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Abstract: Potential evapotranspiration (PET) indicates if a cultivation area is suitable for planting.
Currently, site-specific PET models that are based on large geographic regions are vulnerable to
inaccurate predictions as a result of climate change and sudden changes in the environmental
abiotic stressors that affect plant growth. For the aim of promoting the papaya Sinta F1 cultivar,
the study optimized the standard Thornthwaite PET model by integrating three advanced physics-
based metaheuristics and evolutionary computing, namely atom search (ASO), differential evolution
(DE), and multiverse (MVO) optimizers. The PET value was optimized through minimization as a
function of air temperature, light intensity, heat index, and extended heat index. As the PET value
approaches 0, it indicates that there is more soil-water content that can be absorbed by plants. Based
on the four cultivation treatments (uncontrolled, ASO, DE, and MVO) exposed in three replicates
within 90 days, the ASO-optimized Thornthwaite PET-treated (ASOTh) papaya plants resulted in
the highest chlorophyll a and b concentrations, densest stomatal density, concentrated root and
stem xylem and phloem vessels, considerable root and stem length, most formed leaf count, and
strongest action potentials coming from stem membrane for both light and dark periods. This proves
the applicability of the intelligent process in modifying the Thornthwaite model for plant growth
promotion. Also, through the developed ASOTh, the stem length and thickness ratio was improved
for mechanical stability to facilitate more branching leaves and potential fruits during the fruiting
stage, and the chlorophyll a and b ratio was enhanced, which naturally extended the light energy
band for photosynthesis. Overall, the newly developed ASOTh model may be used to grow papaya
seedlings year-round anywhere on Earth if there is a control system to regulate the environmental
setting inside the growth chamber.

Keywords: atom search; controlled environment agriculture; differential evolution; multiverse
optimization; plant electrophysiology; evapotranspiration; papaya cultivation

1. Introduction

Temperature erratically changes due to global warming and manifests cascaded distur-
bances to the natural and expected growth of crops and fruit-bearing trees worldwide [1].
In tropical and subtropical countries, papaya (Carica papaya) is a significant economic
crop because of its large yield, practical qualities, nutritional values, and year-round fruit
production [2,3]. It is known as a semi-woody, short-lived perennial herb that typically
has a single stem and produces latex [3]. The photosynthetic process and growth of this
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species can be influenced by edaphic and environmental factors such as wind, soil chemical
and physical properties, light, relative humidity, air temperature, soil water content, and
mineral nutrients, while production is affected by biotic variables like mycorrhizal fungus
and genotype [4]. Moreover, water availability and sufficient tissue turgidity are required
to preserve the stem’s rigidity and boost productivity [3]. In real-world settings, papaya
growers face several environmental issues made worse by climate change, which causes
a negative growth impact and decreased profits [5]. The stages of growth of papaya fruit
are affected by abnormal changes in weather due to climate change that result in delayed
maturity, low quality of fruit, prolonged ripening, fruit sunburn, bad panicle emergence,
poor color growth, and improper pollination [5]. Thus, global climate change is projected
to have a great impact on agricultural growth, quality, and harvest [6,7]. It is critical to
understand how climate change affects various aspects of crops, such as growth factors,
crop water needs, and fruit output [6,7].

Recurring, unpredictable weather patterns influence the water balance of the soil,
which alters evaporation and plant transpiration [8]. Evapotranspiration (ET) is known
to be the water consumed by plants over a period and is frequently linked to rising tem-
peratures, which could pose a major difficulty in fruit crop production of papaya [9]. The
period’s rising crop ET values have a significant effect on runoff and water supply [10].
Moreover, a drained soil water reservoir could result from higher evapotranspiration
indices, which would cause water stress in plants during dry seasons [11]. As drought
conditions are anticipated to grow more frequently, it will be crucial to protect the crop’s
productivity to understand how water constraints affect papaya physiology, particularly the
photosynthetic processes [6]. The rising temperature affects photosynthesis immediately,
causing changes in organic acids, contents of flavonoids, sugars, antioxidant activity, and
firmness of crops [11]. The morphological and biochemical changes caused by exposure to
high temperatures can have an impact on plant tissues and organ growth [11]. While both
high temperatures and high moisture levels in papaya will result in increased total soluble
solids (TSS), high temperature and high evapotranspiration make papaya trees lose their
flowers, have a sudden change in sex, and also affect sterility [12]. The primary challenge in
cultivating papaya seedlings is the poor microclimate along with abiotic elements that limit
the ability to raise off-season fruit nurseries in dry regions [13]. Morphological parameters
of papaya, including maximum germination, collar diameter, seedling height, shoot diam-
eter, and the number of leaves, are substantially affected by temperature variations [13].
With these, potential evapotranspiration (PET) models such as the Thornthwaite, Penman–
Monteith, Hargreaves, Blaney–Criddle, and Priestley–Taylor equations were formulated
to provide a hypothetical reference for evaporation and transpiration under idealized
conditions. However, the Thornthwaite PET might lead to inaccurate ET estimations for
regions with extreme conditions and irradiation exposure [14]. The Penman–Monteith PET
is data-intensive, and may not be available for all target regions [14]. The Hargreaves PET
and Priestley–Taylor PET are simplified Penman–Monteith PETs but tend to be inaccurate
for slow wind speeds and high humidity locations [15,16]. The Blaney–Criddle PET is
crop-specific and requires crop coefficient parameters [17]. Due to these limitations and
challenges with selecting a PET for specific crop cultivation and areas of interest, it is vital
to modify and remodel existing PET models because doing so would be beneficial for both
open agriculture and controlled environment agriculture (CEA).

