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Abstract: This study employed an ensemble machine learning approach to evaluate the effect
of bioclimatic covariates on the prediction accuracy of soil total carbon (TC) in the Pannonian
biogeoregion. The analysis involved two main segments: (1) evaluation of base environmental
covariates, including surface reflectance, phenology, and derived covariates, compared to the addition
of bioclimatic covariates; and (2) assessment of three individual machine learning methods, including
random forest (RF), extreme gradient boosting (XGB), and support vector machine (SVM), as well as
their ensemble for soil TC prediction. Among the evaluated machine learning methods, the ensemble
approach resulted in the highest prediction accuracy overall, outperforming the individual models.
The ensemble method with bioclimatic covariates achieved an R2 of 0.580 and an RMSE of 10.392,
demonstrating its effectiveness in capturing complex relationships among environmental covariates.
The results of this study suggest that the ensemble model consistently outperforms individual
machine learning methods (RF, XGB, and SVM), and adding bioclimatic covariates improves the
predictive performance of all methods. The study highlights the importance of integrating bioclimatic
covariates when modeling environmental covariates and demonstrates the benefits of ensemble
machine learning for the geospatial prediction of soil TC.

Keywords: WorldClim; GEMAS; remote sensing; environmental covariates; hyperparameter tuning

1. Introduction

Soil carbon, as a vital component of terrestrial ecosystems, has a crucial role in sup-
porting biodiversity and sustaining agricultural productivity [1]. The distribution and
dynamics of soil total carbon (TC) are influenced by a variety of biotic and abiotic factors,
making accurate geospatial predictions of TC across large geographic regions a challenging
but essential aim [2]. Successful soil TC prediction models are indispensable for informed
decision-making in land management and climate change mitigation efforts [3]. Previous
research indicated the relationship of bioclimatic variables with soil TC levels, as these
factors quantify climate effects essential in shaping soil carbon dynamics and storage in
terrestrial ecosystems [4]. Bioclimatic variables represent key climatic factors that directly
influence biological processes, and their interactions with soil properties are fundamental
in determining the distribution and accumulation of organic carbon in the soil [5]. Un-
derstanding the intricate relationships between bioclimatic variables and soil TC levels is
essential for unraveling the complex mechanisms governing soil carbon sequestration and
turnover, as well as for predicting the impacts of climate change on soil carbon stocks [6].
With ongoing climate change, shifts in bioclimatic variables are expected to have significant
implications for soil carbon storage. Changes in temperature and precipitation patterns can
alter the balance between carbon inputs and outputs from the soil, potentially leading to
changes in soil carbon stocks [7].
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Machine learning techniques have lately acquired popularity in the geospatial pre-
diction of soil characteristics due to their capacity to handle complicated, non-linear in-
teractions and evaluate large datasets [8,9]. Among these strategies, ensemble machine
learning techniques based on effective machine learning algorithms, such as support vec-
tor machines (SVM), random forests (RF), and extreme gradient boosting (XGB), have
shown to be effective tools for improving prediction accuracy [8,10]. In order to ensure
that all features of the data are taken into account, ensemble machine learning approaches
combine predictions from many base models, each of which was trained on a different
subset of the data or with distinct variations in the feature space [11]. The ensemble model
produces a more thorough and reliable representation of the underlying soil property
patterns, improving predictive performance, by aggregating predictions from these distinct
models [12]. Complex non-linear interactions between vegetation or soil characteristics and
environmental factors including elevation, land use, climate, and topography characteris-
tics are frequently present [4,13]. Due to their adaptability, ensemble models can accurately
represent the regional variety of soil characteristics.

The Pannonian biogeoregion, located in Central Europe, is characterized by diverse
landscapes ranging from fertile plains to hilly terrains and supports a significant extent of
agricultural activities. Consequently, understanding the spatial distribution and dynamics
of soil TC in this region is crucial for implementing effective land management practices
and mitigating the impacts of climate change [14]. Nevertheless, while ensemble machine
learning techniques have shown promise in predicting soil carbon properties, little research
has focused on investigating the role of bioclimatic covariates in these models within the
context of the Pannonian biogeoregion.

