Prickly Sida (Sida spinosa L.) and Cotton Response to Pre- and Early Post-Emergence Herbicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimentation Site
2.2. Herbicide Treatments
2.3. Assessments
2.4. Statistical Analysis
3. Results
3.1. Prickly Sida Control
3.2. Crop Injury Evaluation
3.3. Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mohler, C.L.; Teasdale, J.R.; DiTommaso, A. Manage Weeds on Your Farm: A Guide to Ecological Strategies; Sustainable Agriculture Research & Education (SARE): College Park, MD, USA, 2021; p. 416. [Google Scholar]
- Egley, G.H. Germination of developing prickly sida seeds. Weed Sci. 1976, 24, 239–243. [Google Scholar] [CrossRef]
- Ivy, H.W.; Baker, R.S. Prickly sida control and competition in cotton. Weed Sci. 1972, 20, 137–139. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. Environmental conditions required for germination of prickly sida (Sida spinosa). Weed Sci. 1984, 32, 786–791. [Google Scholar] [CrossRef]
- Egley, G.H.; Williams, R.D. Emergence periodicity of six summer annual weed species. Weed Sci. 1991, 39, 595–600. [Google Scholar] [CrossRef]
- Webster, T.M.; Coble, H.D. Changes in the Weed Species Composition of the Southern United States: 1974 to 1995. Weed Technol. 1997, 11, 308–317. [Google Scholar] [CrossRef]
- Webster, T.M.; Nichols, R.L. Changes in the prevalence of weed species in the major agronomic crops of the southern united states: 1994/1995 to 2008/2009. Weed Sci. 2012, 60, 145–157. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; Bagavathiannan, M.V.; Mauromoustakos, A. Distribution of arable weed populations along eastern arkansas–mississippi delta roadsides: Factors affecting weed occurrence. Weed Technol. 2015, 29, 596–604. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; Brye, K.R.; Skinner, V.; Mauromoustakos, A.; Moonen, A.-C. Relationships between soil properties and the occurrence of the most agronomically important weed species in the field margins of eastern Arkansas—Implications for weed management in field margins. Weed Res. 2017, 57, 159–171. [Google Scholar] [CrossRef]
- Branson, J.W.; Smith, K.L.; Barrentine, J.L. Comparison of trifloxysulfuron and pyrithiobac in glyphosate-resistant and bromoxynil-resistant cotton. Weed Technol. 2005, 19, 404–410. [Google Scholar] [CrossRef]
- Reddy, K.N. Weed control and species shift in bromoxynil- and glyphosate-resistant cotton (Gossypium hirsutum) rotation systems. Weed Technol. 2004, 18, 131–139. [Google Scholar] [CrossRef]
- Porterfield, D.; Wilcut, J.W.; Wells, J.W.; Clewis, S.B. Weed management with CGA-362622 in transgenic and nontransgenic cotton. Weed Sci. 2003, 51, 1002–1009. [Google Scholar] [CrossRef]
- Lymperopoulou, S.; Giannopolitis, C.N. Galinsoga ciliata (Raf.) SF Blake and Sida spinosa L., two new weed records from Greece. Hell. Plant Prot. J. 2009, 2, 37–40. [Google Scholar]
- Economou, G.; Bilalis, D.; Avgoulas, C. Weed flora distribution in Greek cotton fields and its possible influence by herbicides. Phytoparasitica 2005, 33, 406–419. [Google Scholar] [CrossRef]