PET models have been used in remote sensing and applied for irrigated agriculture,
which has opened the use of soft computing applications to analyze and estimate evapo-
transpiration for different crops [18]. As big data become prevalent in agriculture, various
AI algorithms such as fuzzy-genetic and regularization random forest, adaptive neuro-
fuzzy methodology, convolutional neural network, wavelet conjunction heuristic, and
multivariate adaptive regression splines (MARS) have been applied to estimate future
crop evapotranspiration in a time series analysis. A study was conducted in Egypt to
predict wheat crop evapotranspiration based on the Hargreaves technique using a deep
neural network (DNN), with temperature and solar radiation as input data [19]. The
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training and validation dataset covered the years 1970 through 2017, and the testing and
prediction dataset covered the years up to 2035, yielding a monthly actual and predicted
correlation of above 0.93. According to future climatic data, two regions would have an
increase in crop evapotranspiration while the remaining area would experience a decrease,
which depends greatly on the location’s weather and environment [19]. In the different
areas of East Malaysia with oil palm plantations, Iran with wheat fields, and China’s
spring maize croplands, the FAO-Penman–Monteith method was used to estimate plant
actual evapotranspiration (ET). This series of experiments resulted in obtaining the best
ET prediction models of the extreme learning machine algorithm tuned with the whale
optimization algorithm (WOA-ELM), where the different environments affected the sim-
ilarity of the results [20], the surface energy balance algorithm for land (SEBAL), where
irrigation management avoids providing excessive water that could cause landslides while
ensuring adequate cultivation [18], and the sparrow search algorithm integrated with ELM
(SSA-ELM), which considered crop factors only [21]. Sensors were utilized in a Brazilian
greenhouse to gather daily meteorological data, and lysimeter mass data were used to
calculate crop evapotranspiration. To calculate crop ET, a 4-21-1 artificial neural network
(ANN) architecture based on air temperature, relative air humidity, global sun radiation,
and wind speed was established [22]. Since the model’s performance had an R2 of 0.91
and MSE of 0.005, it was found that this strategy worked well in a protected environment.
However, crop growth parameters were not considered to enhance ET [22]. Most existing
studies agree that machine learning algorithms are accurate in predicting crop ET in either
outdoor land areas [22–25] or in a protected environment [22,26]. But, in the essence of crop
cultivation, effects on crops were neglected since optimizations are focused on estimating
ET and not on its benefits on plant growth parameters and yield. This is also important
because evapotranspiration is unique for different plants and growth stages [19,21].

To provide a protected environment for crop-growing, greenhouses are typically
used through controlled environment agriculture (CEA), which emerged with the use of
technology. Methods like vertical farming, rooftop gardens, large-scale crop production
from factories, and equipment like LED lighting and water pumps enabling indoor planting
and automation are now common in urban settings. Monitoring systems with the use
of sensors in measuring parameters affecting cultivation produce time series data that
can be collected offline or through cloud storage for remote accessing, wireless sensor
networks (WSN), or IoT-based systems. This has made humans more knowledgeable on
managing greenhouse systems to maximize crop yields using artificial intelligence [27].
ANN and intelligent machine vision were applied to LED control for precision lighting in
indoor gardens where light intensity and spectrum were adjusted based on plant growth
and needs [28]. In a vertical farming set-up, convolutional neural network (CNN) image
processing models were applied to detect lettuce diseases as part of a pest control system.
The machine learning model was trained with different pictures of lettuce diseases using
ResNet50 and ImageNet [29]. Using AI for controls like deep neural networks, CNN,
recurrent neural networks, Bayesian reinforcement learning, and deep deterministic policy
gradient combined with a generative adversarial network, five global teams competed in
a remote greenhouse-growing cucumber challenge in 2019. Cucumber production was
significantly improved by AI-managed crop production systems with higher light intensity
and a balanced CO2 and ventilation environment [30]. ANN was also used to discover
an effective drip irrigation technique for growing cucumbers in protected soil, obtaining
higher yields [31].

Despite the large collections of formulated potential evapotranspiration models for
various crops worldwide, there are still instances where it cannot be localized, especially
with the additional influence of climate change and anthropological activities. Another
factor for selecting an evapotranspiration model is the basis of predictors or natural factors
that could affect it. It appears that based on the surveyed literature, the majority used
models that have large arrays of parameters and are sometimes hard to measure by low-
income and small-scale farmers [18–22,32]. Though those models are quite responsive, the



Agronomy 2023, 13, 2460 4 of 21

applicability of using them by general farmers is constrained. Issues like this can be solved
by computational intelligence, particularly advanced physics-based metaheuristics and
evolutionary computing for optimization purposes.

To address the challenge of an ineffective evapotranspiration model, this study opti-
mized the Thornthwaite evapotranspiration model using atom search (ASO), differential
evolution (DE), and multiverse (MVO) metaheuristics and applied the recommended best
temperature in a controlled growth chamber for papaya seedling cultivation. ASO, DE, and
MVO were the preferred computational intelligence algorithms as they did not result in
premature convergence during the initial experiment and had fewer hyperparameters that
could be easily reconfigured, unlike some recently developed optimization models [33–35].
Here, these three optimization algorithms were tested to explore the feasibility of the best
solutions they provided in a realistic application for cultivation. Thornthwaite was the
chosen potential evapotranspiration model because it has not been used yet as a basis
for papaya cultivation, and it has a comparably limited number of factors to consider,
unlike other more complex schemes such as the Penman [36] and Penman–Monteith mod-
els [14,37]. Given the simplicity of the Thornthwaite potential evapotranspiration model, if
not customized to the requirement of a specific crop or fruit-bearing tree, it might negatively
affect its photosynthesis and nutrient absorption, which is relevant to its growth and yield.

This study made the following contributions:

• Modification and optimization of the general Thornthwaite evapotranspiration model
using physics-based (ASO and MVO) and evolutionary-based optimization (DE) con-
cepts to make it site-specific and crop-specific. This resulted in a fitness function
resembling PETTh-mod with average monthly possible sunshine hour, mean temper-
ature, heat index, and extended heat index as the exogenous variables. Optimizing
the Thornthwaite PET configuration has the potential to induce crop growth and
sustainability in precision farming.

• Elucidation of electrophysiological signals from papaya stem as affected by environ-
ment temperature, which was confirmed to be the most sensitive when the ASO-based
Thornthwaite PET-controlled environment parameters were physically configured.
This action potential coming from the papaya stem membrane serves as an indication
of its sensitivity to external stressors.

• Comparison of resulting papaya leaf structure and chlorophyll, and root and stem vas-
cular vessels and external architecture as influenced by temperature inside a controlled
environment preset by ASO, DE, and MVO. This would substantiate the generated
global best combinations of environmental parameters by advanced physics-based
metaheuristics and evolutionary computing models integrated with Thornthwaite PET.

• Establishing a temperature-controlled environment agriculture for the Sinta F1 pa-
paya genotype by inducing its natural vegetative seedling growth for year-round
production.