The objectives of this study were to provide (1) evaluation of base environmental co-
variates, including surface reflectance, phenology, and derived covariates, and the addition
of bioclimatic covariates in the prediction of soil TC; and (2) assessment of three individual
machine learning methods, including RF, XGB, and SVM, as well as their ensemble for soil
TC prediction. By providing the answers to these objectives, this study aims to evaluate
the effect of bioclimatic covariates on the accuracy and robustness of ensemble machine
learning models for predicting total soil carbon in the Pannonian biogeoregion.

2. Materials and Methods
2.1. Study Area and Soil Data

The study area covers the Pannonian biogeoregion, a distinct geographic area located
primarily in Central Europe, covering parts of several countries, including Hungary, Slo-
vakia, Serbia, Romania, Czechia, and Croatia, according to the European Environment
Agency [15] (Figure 1). The Pannonian biogeoregion is typically classified under the
Köppen–Geiger climate classification as Cfb climate, signifying a temperate, humid cli-
mate with warm summers and cool winters [16]. The Pannonian Plain, which forms a
significant part of the Pannonian Biogeoregion, contributes to the formation of this climate
due to its lowland topography and proximity to the Carpathian Mountains. The plains
allow for the accumulation of heat during the summer months, while the presence of the
Carpathian Mountains to the north and northwest serves as a barrier to cold polar air
masses during winter, resulting in milder temperatures compared to regions further east at
similar latitudes.

A total of 145 soil samples from the Geochemical mapping of agricultural and grazing
land soil (GEMAS) project with the soil TC data collected during 2008–2009 were used in
the study [17]. The harmonized soil sampling data were downloaded from the World Soil
Information Service (WoSIS) of the International Soil Reference and Information Centre
(ISRIC) database using the Web feature service (WFS) [18]. The descriptive statistics of
input soil TC values are displayed with boxplots in Figure 2, representing variation per
country and USDA soil taxonomy great groups from OpenLandMap [19] in the study area.
The initial dataset was randomly split to training in test data using the split-sample method,
where the dataset was divided into a training set (70%) and a test set (30%). The training
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set was used to train the machine learning models, while the independent test set was used
to evaluate the prediction accuracy of tested methods. This procedure and split ratio of
70:30 for training and test data were successfully used in previous digital soil mapping
studies [20,21].
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2.2. Climate and Base Environmental Covariates

The integration of various environmental covariates in the predictive model allowed
modeling of the complex interactions between soil TC and its surrounding environmental
factors, including climate, vegetation, topography, and other derived data. This approach
was recommended by several studies based on the machine learning prediction of soil
properties [8,22,23]. To evaluate the effect of bioclimatic covariates on the prediction
accuracy of soil TC, the machine learning prediction was performed in two instances based
on the environmental covariate selection, including (1) base environmental covariates,
consisting of surface reflectance, phenology, and derived covariates (Table 1); and (2) the
combination of bioclimatic (Table 2) and base environmental covariates. The environmental
covariates were assigned to individual soil sample points using the Google Earth Engine
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reducer. The yearly medians of the selected environmental covariates for the years 2008
and 2009 were used in the study to match the temporal frame of GEMAS field soil sampling.
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Surface reflectance data from multiple bands in the visible and near-infrared range are
useful for characterizing vegetation cover and health, since healthy and dense vegetation is
typically associated with higher carbon sequestration in soils due to enhanced photosynthe-
sis and organic matter inputs [6]. The reflectance data from different bands can be used to
derive vegetation indices, which are indicators of vegetation vigor and often correlate with
higher soil TC content [24]. Vegetation phenology covariates represent different stages of
vegetation growth and development throughout the year, providing insights into the timing
of peak vegetation activity, periods of active photosynthesis, and vegetation senescence [25].
Variations in vegetation phenology impact the input of organic matter into the soil and
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affect the decomposition rates, thus influencing total soil carbon content [26]. Among
the derived covariates, elevation data are crucial in geospatial modeling as they affect
temperature, precipitation, and topographic features [27], which in turn impact vegetation
distribution and soil TC dynamics [28]. Additionally, land surface temperature provided
insights into soil heat flux and temperature fluctuations, which influence microbial activity
and soil TC decomposition rates. Biophysical variables and gross primary productivity
are additional metrics related to vegetation activity and productivity, which also influence
soil TC [29].