- Papamichail, D.; Eleftherohorinos, I.; Froud-Williams, R.; Gravanis, F. Critical periods of weed competition in cotton in Greece. Phytoparasitica 2002, 30, 105–111. [Google Scholar] [CrossRef]
- Bukun, B. Critical periods for weed control in cotton in Turkey. Weed Res. 2004, 44, 404–412. [Google Scholar] [CrossRef]
- Burke, I.C.; Wilcut, J.W. Weed management in cotton with CGA-362622, fluometuron, and pyrithiobac. Weed Technol. 2004, 18, 268–276. [Google Scholar] [CrossRef]
- Culpepper, S.A.; York, A.C. Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol. 1997, 11, 335–345. [Google Scholar] [CrossRef]
- Paulsgrove, M.D.; Wilcut, J.W. Weed management in bromoxynil-resistant Gossypium hirsutum. Weed Sci. 1999, 47, 596–601. [Google Scholar] [CrossRef]
- Snipes, C.E.; Mueller, T.C. Cotton (Gossypium hirsutum) yield response to mechanical and chemical weed control systems. Weed Sci. 1992, 40, 249–254. [Google Scholar] [CrossRef]
- Chandler, J.M. Competition of spurred anoda, velvetleaf, prickly sida, and venice mallow in cotton. Weed Sci. 1977, 25, 151–158. [Google Scholar] [CrossRef]
- Askew, S.D.; Wilcut, J.W. Absorption, translocation, and metabolism of foliar-applied CGA 362622 in cotton, peanut, and selected weeds. Weed Sci. 2002, 50, 293–298. [Google Scholar] [CrossRef]
- Askew, S.D.; Wilcut, J.W.; Cranmer, J.R. Weed management in peanut (Arachis hypogaea) with flumioxazin preemergence. Weed Technol. 1999, 13, 594–598. [Google Scholar] [CrossRef]
- Clewis, S.B.; Askew, S.D.; Wilcut, J.W. Economic assessment of diclosulam and flumioxazin in strip- and conventional-tillage peanut. Weed Sci. 2002, 50, 378–385. [Google Scholar] [CrossRef]
- Porterfield, D.; Wilcut, J.W.; Askew, S.D. Weed management with CGA-362622, fluometuron, and prometryn in cotton. Weed Sci. 2002, 50, 642–647. [Google Scholar] [CrossRef]
- Corbett, J.L.; Askew, S.D.; Thomas, W.E.; Wilcut, J.W. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 2004, 18, 443–453. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Silburn, D.M.; Foley, J.L.; deVoil, R.C. Managing runoff of herbicides under rainfall and furrow irrigation with wheel traffic and banded spraying. Agric. Ecosyst. Environ. 2013, 180, 40–53. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Veletza, V.G.; Kaloumenos, N.S.; Papantoniou, A.N.; Kadis, S.G.; Eleftherohorinos, I.G. Activity, adsorption, mobility, and field persistence of pyrithiobac in three soils. Weed Sci. 2005, 53, 212–219. [Google Scholar] [CrossRef]
- Baskaran, S.; Kennedy, I.R. Sorption and desorption kinetics of diuron, fluometuron, prometryn and pyrithiobac sodium in soils. J. Environ. Sci. Health B 1999, 34, 943–963. [Google Scholar] [CrossRef]
- Gardner, W.H. How water moves in the soil. Crop. Soils 1979, 32, 13–18. [Google Scholar]
- Mitchell, W.H. “STAPLE”—A new cotton herbicide from DuPont. In Proceedings of the Beltwide Cotton Conference, Memphis, TN, USA, 9–12 January 1996; National Cotton Council: Memphis, TN, USA. [Google Scholar]
- Heap, I. The International Herbicide-Resistant Weed Database. Tuesday, 1 August 2023. Available online: www.weedscience.org (accessed on 20 September 2023).