2. Materials and Methods

This study is a biology experiment integrated with applied artificial intelligence.
Five developmental stages were investigated, namely (1) initial papaya cultivation and
pre-harvest growth factors acquisition, (2) Thornthwaite evapotranspiration optimiza-
tion, (3) papaya electrophysiological signal extraction, (4) cultivation using the optimized
evapotranspiration influencing factors based on computational intelligence, and (5) plant
architecture and microscopy analysis (Figure 1). The goal of this study was to highlight the
potential of computational intelligence in improving controlled-environment agriculture.
MATLAB R2021b was the only computational intelligence software used in the study.
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Figure 1. Developmental framework for the optimization of Thornthwaite evapotranspiration us-
ing atom search, differential evolution, and multiverse metaheuristics with electrophysiology for
controlled papaya cultivation.

2.1. Plant Material and Cultivation Condition

Sinta F1 papaya (Carica papaya) from East–West Seed, Philippines, was the selected
fruit-bearing tree genotype for this experiment as it is hard to cultivate this specific tree
in Cavite, Philippines (experiment location: 14◦27′26.676′ ′ N, 120◦55′42.4812′ ′ E shown in
Figure 2) due to combined heat extremes and high salinity in the soil system all year round.
The study was focused on the vegetative plant stage (seedling) only, which lasts until the
third month (90 days) of the growth cycle. Ten papaya seeds were germinated individually
in 2.5 in × 6 in plastic containers with a soil composition of 40% loam, 30% sand, 10%
perlite, and 20% vermiculite. This initial cultivation was performed in an uncontrolled open
environment (Figure 2b,c) while measuring the temperature using a DS18B20 temperature
sensor and Arduino ESP32 microcontroller (e-Gizmo Mechatronix Central, Philippines)
that directly logs data to ThingSpeak IoT cloud storage every 30 min. Each pot was
fertigated with 25%, 75%, and 100% strength of the formulated nutrient solution for the
days after germination (DAG) 1-30, DAG 31-60, and DAG 61-90, respectively. The full
strength nutrient solution was composed of 16 mM KNO3, 6 mM Ca(NO3)2·10H2O, 2 mM
NH3H2PO4, 1 mM MgSO4·7H2O, 50 µM KCl, 25 µM H3BO3, 2 µM MnSO4·H2O, 1 µM
ZnSO4·7H2O, 0.5 µM CuSO4·5H2O, 0.5 µM (NH4)6Mo7O24, and 50 µM Fe-EDTA.
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Figure 2. (a) Experimental location in the Cavite province of the Philippines, (b) environment temper-
ature and average sunshine hours for the whole year of 2022 indicating the initial experiment, and the
diagrammatic representations of (c) initial outdoor experiment setup and (d) controlled environment
after the conduct of Thornthwaite PET optimization through computational intelligence approach.
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2.2. Thornthwaite Evapotranspiration Optimization Using Advanced Metaheuristics

Thornthwaite potential evapotranspiration (PETTh) is a referential measure character-
ized by the mathematical relationships of environmental parameters such as the average
monthly possible sunshine hour (N, h/day), number of days of each month (m, days), mean
temperature (Tm, ◦C), heat index (I, unitless), and extended heat index (α, unitless) (1–3).
Here, N, m, Tm, I, and α were set to minimum and maximum threshold pairs of [6.2 to
11.3 h/day], [29 to 31 days/month], [25.483 to 32.483 ◦C], [12.8 to 15.3], and [−6.9 to −4.3]
based on initial acquired experimented data of the Philippines from 2019 to 2021 [38–40].
The goal of this stage was to optimize the modified PETTh (PETTh-mod) as a function of {N,
Tm, I, α} (4), serving as the fitness function, through minimization using atom search (ASO),
differential evolution (DE), and multiverse optimization (MVO) to reduce plant stress due
to drought when there is substantial high temperature (Figure 3).

PETTh = 16(
N
12

)(
m
30

)(
Tm

I
)

α

, (1)

I =
12

∑
i=1

(
T(i)m

5
)

1.514
, (2)

α = 6.75× 10−10 I3 − 7.71× 10−5 I2 + 1.79× 10−2 I + 0.49, (3)

PETTh−mod = 1.356N(
Tm

I
)

α

. (4)
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ASO is a recently developed population-based heuristic algorithm that draws inspira-
tion from physics and imitates the atomic motion governed by interaction and constraint
forces to create an efficient search mechanism for large-scale optimization issues [33,41].
In ASO, each atom in the initial iteration interacts with the others through repulsion and
attraction, and repulsion can prevent an excessive concentration of atoms and an early con-
vergence of the algorithm, improving the ability to explore the whole search space [33,41].
The attraction steadily grows stronger, and the repulsion gradually recedes as iterations go
by, signaling that the exploration is decreasing and the exploitation is escalating [33]. Each
atom in the final iterations interacts with the others simply through attraction, ensuring
that the algorithm has a good capacity for exploitation. Equation (5) describes the overall
interaction forces acting on the ith atom in the dth dimension and the vector sum of the
repulsion and attraction that the ith atom experiences from dynamically shifting neighbor
atoms where Kopt is a subgroup of the population of the atom that consists of initial K
atoms with the optimum values of fitness function and randj is a random number in the
range of [0, 1]. The interaction force operating on the ith atom from the jth atom in the dth

dimension at t time is denoted by the Lennard–Jones (L–J) potential in (6), where hij(t) is the
ratio of the distance between two atoms to the length scale η(t) that is the depth function for
altering the region’s repulsion or attraction (7). η(t) is affected by α as the weight of depth,
while T is the maximum number of iterations. Here, if every single atom in the ASO has a
covalent bond with the optimum atom, the normalized position weight difference between
the atom and the optimum atom, known as geometric constraint force, can be expressed
as (8) where xd

opt(t) is the position of the optimum atom in the dth dimension, and λ(t) is
the Lagrangian multiplier, where β is the weight of the multiplier (9). The acceleration of
the ith atom in the dth dimension at iteration t can be calculated from the given interaction
and constraint force arising from the bond-length potential and L–J potential as a function
of mi(t) as the mass of the ith atom at the tth iteration, which can be determined by its
fitness function value in (10). Finally, to make the algorithm simpler, the velocity (v) and
the position (x) of the ith atom at (t + 1)th iteration can be expressed as (11) and (12).