Table 1. Base environmental covariates used for the prediction of soil TC.

Covariate Group Individual Covariate Data Source Reference

Surface reflectance

Surface reflectance in 620–670 nm band (B01)

MOD09A1 [30]

Surface reflectance in 841–876 nm band (B02)
Surface reflectance in 459–479 nm band (B03)
Surface reflectance in 545–565 nm band (B04)

Surface reflectance in 1230–1250 nm band (B05)
Surface reflectance in 1628–1652 nm band (B06)
Surface reflectance in 2105–2155 nm band (B07)

Phenology covariates

Greenup

MCD12Q2 [31]

MidGreenup
Peak

Maturity
MidGreendown

Senescence
Dormancy

Area under enhanced vegetation index 2 curve (EVI_Area)

Derived covariates

Elevation SRTM [32]
USDA soil taxonomy great groups (soil_type) OpenLandMap [19]

Land surface temperature during day (LST_Day)
MOD11A1 [33]Land surface temperature during night (LST_Night)

Normalized difference vegetation index (NDVI)
MOD13A2 [34]Enhanced vegetation index (EVI)

Leaf area index (LAI)
MOD15A2H [35]Fraction of absorbed photosynthetically active radiation (FAPAR)

Gross primary productivity (GPP)
MOD17A2H [36]Net photosynthesis (NetPsy)

Table 2. Bioclimatic environmental covariates used for the prediction of soil TC from the WorldClim
dataset [37].

Climate Parameter Label Description Unit
Value Range in the Study Area

Min Max

Air temperature

bio01 annual mean ◦C 5.2 12.5
bio02 mean diurnal range ◦C 8.6 10.6
bio03 isothermality % 28 33
bio04 seasonality ◦C 70.4 81.0
bio05 max of warmest month ◦C 20.1 28.8
bio06 max of coldest month ◦C –8.8 –1.3
bio07 annual range ◦C 28.6 33.1
bio08 mean of wettest quarter ◦C 9.3 20.6
bio09 mean of driest quarter ◦C –4.2 18.1
bio10 max of warmest quarter ◦C 14.1 21.8
bio11 max of coldest quarter ◦C –4.2 2.3
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Table 2. Cont.

Climate Parameter Label Description Unit
Value Range in the Study Area

Min Max

Precipitation

bio12 annual total mm 512 856
bio13 total of warmest month mm 61 123
bio14 total of coldest month mm 23 48
bio15 seasonality CV 19 43
bio16 total of wettest quarter mm 164 317
bio17 total of driest quarter mm 72 150
bio18 total of warmest quarter mm 164 317
bio19 total of coldest quarter mm 76 172

The 19 bioclimatic covariates from the WorldClim v2 database (1970–2000) represent
various aspects of air temperature and precipitation, such as their annual means, quarterly
extremes, and seasonal variations [37] (Figure 3). Air temperature influences the rate of soil
organic matter decomposition, which affects the buildup and turnover of soil TC. Higher
temperatures generally lead to increased microbial activity and faster decomposition
of organic matter, potentially reducing soil carbon content, while cooler temperatures
may slow down decomposition processes and result in higher soil carbon retention [38].
Precipitation is a critical driver of primary productivity and plant growth, affecting the
input of organic matter into the soil through litterfall and root turnover, contributing to
soil TC accumulation [39]. Areas with higher precipitation may support more vegetation
and subsequently higher soil carbon content, while excessively wet or dry conditions can
influence the decomposition rates of soil organic matter, consequentially impacting soil
TC levels.

