Biochemical, Anatomical, Genetic, and Yield Assessment of Seven Rice Genotypes (Oryza sativa L.) Subjected to Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Drought Stress Induction
2.3. Biochemical Analysis
2.4. Anatomical Investigation
2.5. Molecular Analysis
2.6. Gene Expression Analysis
2.6.1. Total RNA Isolation and First-Strand cDNA Synthesis
2.6.2. Quantifying Relative Gene Expression
2.7. Statistical Analyses
3. Results
3.1. Effect of Drought Stress on the Biochemical Characterization of Leaves of New Promising Rice (Oryza sativa L.) Genotypes and Their Parents under Normal and Drought Conditions
3.2. Effect of Drought Stress on Root Anatomical Features of New Promising Rice (Oryza sativa L.) Genotypes and Their Parents under Drought Conditions 60 d after Sowing
3.3. Effect of Drought Stress on Stem Anatomical Features of New Promising Rice (Oryza sativa L.) Genotypes and Their Parents under Drought Conditions 60 d after Sowing
3.4. Effect of Drought Stress on Leaves’ Anatomical Features in New Promising Rice (Oryza sativa L.) Genotypes and Their Parents under Drought Conditions 60 d after Sowing
3.5. Molecular Analyses of Rice Genotypes
3.6. Gene Expression Changes in the Rice Genotypes due to Drought Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Lin, Y.; Chen, H. Improving nutritional quality of rice for human health. Theor. Appl. Genet. 2020, 133, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for global nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Lafitte, H.R.; Ismail, A.; Bennett, J. Abiotic stress tolerance in rice for Asia: Progress and the future. In New Directions for a Diverse Planet, Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004; Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, A., Lloyd, D., Eds.; Crop Science Society of America: Madison, WI, USA. [Google Scholar]
- Zhang, J.; Zhang, S.; Cheng, M.; Jiang, H.; Zhang, X.; Peng, C.; Jin, J. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. Int. J. Environ. Res. Public Health 2018, 15, 839. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Suenaga, K. Toward the genetic improvement of drought tolerance in crops. Jpn. Agric. Res. Q. JARQ 2017, 51, 1–10. [Google Scholar] [CrossRef]
- Wassmann, R.; Jagadish SV, K.; Heuer, S.; Ismail, A.; Redona, E.; Serraj, R.; Sumfleth, K. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Adv. Agron. 2009, 101, 59–122. [Google Scholar]
- Rajiv, S.; Thivendran, P.; Deivanai, S. Genetic divergence of rice on some morphological and physiochemical responses to drought stress. Pertinaka J. 2010, 32, 315–328. [Google Scholar]
- FAS Foreign Agricultural Service. Grain and Feed Annual in Egypt. Report No: EG2020-0005; 2020. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Grain%20and%20Feed%20Annual_Cairo_Egypt_EG2023-0003.pdf (accessed on 12 August 2023).
- Alzohairy, A.M.; Youssef, M.A.; Solliman, S.S. Molecular markers for new promising drought tolerant lines of rice under drought stress via RAPD-PCR and ISSR markers. J. Am. Sci. 2010, 6, 12. [Google Scholar]
- Nguyen, D.T.; Nguyen, T.K.L.; Pham, Q.C.; Nguyen, T.H.; Tran, Q.T.; Dao, X.H.; Nguyen, H.T. Mapping QTLs associated with root traits Related to drought resistance in Vietnamese upland rice. In Resilient Crops for Water Limited Environments: Proceedings of a Workshop Held at Cuernavaca Mexico; CIMMYT: Mexico City, Mexico, 2004; p. 234. [Google Scholar]