- Setyowati, N.; Weston, L.A.; McNiel, R.E. Evaluation of selected preemergence herbicides in field-grown landscape crops in Kentucky. J. Environ. Hortic. 1995, 13, 196–202. [Google Scholar] [CrossRef]
- Clewis, S.B.; Wilcut, J.W.; Porterfield, D. Weed management with s-metolachlor and glyphosate mixtures in glyphosate-resistant strip- and conventional-tillage cotton (Gossypium hirsutum L.). Weed Technol. 2006, 20, 232–241. [Google Scholar] [CrossRef]
- Grichar, W.J.; Besler, B.A.; Brewer, K.D.; Minton, B.W. Using soil-applied herbicides in combination with glyphosate in a glyphosate-resistant cotton herbicide program. Crop Protect. 2004, 23, 1007–1010. [Google Scholar] [CrossRef]
- Richburg, J.S.; Wilcut, J.W.; Eastin, E.F. Weed management in peanut (Arachis hypogaea) with imazethapyr and metolachlor. Weed Technol. 1995, 9, 807–812. [Google Scholar] [CrossRef]
- Troxler, S.C.; Askew, S.D.; Wilcut, J.W.; Smith, W.D.; Paulsgrove, M.D. Clomazone, fomesafen, and bromoxynil systems for bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 2002, 16, 838–844. [Google Scholar] [CrossRef]
- Wilcut, J.W.; Walls, F.R., Jr.; Horton, D.N. Imazethapyr for broadleaf weed control in peanuts (Arachis hypogaea). Peanut Sci. 1991, 18, 26–30. [Google Scholar] [CrossRef]
- Bridges, D.; Grey, T.; Brecke, B. WEED SCIENCE Pyrithiobac and Bromoxynil Combinations with MSMA for Improved Weed Control in Bromoxynil-Resistant Cotton. J. Cotton Sci. 2002, 6, 91–96. [Google Scholar]
- Kaloumenos, N.S.; Veletza, V.G.; Papantoniou, A.N.; Kadis, S.G.; Eleftherohorinos, I.G. Influence of pyrithiobac application rate and timing on weed control and cotton yield in Greece. Weed Technol. 2005, 19, 207–216. [Google Scholar] [CrossRef]
- Harrison, M.A.; Hayes, R.M.; Mueller, T.C. Environment affects cotton and velvetleaf response to pyrithiobac. Weed Sci. 1996, 44, 241–247. [Google Scholar] [CrossRef]
- Koger, C.H.; Price, A.J.; Reddy, K.N. Weed control and cotton response to combinations of glyphosate and trifloxysulfuron. Weed Technol. 2005, 19, 113–121. [Google Scholar] [CrossRef]
- Délye, C.; Jasieniuk, M.; Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013, 29, 649–658. [Google Scholar] [CrossRef]
- Allen, R.L.; Snipes, C.E.; Crowder, S.H. Fruiting response of cotton (Gossypium hirsutum) to pyrithiobac. Weed Technol. 1997, 11, 59–63. [Google Scholar] [CrossRef]
- Buchanan, G.A.; Crowley, R.H.; McLaughlin, R.D. Competition of prickly sida with cotton. Weed Sci. 1977, 25, 106–110. [Google Scholar] [CrossRef]
- Blaise, D. Effect of tillage systems on weed control, yield and fibre quality of upland (Gossypium hirsutum L.) and Asiatic tree cotton (G. arboreum L.). Soil Tillage Res. 2006, 91, 207–216. [Google Scholar] [CrossRef]
- Ma, X.; Wu, H.; Jiang, W.; Ma, Y.; Ma, Y. Interference between redroot pigweed (Amaranthus retroflexus L.) and cotton (Gossypium hirsutum L.): Growth analysis. PLoS ONE 2015, 10, e0130475. [Google Scholar] [CrossRef]
Herbicide ai | HRAC Group | MoA | Product Information |
---|---|---|---|
pyrithiobac-sodium | 2 | Inhibition of acetolactate synthase (ALS) | Staple SL (38.3% ai) Kumiai Chemical Industry Co. (Tokyo, Japan) |