Fd
i (t) = ∑

j∈Kopt
randjFd

ij(t), (5)

Fd
ij = −η(t)

[
2
(
hij(t)

)13 − (h ij(t)
)7
]

, (6)

η(t) = α(1− t− 1
T

)
3
e−

20t
T , (7)

Gd
i (t) = λ(t)

(
xd

opt(t)− xd
i (t)

)
, (8)

λ(t) = βe−
20t
T , (9)

mi(t) =
Mi(t)

∑N
j=1 Mj(t)

, (10)

vd
i (t + 1) = randd

i ·vd
i (t) + ad

i (t), (11)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1). (12)

DE is one of the straightforward evolutionary techniques that was found to have strong
performance in global optimization [34]. Differential knowledge is primarily employed to
direct its subsequent search, and the fundamental components of its optimization process
are mutation, crossover, and selection, with mutation serving as the primary determinant
of DE’s optimization adaptability [42]. The DE method begins the investigation with a
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population of potential solutions that are initialized at random in the entire search space
using (13), where randj

i(0,1) signifies an evenly distributed random number within the range

of [0, 1], which is individually instantiated for each member. X j
min and X j

max are the lower
and upper bounds on each decision variable, respectively [43]. In this study, following
population initialization, DE applies the following strategies for mutation, crossover, and
selection. In mutation, three different agents, Xr1, Xr2, and Xr3, are chosen from the current
population to carry out the mutation operator, where r1 6= r2 6= r3 6= i is used to produce
a mutant vector Ui. The mutator can be represented mathematically as in (14), where
F is the mutation scale factor, which is a vector of D dimensions. The scaling factor (F)
performs as a positive control parameter to measure the vector difference. The notation
“DE/a/b” denotes the DE mutation methods, where “a” stands for the base vector to be
disturbed and “b” for the number of differential vectors [43]. After the mutation process,
the trial vector Vi is produced by performing a crossover operation between the target
vector Xi and the mutant vector Ui. DE uses either a binomial crossover or exponential
crossover operation to create a trial vector. The crossover operator can be denoted as (15),
where PCR is a probability factor in defining the swarm diversity and inhibits the algorithm
from shrinking into local minima, rand is a number randomly in the range [0, 1], and
jrand is an index number, arbitrarily produced between {1, 2, . . ., D}. This guarantees that
one component of the trial vector Vi happens to be from mutant vector Ui. The selection
operator indicates that the trial vector Vi and the search agent Xi are evaluated or compared
in terms of their fitness values, and the best offspring is selected. This can ensure that the
best potential solution will be preserved, optimizing the algorithm’s speed and accuracy of
convergence [42].

X j
i = X j

min + randj
i(0, 1) ∗

(
X j

max − X j
max

)
, (13)

Ui = Xr1 + F× (Xr2 − Xr3), (14)

Vij =

{
Uij; rand(0, 1) < PCR or j == jrand

Xij; otherwise.
(15)

The MVO algorithm is inspired by the concept of multiverse theory, where the white
hole and black hole can interact through a wormhole as a travel path [35,44]. This algorithm
takes the solution as a universe; therefore, the population size is the total number of
universes. Inputs are the population size and the maximum number of iterations. The
fitness of a solution is determined by the assigned inflation rate (IR), in which the best
solution has the lowest value. The first stage of MVO is an exploration that aims to
determine the most applicable regions in the search space that could contain the best local
optima with white holes and black holes. The second stage, exploitation, makes use of
wormholes to extract the local optima from the regions to determine the global optimum.
MVO is guided by rules in determining the white holes and black holes and how the objects
move through the wormhole: the higher the IR, the higher probability of having a white
hole; the higher the IR, the lower probability of having a black hole; universes with higher
IR tend to send objects through white holes; universes with lower IR tend to send objects
through black holes; the objects in all universes will experience random movement towards
the best universe via wormholes regardless of IR [35,44]. A population of the universe
(U) is represented by a matrix (16) where d denotes the number of solution parameters or
variables, and n is the total number of universes. The exchange of objects occurs during
every iteration using the roulette wheel mechanism. The selection of a universe is based on
(17), where xj

i is the jth variable of the ith universe, xj
k is the jth variable of the kth universe

from roulette selection, and r1 is a random constant from 0 to 1. Here, the universe can
exchange objects, assuming that a wormhole tunnel connects a universe to the best universe
in a region to provide local exchange in each universe. These exchanges of objects between
universes are represented by (18). The acronyms TDR and WEP are coefficients of the
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traveling distance rate and wormhole existence probability, respectively. The variable Xj is
the jth parameter, while the upper and lower bounds of the jth parameter are represented
by ubj and lbj, respectively. Variables r2, r3, and r4 are any number between 0 and 1. The
coefficient TDR defines the traveling speed of an object towards the best universe, while
WEP defines the existence in the universe (19) and (20), where l is the current iteration,
and L is the total number of iterations. The min and the max indicate the maximum and
minimum values of r, and p is the exploration accuracy. TDR and WEP are updated and
assigned to each universe during every iteration. After which, the process repeats, selecting
a universe as a white hole among the sorted universes according to the updated IR and
through roulette wheel selection. This will proceed again to exchange objects between
different universes [44]. The iteration will end when the stopping criteria are matched,
which could be the maximum number of iterations or the number of non-improvement
iterations, which occurs when the best solution is not updated after n successive iterations.

U =

[
x1

1 x2
1 · · · xd

1 x1
2 x2

2 · · · xd
2

...
...

. . .
... x1

n x2
n · · · xd

n

]
, (16)

U =
{

xj
k r1 < Normalized IR (Ui)xj

i r1 ≥ Normalized IR (Ui), (17)

xj
i =

{{
Xj + TDR ×

((
ubj − lbj

)
× r4 + lbj

)
r3

< 0.5 Xj + TDR×
((

ubj − lbj

)
× r4 + lbj

)
r3

< 0.5 r2 < WEP xj
i r2 ≥WEP,

(18)

WEP = +l ×
(
−min

L

)
, (19)

TDR = 1− l1/p

L1/p . (20)

Summarized in Table 1 are the hyperparameters configured in the finalized-converged
form of ASO, DE, and MVO. The recommended global best solutions of ASO, DE, and MVO,
the environment temperature suitable for reduced evapotranspiration, were individually
set in a cultivation chamber for the analysis of the impact of temperature on papaya growth
phenes. This is expected to correspond with a PETTh-mod value that is close to 0, which
pertains to a very low rate of water evaporation in that enclosed environment. For the
cultivation with an optimized evapotranspiration environment as recommended by ASO,
DE, and MVO, 30 papaya seeds were tested for each treatment with three replicates totaling
270 seeds (30 seeds per treatment × 3 treatments × 3 replicates per treatment). Figure 2d
shows the diagrammatic setup for this controlled environment experiment.