2.3. Ensemble Machine Learning Prediction and Accuracy Assessment

Geospatial prediction of soil TC was performed by three individual machine learning
methods, including RF, XGB, and SVM as their ensemble, resulting in a total of four predic-
tion approaches for each set of input environmental covariates. The tuning hyperparameters
were fine-tuned using a grid search approach, with the selection of optimal hyperparame-
ters performed according to the lowest root mean square error (RMSE). All training data
columns were preprocessed with standardization and division with the standard deviation
prior to machine learning prediction.

The RF combined multiple decision trees to create a robust and accurate prediction
model, with each tree being trained on a bootstrap sample of the training data [40]. During
the decision-making process, the model aggregated the predictions of individual trees to
arrive at the final output. Three tuning hyperparameters were used for the RF predictions,
including (1) the number of predictors randomly selected at each node of the decision tree
during the construction of the RF (mtry); (2) the method used to select the best split at each
node of the decision tree (splitrule); and (3) the minimum number of samples required
to create a terminal node during the tree-building process (min.node.size). Similarly to
RF, XGB sequentially built decision trees, while each one aimed to correct the errors of
the previous trees based on a gradient boosting framework, where the trees are built in a
manner that focuses on the instances that were previously mispredicted, resulting in an
iterative improvement of the model’s performance [41]. As was the case for RF, three tuning
hyperparameters were used for XGB prediction: (1) the number of boosting iterations
(nrounds); (2) maximum depth of each individual tree (max_depth); and (3) learning rate
determined by the step size at each boosting round when updating the model weights
(eta). Unlike the previous two tree-based methods, SVM aimed to determine an optimal
hyperplane that best separates the input data points [42]. The two tuning parameters for
SVM were the regularization parameter that controls the relationship between maximizing
the margin and reducing the prediction error on the training data (C) and the width of the
radial basis function kernel which was utilized with SVM (sigma).
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To further enhance the geospatial prediction accuracy, an ensemble approach of RF,
XGB, and SVM was adopted. The ensemble method combined predictions from multiple
individual models to form a more robust and reliable prediction, aiming to mitigate the
weaknesses of individual methods, potentially leading to improved predictive performance.
In this study, this included bagging (RF), boosting (XGB), and support vector machine
(SVM) approaches.

Two commonly used metrics for accuracy assessment, the coefficient of determination
(R2) and RMSE were used to evaluate the prediction accuracy of used machine learning
prediction approaches. R2 measures the proportion of variance in the observed data that is
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explained by the model, while RMSE quantifies the difference between predicted values
and observed data points, providing an estimate of the model’s prediction errors. A higher
R2 value suggested a better fit of the model to the observed data, implying higher predictive
accuracy. Analogously, lower RMSE values indicated smaller prediction errors and better
accuracy of the model.