s-metolachlor | 15 | Inhibition of very long-chain fatty acid synthesis | Dual Gold 96 EC (96% ai) Syngenta Crop Protection (Basel, Switzerland) |
isoxaben | 29 | Inhibition of cellulose synthesis | Rokenyl 500 SC (50% ai) Corteva Agriscience International Sar, (Versoix, Switzerland) |
flurochloridone | 12 | Inhibition of phytoene desaturase | Racer 25 EC (25% ai) Adama Agan Ltd. (Ashdod, Israel) |
fluometuron | 5 | D1 serine 264 (and other non-histidine 215 binders) | Flow 50 SC (50% ai) Nufarm GmbH & Co (Linz, Austria) |
pendimethalin | 3 | Inhibition of microtubule assembly | Axion Combi ZC (25% pendimethalin + 12.5% terbuthylazine) Kumiai Chemical Industry Co. |
terbuthylazine | 5 | D1 serine 264 (and other non-histidine 215 binders) | |
flumioxazin | 14 | Inhibition of protoporphyrinogen oxidase | Pledge 50 WP (50% ai) Sumitomo Chemical Agro Europe S.A.S (Lyon, France) |
trifloxysulfuron | 2 | Inhibition of acetolactate synthase (ALS) | Envoke 75 WG (75% ai) Syngenta Crop Protection |
Prickly Sida % Control | ||||||
---|---|---|---|---|---|---|
2021 | 2022 | |||||
Herbicide Treatment | Rate (g ai/ha) | 4 WAT PRE | 8 WAT PRE/ 4 WAT EPOST | 4 WAT PRE | 8 WAT PRE/ 4 WAT EPOST | |
1. | pyrithiobac PRE | 68.9 | 95 a | 99 a | 35 c | 97 a |
2. | pyrithiobac + s-metolachlor PRE | 68.9 + 960 | 92 a | 100 a | 62 b | 98 a |
3. | pyrithiobac + s-metolachlor PRE fb pyrithiobac EPOST | 34.5 + 960 fb 34.5 | 95 a | 100 a | 63 b | 98 a |
4. | pyrithiobac sodium + isoxaben PRE | 68.9 + 150 | 98 a | 99 a | 39 c | 92 a |
5. | flurochloridone + fluometuron PRE | 375 + 2000 | 89 ab | 93 ab | 96 a | 90 a |
6. | pendimethalin + terbuthylazine PRE | 1500 + 750 | 77 b | 88 b | 90 a | 82 a |
7. | flumioxazin + s-metolachlor PRE | 50 + 960 | 96 a | 93 ab | 97 a | 83 a |
8. | pyrithiobac EPOST | 68.9 | - | 71 c | - | 32 b |
9. | pyrithiobac + trifloxysulfuron EPOST | 68.9 + 7.5 | - | 86 b | - | 52 b |
LSD (0.05) | 14.6 | 8.4 | 20.7 | 20.0 |
Herbicide Treatment | Rate (g ai ha−1) | Cotton Density (Plants Lm−1 of Row) | ||
---|---|---|---|---|
2021 | 2022 | |||
0. | untreated control | 0 | 15 | 14 |
1. | pyrithiobac PRE | 68.9 | 15 | 13 |
2. | pyrithiobac + s-metolachlor PRE | 68.9 + 960 | 13 | 15 |
3. | pyrithiobac + s-metolachlor PRE fb pyrithiobac EPOST | 34.5 + 960 fb 34.5 | 14 | 16 |
4. | pyrithiobac sodium + isoxaben PRE | 68.9 + 150 | 12 | 15 |
5. | flurochloridone + fluometuron PRE | 375 + 2000 | 13 | 15 |
6. | pendimethalin + terbuthylazine PRE | 1500 + 750 | 18 | 16 |
7. | flumioxazin + s-metolachlor PRE | 50 + 960 | 12 | 16 |
8. | pyrithiobac EPOST | 68.9 | 11 | 15 |
9. | pyrithiobac + trifloxysulfuron EPOST | 68.9 + 7.5 | 10 | 16 |
NS | NS |
Herbicide Treatment | Rate (g ai ha−1) | Number of Cotton Bolls m−2 | Seeded Cotton Yield (Kg ha−1) | Lint Yield (% of Seeded Cotton) | |
---|---|---|---|---|---|
0. | untreated | 0 | 14 d | 1382 d | 0.44 |
1. | pyrithiobac PRE | 68.9 | 22 abc | 3926 a | 0.43 |
2. | pyrithiobac + s-metolachlor PRE | 68.9 + 960 | 23 ab | 2552 bc | 0.44 |