Table 1. Summary of hyperparameters configured using ASO, DE, and MVO.

Atom Search Optimizer Differential Evolution Multiverse Optimizer

No. of atoms: 150 Population size: 150 No. of universes: 150
Maximum iteration: 1000 Maximum generation: 1000 Maximum iteration: 1000
Inertia weight: 0.9 Mutation rate: 0.9 Expansion rate: 0.9
Acceleration coefficient: 0.8 Mutation strategy: Uniform Contraction rate: 0.8

Crossover rate: 0.8 Gravity coefficient: 0.9
Selection rate: 0.9 No. of universes: 150
Selection strategy:
Tournament
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2.3. Papaya Electrophysiological Signal Extraction

Biosignals from the papaya stem in the form of a DC voltage signal were sampled
every 30 min for 90 days. One electrode (red) was inserted through the vascular tissues of
the papaya stem, 2 cm above the soil line, and another electrode connected from the ground
terminal of the AD620 amplifier was directly buried 5 cm from the soil system and 3 cm
distant from the papaya stem to complete a circuit (Figure 4). The electrodes were made of
Ag-coated Cu-pin-type cylindrical metal with 0.05 mm2 surface area. Because the voltage
sensor and ESP32 Arduino microcontroller operate at 5 V, the minimum input voltage that
this system can read is 24.25 mV (5 V)2/1023-bit resolution). The average electricity that
can be extracted from the papaya stem is 100 µV; hence, the configured gain for AD620
was set to 25 to ensure other lower voltage spikes were acquired. This electrophysiological
experiment was performed in uncontrolled and controlled cultivations, thus verifying the
variations in the stem signals due to differences in environmental temperature.
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Figure 4. Setup for extracting biosignals from papaya stems (left) and electronic system block
diagram for the controlled cultivation greenhouse as recommended by the integrated advanced
metaheuristics (right).

2.4. Plant Phenotyping and Vascular Tissues Microscopy

Morphological phenotypes and anatomical vascular tissues were measured at the
end of 90 DAG to clearly delineate the manifestation of uncontrolled temperature and
ASO-, DE-, and MVO-optimized environmental temperature. Root and stem lengths were
measured using a digital caliper. Leaf counts were counted manually. Chlorophyll-a (Chl-a,
C55H72MgN4O) and chlorophyll-b (Chl-b, C55H70MgN4O6) were measured by sampling 1
g of leaf tissue per treatment mixed with 75% acetone solution and submerged in a hot bath
of 60 ◦C for 30 min. The solution was then passed through a filter paper, and absorbance
was measured using a UV-Vis 1900 spectrophotometer at 663 nm and 470 nm for Chl-a and
Chl-b, respectively [45,46]. Stem tissues 1 cm from the internode of hypocotyl and root
system were sectioned transversely and stained with 10% toluidine blue solution for 30 s,
then decanted to an 80% acetic acid solution for 10 s, and lastly, washed with deionized
water until excess dyes were removed. The same cell staining process was performed
for root tissues dissected transversely 1 cm below the internode connecting to the main
stem. Leaf tissues were sampled from the abaxial middle portion of the leaf for stomata
counting. Tissue samples were imaged using a compound light microscope with 4× to 40×
magnification (Howel Microscopes, Whitesboro, NY, USA). Micrographs were analyzed
using ImageJ software to determine xylem, phloem, and stomata density per mm2.
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2.5. Statistical Analysis

Experiment data were analyzed using Pearson’s correlation coefficient (p < 0.05). Cor-
relogram and principal component analysis (PCA) biplot generation were all conducted in
Minitab 20.4. Plant phenotype data were subjected to ANOVA with Tukey’s honestly signifi-
cant difference (HSD) comparison test in Minitab 20.4 to elucidate the significant differences
among the three replicates of cultivation of the four treatments, namely, uncontrolled and
the ASO-, DE-, and MVO-based Thornthwaite PET environment configurations.

3. Results
3.1. Dynamic Relationships of Cultivation Temperature and Papaya Phenes

The growth of papaya was measured based on chlorophyll a and b concentrations,
stomatal density, root xylem and phloem densities, stem’s xylem and phloem diameters,
and root and stem lengths (Figure 5). Based on the 90-day experiment cultivating the
Sinta F1 papaya plant, stem phloem diameter was observed to have a very strong negative
correlation (R2 = −0.93 ± −0.035, p < 0.05) with other plant morphological and pigment
phenotypes in an uncontrolled environment with Thornthwaite potential evapotranspira-
tion of 283.403× 10−3 (Figure 5). This interesting finding implies that as the dicotyledonous
plant matures with reference to elongating roots and stems, the phloem diameter of the
stem decreases; hence, a type of natural nutrient distribution optimization is facilitated
by the plant. This phenomenon was not observed in monocotyledonous plants, as the
usual observation was that the whole vascular bundle increased in diameter while the
whole plant grew. Another emerging issue here is that if the stem length continues to grow,
the phloem vessel will continue to become thinner (Figure 5b). The high environmental
temperature was previously confirmed to have a direct impact on deteriorating phloem [17].
This is where optimizing potential evapotranspiration is required.
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3.2. Differential Impacts of ASO, DE, and MVO-Optimized Thornthwaite Evapotranspiration
Model to Papaya Seedling Phenes and Anatomy