3. Results and Discussion
3.1. Hyperparameter Tuning of Individual Machine Learning Methods

The machine learning prediction variants with all modeled environmental covariates
(bioclimatic and base) and with only base covariates produced the same optimal tuning
hyperparameters per individual method. Despite the similarity in optimal models for the
prediction of soil TC regardless of the input environmental covariates, the variant with
both bioclimatic and base covariates produced slightly lower RMSE for the optimal model
(Figure 4), compared to the only base covariates (Figure 5). The hyperparameter tuning
approach was recommended in previous studies for all three evaluated individual machine
learning methods as it increased prediction accuracy for RF [43], XGB [44], and SVM [45].
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The optimized RF model with mtry = 5, splitrule = extratrees, and min.node.size = 20
produced a well-balanced ensemble with enhanced generalization capability. The mtry
value of 5 promoted feature diversity and mitigated the risk of individual trees’ overfitting,
while the adoption of extratrees bolsted the model’s robustness, enabling it to handle
noisy and complex data effectively. Moreover, the specified ‘min.node.size’ facilitated the
development of informative trees with deeper structures, enhancing the model’s ability
to capture intricate patterns in the data. The XGB with the optimal tuning hyperparam-
eters of nrounds = 250, max_depth = 1, and eta = 0.01 produced a conservative splitting
and robustness to imbalanced data. The max_depth hyperparameter setting restricted
the decision trees in the XGB to shallow structures, preventing the model from becoming
overly complex and reducing the risk of overfitting. The optimal prediction was performed
in 250 boosting rounds, while the eta of 0.01 implied a relatively low step size during
the boosting process for a stable convergence. The smaller optimal sigma value for SVM
(sigma = 0.01) led to sharper and more localized decision boundaries around data points,
enabling increased versatility in handling diverse data distributions and complex decision
boundaries. Moreover, the optimal C value (C = 0.25) emphasized a simpler decision
boundary with controlled margins, so the model exhibited improved generalization capa-
bilities. This well-balanced regularization approach helped avoid overfitting, contributing
to enhanced model robustness [46].
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3.2. Prediction Accuracy of Ensemble and Individual Machine Learning Methods

The addition of bioclimatic covariate data enhanced the learning process of all eval-
uated methods, enabling them to capture more intricate relationships and improve their
predictive performance, leading to higher R2 and slightly lower RMSE (Table 3). The
scatterplots of the predicted soil TC according to the test data are presented in Appendix A
(Figures A1 and A2). The RF showed an increase of 0.052 in R2 when bioclimatic covariates
were included; the XGB exhibited a difference of 0.114, while SVM was the only method
that produced higher accuracy with base covariates (Table 3). The ensemble model demon-
strated an increase of 0.024. Similarly, the differences in RMSE further support the benefits
of incorporating climate data. The RF model showed a reduction of 0.543 in RMSE, while
the XGB model achieved a decrease of 1.011 when climate data was used. The SVM model
exhibited a notable increase of 1.737, while the Ensemble model showed a reduction of
0.287. These negative differences suggest that the models’ predictions were more accurate
and closer to the true values when climate covariates were included. Overall, consistently
higher R2 and lower RMSE values with the inclusion of bioclimatic data strongly suggest
that the inclusion of bioclimatic covariates improved the ability of evaluated machine
learning methods to more accurately predict and explain the variability in total soil carbon.
This confirms the observations from previous similar studies on a large scale [9,47].

Table 3. Prediction accuracy of the evaluated machine learning methods for the prediction of soil TC
according to two environmental covariate selection variants.

Environmental Covariates Method R2 RMSE

Bioclimatic and base covariates

RF 0.427 12.882
XGB 0.408 12.280
SVM 0.163 15.014

Ensemble 0.580 10.392

Base covariates

RF 0.375 13.425
XGB 0.294 13.291
SVM 0.304 13.277

Ensemble 0.548 10.679

When considering both prediction variants (with bioclimatic and base environmental
covariates and with only base covariates), the ensemble approach resulted in the highest
prediction accuracy of the evaluated methods. This strongly suggests that the ensemble
method effectively captures complex relationships among environmental covariates, re-
sulting in a relatively high degree of explained variance and lower prediction errors [48].
The ensemble method with bioclimatic covariates resulted in the best performance overall,
achieving R2 of 0.580 and RMSE of 10.392. This prediction accuracy is typical for the
geospatial prediction of soil properties on a large scale according to the previous studies,
which generally achieved prediction accuracy expressed by R2 up to 0.5 [49–51]. Although
RF, XGB, and SVM models also showed relative improvements with the addition of bio-
climatic data, they significantly lagged the prediction accuracy of the ensemble approach.
The decision tree-based methods, RF and XGB, produced relatively similar prediction
accuracy in both environmental covariate selection variants, moderately outperforming
SVM. The maps of the predicted soil TC according to evaluated machine learning methods
and environmental covariate selection variants are presented in Figure 6.