- Ghazy, M.I.; Salem, K.F.; Sallam, A. Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.). Mol. Biol. Rep. 2021, 48, 157–170. [Google Scholar] [CrossRef]
- Gewaily, E.E.; Hamad, H.S.; Mikhael, B.B.; Arafat, E.F. Performance of promising hybrid rice genotypes under different irrigation intervals. Menoufia J. Plant Prod. 2021, 6, 19–33. [Google Scholar] [CrossRef]
- Adhikari, M.; Adhikari, N.R.; Sharma, S.; Gairhe, J.; Bhandari, R.R.; Paudel, S. Evaluation of drought tolerant rice cultivars using drought tolerant indices under water stress and irrigated condition. Am. J. Clim. Change 2019, 8, 228. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ashraf, U.; Tanveer, M.; Khan, I.; Hussain, S.; Shahzad, B.; Wang, L.C. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 2017, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Bosabalidis, A.M.; Kofidis, G. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 2002, 163, 375–379. [Google Scholar] [CrossRef]
- Olmos, E.; Sánchez-Blanco, M.J.; Ferrández, T.; Alarcon, J.J. Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol. 2007, 9, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Hazman, M.; Brown, K.M. Progressive drought alters architectural and anatomical traits of rice roots. Rice 2018, 11, 62. [Google Scholar] [CrossRef]
- Davierwala, A.P.; Chowdari, K.V.; Kumar, S.; Reddy AP, K.; Ranjekar, P.K.; Gupta, V.S. Use of three different marker systems to estimate genetic diversity of Indian elite rice varieties. Genetica 2000, 108, 269–284. [Google Scholar] [CrossRef]
- Pradeep Reddy, M.; Sarla, N.; Siddiq, E.A. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 2002, 128, 9–17. [Google Scholar] [CrossRef]
- Sarla, N.; Bobba, S.; Siddiq, E.A. ISSR and SSR markers based on AG and GA repeats delineate geographically diverse Oryza nivara accessions and reveal rare alleles. Curr. Sci. 2003, 84, 683–690. [Google Scholar]
- Matos, M.; Pinto-Carnide, O.; Benito, C. Phylogenetic relationships among Portuguese rye based on isozyme, RAPD and ISSR markers. Hereditas 2001, 134, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Saini, N.; Jain, S.; Rana, P.; Singh, R.K.; Jain, R.K. Genetic analysis of a CSR10 (indica)× Taraori Basmati F3 population segregating for salt tolerance using ISSR markers. Euphytica 2003, 134, 231–238. [Google Scholar] [CrossRef]
- Carvalho, A.; Matos, M.; Lima-Brito, J.; Guedes-Pinto, H.; Benito, C. DNA fingerprint of F1 interspecific hybrids from the Triticeae tribe using ISSRs. Euphytica 2005, 143, 93–99. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 1987, 28, 131–140. [Google Scholar]
- Gupta, A.S.; Heinen, J.L.; Holaday, A.S.; Burke, J.J.; Allen, R.D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 1993, 90, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Zieslin, N.; Ben Zaken, R. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol. Biochem. 1993, 31, 333–339. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Bhushan, D.; Pandey, A.; Choudhary, M.K.; Datta, A.; Chakraborty, S.; Chakraborty, N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol. Cell. Proteom. 2007, 6, 1868–1884. [Google Scholar] [CrossRef]
- Sutikno. Practical Guidience: Plant Microtechnics (BIO 30603); Faculty of Biology—Universitas Gadjah Mada: Yogyakarta, Indonesia, 2018. [Google Scholar]
- Couch, S.R.; Kochert, G.; Yu, Z.H.; Wang, Z.Y.; Khush, G.S.; Coffman, W.R.; Tanksley, S.D. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 1988, 76, 815–829. [Google Scholar]