In total, 1000 iterations were used to explore and exploit the ASO, DE, and MVO
algorithms in a 4D space to find the optimum combinations of the average monthly possi-
ble sunshine hour, mean temperature, heat index, and extended heat index to minimize
the PETTh-mod, ASO, DE, and MVO converged at iteration 845, 568, and 40, respectively
(Figure 6). MVO exhibited premature convergence characterized by swift exploration
that may result in unsearched 4D space. This was supported by a PETTh-mod value of
23.723 × 10−3 (Table 2). On the other hand, the ASO and DE-optimized PETTh-mod exhib-
ited a more acceptable minimization trend (Figure 6) and a potential evapotranspiration
value of 6.420 × 10−3 and 11.133 × 10−3 (Table 2). ASO-based PETTh-mod (ASOTh) was
only a 0.271 factor of MVOTh, and DETh was just 0.469. With this, ASOTh was considered
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to have the most recommended environment configuration (Table 2), especially concerning
the mean temperature which was 31.664 ◦C and a heat index of 14.1 for a controlled en-
vironment setup. These findings for ASOTh suggest that having a controlled system that
would maintain a 10.033 h/day of sunshine hour, 31.664 ◦C mean temperature, 14.1 heat
index, and−5.528 extended heat index would minimize the potential of evapotranspiration
close to 0. The uncontrolled condition with a PET of 0.283 was not close to 0, but when
compared to the ASOTh, it was 44.146 times higher. Therefore, based on the integration of
evolutionary computing in optimizing the environmental stressors, particularly the mean
ambient temperature and light period, the ASOTh configuration (Table 2) was considered
the most recommended condition as it had the smallest rate for water-deficit vegetation.
This specific ASOTh configuration is recommended only for the Sinta F1 papaya variety
and not for the general species.
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transpiration with respect to N, Tm, I, and α.

Table 2. Established recommended influencing parameters based on uncontrolled optimization
algorithms to induce Sinta F1 papaya seedling growth.

Treatment/Model

Pre-Harvest Growth Parameters
PETTh PETTh-modN

(h/day)
Tm
(◦C) I α

Uncontrolled 10.042 28.483 13.900 −5.400 0.283 -
ASOTh 10.033 31.664 14.100 −5.528 - 6.420 × 10−3

DETh 12.100 30.532 15.500 −7.068 - 11.133 × 10−3

MVOTh 11.217 28.909 14.200 −5.718 - 23.723 × 10−3

Based on modified Thornthwaite PET responses, the PET value approaches 0 when
the minimum temperature is above 27 ◦C, the maximum temperature is between 31 ◦C
and 33 ◦C, and the daily light period is 10–12 h (Figure 7a,b). In addition, with these
configurations, the derivative Thornthwaite PET parameters, such as heat index and
extended heat index, should be above 15 and below −6.5 (Figure 7c,d) to avoid excessive
water loss in the soil system.



Agronomy 2023, 13, 2460 13 of 21

Agronomy 2023, 13, x FOR PEER REVIEW 13 of 23 
 

 

 

Figure 6. Fitness convergence of ASO, DE, and MVO to optimize the Thornthwaite potential 

evapotranspiration with respect to N, Tm, I, and α. 

Based on modified Thornthwaite PET responses, the PET value approaches 0 when 

the minimum temperature is above 27 °C, the maximum temperature is between 31 °C 

and 33 °C, and the daily light period is 10–12 h (Figure 7a,b). In addition, with these 

configurations, the derivative Thornthwaite PET parameters, such as heat index and 

extended heat index, should be above 15 and below −6.5 (Figure 7c,d) to avoid excessive 

water loss in the soil system. 

 

Figure 7. Three−dimensional surface graphs correlating the Thornthwaite PET for various impact 

combinations of (a) daily light period (N) and minimum temperature (Tmin), (b) maximum 

temperature (Tmax) and Tmin, (c) I and α, and (d) I and Tmax. 

To verify the effectiveness of modified Thornthwaite PETs through ASOTh, DETh, and 

MVOTh, the plant's architectural and stem’s vascular tissue were exposed and analyzed 

(Figure 8a,b). The chlorophyll a and b concentrations of ASOTh were very strong at 2.843 

mg/g and 0.877, respectively, with an average of 114 active stomata/mm2 in the leaves 

(Figure 9a,b). In comparison with the stomata density of other treatments, the 

uncontrolled, DETh, and MVOTh had factors of 0.509, 0.851, and 0.753 compared to that of 

the ASOTh, respectively. This is logical as the chlorophyll a and b concentrations for 

uncontrolled, DETh, and MVOTh treatments dropped by 267.419%, 715.3%, and 671.77%, 

respectively. Because the opening and closing of stomata are affected by the temperature 

and humidity of the environment, it is confirmative that the temperature recommended 

Figure 7. Three−dimensional surface graphs correlating the Thornthwaite PET for various im-
pact combinations of (a) daily light period (N) and minimum temperature (Tmin), (b) maximum
temperature (Tmax) and Tmin, (c) I and α, and (d) I and Tmax.