3.3. Variable Importance of Climate and Base Environmental Covariates

Overall, the bioclimatic covariates produced moderate variable importance across
evaluated machine learning methods (Figure 7). bio09 (mean temperature of driest quarter)
and bio05 (mean temperature of warmest month) displayed substantial importance in
the RF and SVM models, whereas bio16 (precipitation of wettest quarter) had higher
importance in the XGB model. These discrepancies might be attributed to the distinct
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modeling approaches of each algorithm and their ability to capture unique relationships
between these climate-related variables and total soil carbon levels [52].
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The non-climate covariate groups (surface reflectance, phenology, and derived covari-
ates) produced variations in the relative importance scores between the models. Elevation
resulted as a derived covariate with the highest relative variable importance, ranking as
one of the top covariates for SVM. This strongly suggests that variations in elevation have
a significant impact on the distribution of soil TC, confirming the observations from mul-
tiple previous studies [53,54]. Additionally, vegetation-related covariates, such as NDVI
and GPP, and phenology covariates, especially Senescence and Dormancy, also exhibited
substantial importance scores across the individual models. These findings highlight the
importance of vegetation dynamics and its interaction with total soil carbon levels [55]. The
RF model attributed high importance to phenology covariates, including Senescence (dur-
ing 2008), Dormancy (during 2008 and 2009), and MidGreendown (during 2008), indicating
their strong influence on the RF model’s predictions. The RF also strongly favored both
biophysical variables (LAI and FAPAR), as well as NDVI. The XGB model assigned higher
importance to MidGreendown during 2009 among the phenology covariates. However,
it was much more exclusive towards the rest of the covariate groups, with the exception
of surface reflectance in the green band (B04) during 2008. The SVM model highlighted
MidGreendown and Midgreenup, with near-infrared (B05) during 2008 and 2009 as crucial
predictors. However, it did not restrict its predictions to these covariates and produced
several moderate variable importance values over all covariate groups, similarly to the RF.
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These variations in importance scores reflect differences in modeling approaches and how
the models capture relationships between covariates and total soil carbon [56].
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Figure 7. Relative variable importance of all input environmental covariates for evaluated individual
machine learning methods.

4. Conclusions

The integration of diverse environmental covariates in the predictive model allowed
for a comprehensive examination of the complex interactions between soil TC and its
surrounding environmental factors, including climate, vegetation, topography, and other
derived data. This evaluation demonstrated that the inclusion of bioclimatic covariates only
slightly improved the prediction accuracy of all evaluated methods. Among the evaluated
machine learning methods, the ensemble approach exhibited the highest prediction accu-
racy overall, outperforming the individual models. The ensemble method with bioclimatic
covariates achieved an R2 of 0.580 and an RMSE of 10.392, demonstrating its effectiveness in
capturing complex relationships among environmental covariates. The variable importance
analysis revealed that bioclimatic covariates displayed moderate importance across all
evaluated machine learning methods. Specific climate-related variables, such as mean
temperature of the driest and coldest quarters, were particularly influential in the RF and
SVM models. On the other hand, the mean temperature of the wettest quarter exhibited
higher importance in the XGB model. Non-climate covariates, including surface reflectance,
phenology, and derived covariates, also showed variations in importance scores between
the models. Elevation consistently ranked as a top covariate for all evaluated individ-
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ual machine learning methods, emphasizing its significant impact on the distribution of
soil TC.

In conclusion, this study provided answers to two main research aims: (1) the inclusion
of bioclimatic covariates improved the ability of all evaluated machine learning methods
to accurately predict and explain the variability in total soil carbon, leading to more
robust and reliable predictions; and (2) the ensemble method, with its capability to capture
complex relationships among environmental covariates, demonstrated superior predictive
performance compared to individual machine learning methods. These findings contribute
insights into the application of ensemble machine learning in geospatial prediction of soil
properties and support informed decision-making in land management and environmental
planning in the Pannonian biogeoregion and similar regions worldwide.
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