- Al-Turki, T.A.; Basahi, M.A. Assessment of ISSR based molecular genetic diversity of Hassawi rice in Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 591–599. [Google Scholar] [CrossRef]
- Sneath, P.H.; Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Hazman, M.; Hause, B.; Eiche, E.; Riemann, M.; Nick, P. Different Forms of Osmotic Stress Evoke Qualitatively Different Responses in Rice. J. Plant Physiol. 2016, 202, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Hazman, M.; Sühnel, M.; Schäfer, S.; Zumsteg, J.; Lesot, A.; Beltran, F.; Marquis, V.; Herrgott, L.; Miesch, L.; Riemann, M.; et al. Characterization of Jasmonoyl-Isoleucine (JA-Ile) Hormonal Catabolic Pathways in Rice upon Wounding and Salt Stress. Rice 2019, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Hazman, M.Y.; Mohamed, N.A.; Diab, N.E. Drought and salinity alter adaptive molecular response in two genetically unlike Egyptian rice cultivars. Egypt J. Exp. Biol. 2019, 15, 283–294. [Google Scholar] [CrossRef]
- Hazman, M. Gel express: A novel frugal method quantifies gene relative expression in conventional RT-PCR. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 11. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Tukey’s honestly significant difference (HSD) test. In Encyclopedia of Research Design; Sage: Thousand Oaks, CA, USA, 2010; Volume 3, pp. 1–5. [Google Scholar]
- Smirnoff, N. Tansley Review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 1993, 125, 27–58. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.M.; Pastori, G.M.; Driscoll, S.; Groten, K.; Bernard, S.; Foyer, C.H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot. 2005, 56, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Chaitanya, K.V.; Sundar, D.; Masilamani, S.; Ramachandra Reddy, A. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul. 2002, 36, 175–180. [Google Scholar] [CrossRef]
- Noctor, G.; Veljovic-Jovanovic, S.; Foyer, C.H. Peroxide processing in photosynthesis: Antioxidant coupling and redox signalling. Philosophical Transactions of the Royal Society of London. Ser. B Biol. Sci. 2000, 355, 1465–1475. [Google Scholar] [CrossRef]
- Ibarra-caballero, J.O.R.G.E.; Villanueva-verduzco, C.; Molina-Galan, J.; Sanchez-De-Jimenez, E. Proline accumulation as a symptom of drought stress in maize: A tissue differentiation requirement. J. Exp. Bot. 1988, 39, 889–897. [Google Scholar] [CrossRef]
- Singh, D.K.; Sale, P.W.; Pallaghy, C.K.; Singh, V. Role of proline and leaf expansion rate in the recovery of stressed white clover leaves with increased phosphorus concentration. New Phytol. 2000, 146, 261–269. [Google Scholar] [CrossRef]
- Kishor, P.K.; Sangam, S.; Amrutha, R.N.; Laxmi, P.S.; Naidu, K.R.; Rao, K.S.; Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 2005, 88, 424–438. [Google Scholar]
- Pandey, V.; Shukla, A. Acclimation and tolerance strategies of rice under drought stress. Rice Sci. 2015, 22, 147–161. [Google Scholar] [CrossRef]
- Ghidan, W.; Khedr, R.A. Assessment of Some Agro-Physiological Traits and Genetic Markers in Rice (Oryza sativa L.) Under Normal and Water Stress Conditions. J. Plant Prod. 2021, 12, 73–86. [Google Scholar] [CrossRef]
- Makbul, S.; Güler, N.S.; Durmuş, N.; Güven, S. Changes in anatomical and physiological parameters of soybean under drought stress. Turk. J. Bot. 2011, 35, 369–377. [Google Scholar] [CrossRef]