To verify the effectiveness of modified Thornthwaite PETs through ASOTh, DETh,
and MVOTh, the plant’s architectural and stem’s vascular tissue were exposed and ana-
lyzed (Figure 8a,b). The chlorophyll a and b concentrations of ASOTh were very strong
at 2.843 mg/g and 0.877, respectively, with an average of 114 active stomata/mm2 in the
leaves (Figure 9a,b). In comparison with the stomata density of other treatments, the
uncontrolled, DETh, and MVOTh had factors of 0.509, 0.851, and 0.753 compared to that
of the ASOTh, respectively. This is logical as the chlorophyll a and b concentrations for
uncontrolled, DETh, and MVOTh treatments dropped by 267.419%, 715.3%, and 671.77%,
respectively. Because the opening and closing of stomata are affected by the temperature
and humidity of the environment, it is confirmative that the temperature recommended
by ASOTh is optimum for the Sinta F1 papaya cultivar. The 31.664 ◦C air activates the
guard cells of stomata to open and allows the uptake of carbon dioxide and chlorophyll
molecules to absorb light energy, promoting photosynthesis. The papaya seedling root
exposed to ASOTh treatment exhibited extended root system architecture (156.3 mm),
248.885%, 141.961%, and 215.586% longer than uncontrolled, DETh, and MVOTh treatments,
respectively (Figure 9c). The stem length of ASOTh treatment exhibited extension to ap-
proximately 510.8 mm, 162.082%, 128.277%, and 140.407% longer than uncontrolled, DETh,
and MVOTh treatments, respectively (Figure 9c). Interestingly, the plant vegetative aspect
ratio or the stem length and diameter ratio for the uncontrolled treatment resulted in 76.866,
while the evolutionary-based treatments ASO, DE, and MVO resulted in 69.973, 75.132, and
64.964 (Figure 9d). As this vegetative aspect ratio passed the value of 100, the resembled
plant stem was very thin [5,6]. This finding confirmed that ASOTh-treated papaya plants
have normal stem growth with improved mechanical stability. By having not too long and
thin a stem, such as the uncontrolled treatment, the ASOTh-treated plant had a reduced
risk of breakage due to wind or mechanical stresses that might occur while it grows. More-
over, it was observed that the stem of ASOTh-treated papaya exhibited the densest xylem
(70 xylems/µm) and the sparsest phloem (33 xylems/µm) (Figure 9f,g). Despite the ASOTh
having a 10.033 h/day light period that was the least among the other treatments, including
the uncontrolled, it exhibited the highest mean temperature of 31.664 ◦C. This caused
the xylem vessel to be denser to help in water transport. Because of the advantageous
environment in following the ASO treatment, there is no need for the papaya plants to
develop denser phloem in transporting organic nutrients as by-products of photosynthesis
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in growing leaves. It is noticeable that the uncontrolled treatment induced the plants to
adjust to the environment by developing denser phloem to compensate for the temperature
and other stressors in growing leaves (Figures 8a and 9f,g). In this study, the plants exposed
to evolutionary computing-based Thornthwaite PET treatments were revealed to have a
higher xylem–phloem ratio (Figure 9f,g), which suggests that the provision of minimal
irrigation would still promote growth to the plants as they allocate more resources in xylem
vessels responsible for water uptake. This is confirmed by the deeper root growth in ASO
treatment (Figure 8a). Nonetheless, such an ASO-based cultivation chamber may have some
benefits to the farmer for lesser water consumption while still producing an acceptable
yield. Moreover, the chlorophyll a and b ratio, which is the ratio of pigments responsible
for capturing light energy and the molecule that extends the range of absorbable light for
photosynthesis, was higher in ASOTh-treated papaya seedlings (approaching 4), and the
uncontrolled treatment was up to the 1.5 level only (Figure 9h).
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Figure 8. Impacts of cultivation temperature as observed in the (a) harvested papaya seedling
architecture and (b) transverse sections of vascular tissues (stem and root) for each temperature
treatment stained with TBO. (ep, xy, and ph mean epidermis, xylem, and phloem). Note that ASOTh,
DETh, and MVOTh are the optimized Thornthwaite evapotranspiration model using ASO, DE, and
MVO, respectively.
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Figure 9. Measured (a) chlorophyll concentration, (b) stomata density, (c) root and stem lengths,
(d) stem diameter, (e) leaf count, (f,g) xylem and phloem density, and (h) chlorophyll a and b ratio in
relation to uncontrolled and modified Thornthwaite treatments. Note that ASOTh, DETh, and MVOTh

are the optimized Thornthwaite evapotranspiration model using ASO, DE, and MVO, respectively.
Groups a, b, c, and d within factors (treatments) with the same letter are not significantly different at
5% HSD.

3.3. Dynamics of Papaya Electrophysiological Signals

The action potentials or stem signals in papaya plant membranes were recorded
using the Ag-coated Cu-pin type electrodes inserted across the vascular tissues (Figure 5),
which resulted in a periodic oscillating signal waveform, as shown in Figure 10. It is
remarkable that the ASOTh-treated papaya plants exhibited the highest action potentials
all day long throughout the cultivation period, that is, even during the dark period before
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and after the scheduled light period (Figure 10). During the 10.042 h light period, the
high action potentials incurred by the ASOTh plants are an indication that stomata are
open and active in performing the carbon dioxide and oxygen exchange [5]. In such cases,
light photosynthesis happens with an average action potential of 200 mV across plant
stems. During the light period, the uncontrolled treatment exhibited the weakest stem
signal with an average value of 120 mV. This confirmed that the photosynthetic rate in
the uncontrolled treatment is not the optimum condition for papaya plants. For a 1-day
analysis, it is comparable that the action potentials from the stem have slightly higher
readings in the dark period after the light period than before the light period (Figure 10).
The probable cause of this is that the plant system is still slightly active processing due to
residual energy induced during the light period. Here, it has been elucidated that action
potential, chlorophyll a and b ratio, and stomata density have a positive relationship and,
therefore, a considerable set of physiological parameters in understanding plant growth
with respect to environment temperature and light period.
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4. Discussion