3. | pyrithiobac + s-metolachlor PRE fb pyrithiobac EPOST | 34.5 + 960 fb 34.5 | 26 a | 3322 ab | 0.44 |
4. | pyrithiobac sodium + isoxaben PRE | 68.9 + 150 | 23 ab | 3437 ab | 0.44 |
5. | flurochloridone + fluometuron PRE | 375 + 2000 | 27 a | 2928 bc | 0.44 |
6. | pendimethalin + terbuthylazine PRE | 1500 + 750 | 26 a | 3028 bc | 0.44 |
7. | flumioxazin + s-metolachlor PRE | 50 + 960 | 20 bc | 3201 ab | 0.43 |
8. | pyrithiobac EPOST | 68.9 | 17 cd | 2168 cd | 0.44 |
9. | pyrithiobac + trifloxysulfuron EPOST | 68.9 + 7.5 | 18 bcd | 2242 cd | 0.45 |
LSD (0.05) | 5.3 | 891 | NS |
Herbicide Treatment | Rate (g ai ha−1) | Mic | SCI | Elg | Str | Mst | Mat | UHML | UI | SFI | Rd | +b | Tr Cnt | Tr Ar | Amt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
untreated control | 0 | 4.6 d | 130 | 9.8 | 31.3 | 7.5 | 0.85 | 28 | 83 | 9 | 70 | 8 | 143 | 3 | 516 |
pyrithiobac PRE | 68.9 | 5.2 ab | 127 | 9.6 | 30.5 | 7.5 | 0.86 | 29 | 84 | 8 | 72 | 8 | 110 | 2 | 519 |
pyrithiobac + s-metolachlor PRE | 68.9 + 960 | 4.8 cd | 125 | 9.6 | 30.2 | 7.4 | 0.85 | 27 | 83 | 9 | 74 | 8 | 67 | 1 | 551 |
pyrithiobac + s-metolachlor PRE fb pyrithiobac EPOST | 34.5 + 960 fb 34.5 | 5.2 ab | 131 | 9.4 | 30.9 | 7.6 | 0.86 | 28 | 84 | 8 | 73 | 8 | 89 | 2 | 563 |
pyrithiobac sodium + isoxaben PRE | 68.9 + 150 | 5.1 abc | 128 | 9.5 | 31.5 | 7.7 | 0.86 | 28 | 83 | 9 | 71 | 7 | 110 | 2 | 508 |
flurochloridone + fluometuron PRE | 375 + 2000 | 4.9 bcd | 125 | 9.3 | 30.7 | 7.4 | 0.85 | 27 | 83 | 9 | 71 | 7 | 117 | 2 | 568 |
pendimethalin + terbuthylazine PRE | 1500 + 750 | 5.3 a | 123 | 9.7 | 31.0 | 7.4 | 0.86 | 28 | 83 | 9 | 74 | 8 | 85 | 1 | 453 |
flumioxazin + s-metolachlor PRE | 50 + 960 | 5.0 abc | 124 | 9.7 | 31.1 | 7.6 | 0.85 | 28 | 83 | 9 | 73 | 8 | 91 | 2 | 533 |
pyrithiobac EPOST | 68.9 | 4.7 cd | 135 | 9.3 | 31.2 | 7.6 | 0.85 | 28 | 84 | 9 | 72 | 8 | 106 | 2 | 526 |
pyrithiobac + trifloxysulfuron EPOST | 68.9 + 7.5 | 5.0 abc | 116 | 9.9 | 30.2 | 7.6 | 0.85 | 28 | 82 | 10 | 70 | 7 | 135 | 3 | 471 |
LSD (0.05) | 1.35 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kati, V.; Gitsopoulos, T.; Vasilakoglou, I.; Vlachos, C.; Mylonas, P.; Menexes, G. Prickly Sida (Sida spinosa L.) and Cotton Response to Pre- and Early Post-Emergence Herbicides. Agronomy 2023, 13, 2466. https://doi.org/10.3390/agronomy13102466
Kati V, Gitsopoulos T, Vasilakoglou I, Vlachos C, Mylonas P, Menexes G. Prickly Sida (Sida spinosa L.) and Cotton Response to Pre- and Early Post-Emergence Herbicides. Agronomy. 2023; 13(10):2466. https://doi.org/10.3390/agronomy13102466
Chicago/Turabian StyleKati, Vaya, Thomas Gitsopoulos, Ioannis Vasilakoglou, Christos Vlachos, Philippos Mylonas, and George Menexes. 2023. "Prickly Sida (Sida spinosa L.) and Cotton Response to Pre- and Early Post-Emergence Herbicides" Agronomy 13, no. 10: 2466. https://doi.org/10.3390/agronomy13102466
APA StyleKati, V., Gitsopoulos, T., Vasilakoglou, I., Vlachos, C., Mylonas, P., & Menexes, G. (2023). Prickly Sida (Sida spinosa L.) and Cotton Response to Pre- and Early Post-Emergence Herbicides. Agronomy, 13(10), 2466. https://doi.org/10.3390/agronomy13102466