- Pena-Valdivia, C.B.; Sanchez-Urdaneta, A.B. Effects of substrate water potential in root growth of Agave salmiana Otto ex Salm-Dyck seedlings. Biol. Res. 2009, 42, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalifah, N.S.; Khan, P.R.; Al-Abdulkader, A.M.; Nasroun, T. Impact of water stress on the sapwood anatomy and functional morphology of Calligonum comosum. IAWA J. 2006, 27, 299–312. [Google Scholar] [CrossRef]
- Sibounheuang, V.; Basnayake, J.; Fukai, S. Genotypic consistency in the expression of leaf water potential in rice (Oryza sativa L.). Field Crops Res. 2006, 97, 142–154. [Google Scholar] [CrossRef]
- Ouyang, W.; Yin, X.; Yang, J.; Struik, P.C. Do shoot anatomical characteristics allow rice to grow well under water deficit? J. Agron. Crop Sci. 2021, 208, 763–776. [Google Scholar] [CrossRef]
- Fernandez, M.; Figueiras, A.; Benito, C. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet. 2002, 104, 845–851. [Google Scholar] [CrossRef]
- Reddy, C.S.; Babu, A.P.; Swamy, B.P.; Kaladhar, K.; Sarla, N. ISSR markers based on GA and AG repeats reveal genetic relationship among rice varieties tolerant to drought, flood, or salinity. J. Zhejiang Univ. Sci. B 2009, 10, 133–141. [Google Scholar] [CrossRef]
- Davierwala, A.P.; Ramakrishna, W.; Chowdari, V.; Ranjekar, P.K.; Gupta, V.S. Potential of (GATA) n microsatellites from rice for inter-and intra-specific variability studies. BMC Evol. Biol. 2001, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Corrado, G.; Bianchi, M.; Di Mauro, A. (GATA) 4 DNA fingerprinting identifies morphologically characterized ‘San Marzano’ tomato plants. Plant Breed. 2006, 125, 173–176. [Google Scholar] [CrossRef]
- Razi, K.; Muneer, S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit. Rev. Biotechnol. 2021, 41, 669–691. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gao, X.; Chen, S.; Li, D.; Chen, S.; Xie, M.; Yang, G. Genome-wide identification and expression analysis of ethylene responsive factor family transcription factors in Juglans regia. PeerJ 2021, 9, e12429. [Google Scholar] [CrossRef] [PubMed]
- Husain, T.; Fatima, A.; Suhel, M.; Singh, S.; Sharma, A.; Prasad, S.M.; Singh, V.P. A Brief Appraisal of Ethylene Signaling under Abiotic Stress in Plants. Plant Signal. Behav. 2020, 15, 1782051. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wan, L.; Zhang, L.; Zhang, Z.; Zhang, H.; Quan, R.; Huang, R. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol. Biol. 2012, 78, 275–288. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Zhai, Y.; Wen, Z.; Liu, J.; Xi, C.; Han, S. OsOSCA1. 1 Mediates Hyperosmolality and Salt Stress Sensing in Oryza sativa. Biology 2022, 11, 678. [Google Scholar] [CrossRef]
- Xu, T.; Niu, J.; Jiang, Z. Sensing Mechanisms: Calcium Signaling Mediated Abiotic Stress in Plants. Front. Plant Sci. 2022, 13, 925863. [Google Scholar] [CrossRef]
- You, J.; Zong, W.; Li, X.; Ning, J.; Hu, H.; Li, X.; Xiong, L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J. Exp. Bot. 2013, 64, 569–583. [Google Scholar] [CrossRef]
- Hazman, M.; Fawzy, S.; Hamdy, A.; Khaled, A.; Mahmoud, A.; Khalid, E.; Ibrahim, H.M.; Gamal, M.; Elyazeed, N.A.; Saber, N.; et al. Enhancing rice resilience to drought by applying biochar–compost mixture in low-fertile sandy soil. Beni-Suef. Univ. J. Basic Appl. Sci. 2023, 12, 74. [Google Scholar] [CrossRef]
- To, H.T.M.; Nguyen, H.T.; Dang, N.T.M.; Nguyen, N.H.; Bui, T.X.; Lavarenne, J.; Champion, A. Unraveling the genetic elements involved in shoot and root growth regulation by jasmonate in rice using a genome-wide association study. Rice 2019, 12, 69. [Google Scholar] [CrossRef]