Because of global warming and the effects of climate change, such as changes in
rainfall patterns, the need to control certain environmental stressors would likely occur in
order to improve crop productivity and yield. It was observed that a consistent pattern
of irradiation improved the circadian rhythm of plants so they could optimally allocate
their resources for growth and development [10,21]. In relation to the current study, the
evolutionary computing models developed, namely, ASO, DE, and MVO, induced sim-
ilar patterns of stem action potentials, showing a good indication of plants adapting to
controlled environments. Thornthwaite potential evapotranspiration is a relatively simple
indicator for water and thermal stressors in plants; together with other PET models like
Penman–Monteith, Hargreaves, Priestley–Taylor, and Blaney–Criddle, it is used for geo-
graphical region-based analysis of sunshine hours, environment temperature, frequency of
raining, and solar irradiation covering a wide region [14–17]. Hence, the selection of an ap-
plicable set of geographical parameters for evapotranspiration prediction and optimization
has a strong impact on the potential agricultural productivity. The novelty of the current
study is the development of an evolutionary-based Thornthwaite PET site-specific and
crop-specific model (Figures 3 and 11). This model established that air temperature close to
31.5 ◦C and a light period between 10 to 10.5 h/day would optimally activate chlorophyll
a and b molecules (Figure 11a,b), essentially activate most of the stomata in the adaxial
surface of papaya leaves (Figure 11c), develop a denser xylem and phloem root and stem
system (Figure 11d,g), induce both primary and secondary growth of the root and stem
(Figure 11i,j), and strengthen the action potential from the stem membrane (Figure 11k).
An advanced model related to PET was previously configured using extreme machine
learning and a sparrow search algorithm (SSA), but it was mainly used to estimate the
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evapotranspiration rate and not optimize it [21]. On the other hand, the ASOTh, DETh, and
MVOTh developed here were deployed to determine the optimum temperature and irradi-
ation light period with the corresponding derivative Thornthwaite parameters (Table 2). In
general, the optimized Thornthwaite PET models in this study are ranked in descending
order of preference based on the resulting optimized PET value: ASOTh > DETh > MVOTh
(Table 2). Hence, it should be noted that the developed evapotranspiration models in this
study highlighted the non-linear and interactive processes in evapotranspiration that have
a significant impact on both the microscopic and macroscopic features of a fruit-bearing
tree like papaya. It is also confirmative that even for smaller regions, PET can be used as an
indicator of water-use efficiency. Note that heat index and extended heat index cannot be
manually controlled, but they are the extended effects of controlling the temperature of
the enclosed environment and the duration of the light period. That means there would
be very little water volume that can be evaporated and transpired from the area; hence,
available water will be used by the plant optimally. As demonstrated in this study, the
designed controlled system, incorporating the findings of ASOTh, provides optimal water
resource utilization by minimizing evaporation and transpiration, thereby allowing for
the accumulation of water on the soil surface and within plants [14]. In contrast, the un-
controlled condition (without evolutionary computing integration applied to the natural
stressors) with a much higher PET value of 0.283 experiences higher water loss due to
faster rates of evaporation and transpiration. Consequently, this leads to rapid drying
conditions, particularly during midday [14,15]. The plant roots extend just to forage for
available water in the lower depth of the soil system to adapt to the limited-resource and
constrained environment, which in return also characterizes the thickening of the xylem
vessel (Figures 8a and 9f). The chlorophyll concentration in leaves of uncontrolled treat-
ment dropped mainly because stomata play a crucial role in the exchange of carbon dioxide
and oxygen during photosynthesis, which in turn induces the chlorophyll b to capture light
energy within 453nm and 642 nm wavelengths of light [3,5,45]. For sheltered or controlled
environment agriculture, an aspect ratio below 100, such as the ASOTh, implies that the
plant easily adapts to limited or driven resources and allocates more nutrients into produc-
ing leaves and fruits [6,16], which is the case of the papaya plant in the current study. This
finding is supported by the collected data on leaf count in which ASOTh has an average
of eight leaves per seedling (Figures 8a and 9e). Moreover, the ASOTh plants have faster
adaptability to absorb and utilize light energy and maximized ability to absorb even in low
light energy conditions [14–16]. This finding is also an indication that the temperature and
light period recommended by ASOTh would lead the plants to photodamage and cause
oxidative stress [14]. However, this study is limited to studying young papaya plants and
performed no characterization in matured papaya trees. Even so, up to the publication of
this study, there have been no other studies conducting optimization or modification of
the existing PET models. This optimization of the PET model led to a desired enclosed
environment design for papaya Sinta F1 growth. This limits the comparison of the study
only with uncontrolled environments for cultivation. Furthermore, for the continuation of
the study, an observation of changes in trunk diameter, plant height, and fruit quality at
later growth stages is a must to compare the results with other studies that optimized their
irrigation system based on PET models.

In the view of artificial intelligence, it is mainly deep neural networks and artificial
neural networks that have been integrated with the PET model for estimation of water
use only [19,22], and these have no specific feedback to the biosystem. Hence, the ASO-
based Thornthwaite model developed in the current study serves as proof of the initial
improvement of the limitations of the existing model, particularly in terms of potentially
inaccurate estimations for regions of high irradiation exposure.
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Unlike default PET models that can be only useful for large geographical cultivation
regions and are susceptible to global warming and abrupt changes in environmental
pre-growth factors of crops, the developed ASO-based Thornthwaite model is applicable
anywhere on Earth if there is a control system that will maintain the in-chamber setting. The
consideration of having a controlled environment agriculture setup with a standard PET
model in this study is a strategic approach to enhancing food production. Supplying enough
information to farmers through installed meteorological sensors will allow data-centered
farming capable of providing informed decisions and automated decision management
feedback to extendly improve the growth of crops. Furthermore, over- and under-irrigation
and negative environmental impacts caused by nutrient leaching will be prevented. Hence,
through this study, the Thornthwaite model was optimized and proven applicable for
enhancing papaya cultivation.

5. Conclusions

This study has shown that advanced physics-based and evolutionary computing al-
gorithms can be integrated with Thornthwaite potential evapotranspiration (PET) models
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to modify and optimize the induced growth of papaya plants, making it site-specific and
crop-specific. This mainly solves the limitation of the Thornthwaite PET model which has
the potential of inaccurate estimation for regions of high irradiation exposure, indirectly,
and the voluminous requirement of having lots of parameter data. Three optimization
algorithms were explored and configured in this study, namely, atom search (ASO), dif-
ferential evolution (DE), and multiverse (MVO) optimizers, to determine the best global
combination of configurable Thornthwaite PET for a controlled environment and compared
with the uncontrolled treatment of cultivating the papaya Sinta F1 cultivar. Among these
four treatments where papaya seedlings were exposed in three replicates in 90 days, the
ASO-optimized Thornthwaite PET-treated seedlings resulted in the highest chlorophyll
a and b concentrations, densest stomatal density, concentrated root and stem xylem and
phloem vessels, considerable root and stem length, most formed leaf count, and strongest
action potentials coming from stem membrane for both light periods and dark periods.
This is based on temperature and light period values of 31.664 ◦C and 10.033 h per day, re-
spectively, configurable in a closed environment agriculture for assured vegetative seedling
year-round production. The differential impacts of ASO-based Thornthwaite PET make it
the most recommended setting for the papaya Sinta F1 cultivar by elucidating its impacts on
its vegetative growth parameters. The ASO-based Thornthwaite PET promotes an adjusted
and acceptable stem length and thickness ratio, which helps the plant to mechanically sup-
port its branching leaves and potential fruits during the fruiting stage. Additionally, there
is an enhanced chlorophyll a and b ratio that extends the absorption energy spectrum for
plants exhibiting photosynthesis. The adjustment of the Thornthwaite PET could increase
crop growth and sustainability in precision farming, while the frequency and volume of
demand required for the papaya seedlings may be adjusted in accordance with a reduced,
calculated PET. Unlike default PET models that are only useful for large geographical
cultivation regions and are susceptible to global warming and abrupt changes in environ-
mental pre-growth factors of crops, the developed ASO-based Thornthwaite is applicable
anywhere on Earth as long as there is a control system that will maintain the in-chamber
setting. However, the developed ASOTh in this study was only tested for papaya seedlings
to young plant stages. Further research should be carried out to characterize the vegetative
and fruiting stage of papaya Sinta F1 and other varieties under the same environmental
settings by following the ASO-based Thornthwaite PET.
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