metabolism and reduced fecundity in N. lugens. Interestingly, the
reproduction of N. lugens exhibited recovery with an increase in Zn concentration. However,
in this study, the plant-mediated method was used to explore the effects of Zn pollution
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on N. lugens, so it is not clear whether the inhibitory effect of Zn on the reproduction of N.
lugens is direct or indirect. In conclusion, this study explored the effects of Zn treatment on
the soil–rice–N. lugens system at the molecular level, and it provides a theoretical basis for
assessment of ecological risk from heavy metal pollution in paddy ecosystems.
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