- Yang, D.L.; Yao, J.; Mei, C.S.; Tong, X.H.; Zeng, L.J.; Li, Q.; He, S.Y. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. USA 2012, 109, E1192–E1200. [Google Scholar] [CrossRef]
- Kurotani, K.I.; Yamanaka, K.; Toda, Y.; Ogawa, D.; Tanaka, M.; Kozawa, H.; Nakamura, H.; Hakata, M.; Ichikawa, H.; Hattori, T.; et al. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes. Plant Cell Physiol. 2015, 56, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
No. | Genotype Code | Genotype Name | Drought Tolerance Degree | Pedigree |
---|---|---|---|---|
1 | Sakha 107 × Sakha super 300 | New cross | Tolerant | Selected from Sakha 107 × Sakha super 300 |
2 | Sakha 107 × M206 | New cross | Tolerant | Selected from Sakha 107 × M206 |
3 | Sakha 108 × M206 | New cross | Moderate tolerance | Selected from Sakha 108 × M206 |
4 | Sakha 107 | Cultivar | Tolerant | Giza 177/BL1 |
5 | Sakha 108 | Cultivar | Sensitive | Sakha 101/HR5824-B-3-2-1 |
6 | Sakha super 300 | Cultivar | Moderate tolerance | Unknown |
7 | M206 | American line | Moderate tolerance | M-202/M204 |
Primer’s Name (ISSR) | Sequence of Primers (5′–3′) |
---|---|
−1 | ACACACACACACACACYT |
−2 | GTGTGTGTGTGTGTGTYG |
−3 | CGCGATAGATAGATAGATA |
−4 | GATAGATAGATAGATAGC |
−5 | GACAGACAGACAGACAAT |
−6 | ACACACACACACACACYA |
−7 | AGAGAGAGAGAGAGAGYT |
−8 | HVHCACACACACACACAT |
−9 | HVHTCCTCCTCCTCCTCC |
−10 | HVHTGTGTGTGTGTGTGT |
|
Gene Name | Gene Function | Accession Number (MSU) | Primers: Forward (5′ to 3′) and Reverse (5′ to 3′) | |
---|---|---|---|---|
Actin | Reference gene | LOC_Os10g36650 | F: | ATG CCA TTC TTC TCC GTC TT |
R: | GCT CCT GCT CGT AGTC | |||
OsACS2 | Ethylene synthesis | LOC_Os04g48850 | F: | CACTAACGCACGTCTCTACAA |
R: | GTGTTCTTTCCGATGCAGGTA | |||
OsCML31 | Calcium Signaling | LOC_Os01g72530 | F: | CTGATCCCTCCGCTAGCTC |
R: | AACCAATCAAGTGAACTGAGCA | |||
OsCYP94C2a | Jasmonates Turnover | LOC_Os11g05380 | F: | GGAGACTTCACTTCTACTGCAACA |
R: | ACGAGGAAACCATGACGAAC | |||
OsSRO1c | Stomatal Closure | LOC_Os03g12820 | F: | CCGTGGCTGAATTCGACTAA |
R: | CCGTAAACTCCCGAAACTGAA |
Primer’s Name | Base Sequence | Number of Alleles | Polymorphic Bands | Monomorphic Bands | Polymorphism (%) |
---|---|---|---|---|---|
ISSR-1 | (AC)8 YT | 6 | 3 | 3 | 50 |
ISSR-2 | (GT)8YG | 7 | 3 | 4 | 42.85 |
ISSR-3 | CGC (GATA)4 | 13 | 12 | 1 | 92.30 |
ISSR-4 | (GATA)4 GC | 11 | 9 | 2 | 81.81 |
ISSR-5 | (GACA)4 AT | 14 | 10 | 4 | 71.42 |
ISSR-6 | (AC)8 YA | 6 | 0 | 6 | 0 |
ISSR-7 | (AG)8 YT | 4 | 0 | 4 | 0 |
ISSR-8 | HVH (CA)7 T | 9 | 7 | 2 | 77.77 |
ISSR-9 | HVH (TCC)5 | 6 | 0 | 6 | 0 |
ISSR-10 | HVH (TG)7 T | 6 | 0 | 6 | 0 |
Total | - | 82 | 44 | 38 | 53.33 |
Similarity and Rice Genotypes | Sakha 107 × Sakha Super 300 | Sakha 107 × M206 | Sakha 108 × M206 | Sakha 107 | Sakha 108 | Sakha Super 300 |
---|---|---|---|---|---|---|
Sakha 107 × Sakha Super 300 | - | - | - | - | - | - |
Sakha 107 × M206 | 88.2% | - | - | - | - | - |
Sakha 108 × M206 | 81.5% | 79.6% | - | - | - | - |
Sakha 107 | 88.1% | 88.0% | 86.7% | - | - | - |
Sakha 108 | 78.1% | 81.4% | 81.8% | 83.0% | - | - |
Sakha Super 300 | 83.2% | 83.0% | 79.8% | 86.6% | 79.8% | - |
M206 | 82.8% | 82.7% | 83.2% | 88.0% | 79.6% | 84.8% |
Genotypes | NOP | TGW | GY | |||
---|---|---|---|---|---|---|
N | D | N | D | N | D | |
Sakha 107 × Sakha super 300 | 27.00 | 23.00 | 29.92 | 29.69 | 55.07 | 46.91 |
Sakha 107 × M206 | 28.00 | 27.00 | 31.25 | 30.59 | 55.21 | 48.06 |
Sakha 108 × M206 | 29.00 | 26.00 | 33.35 | 28.33 | 55.63 | 46.84 |
Sakha 107 | 20.30 | 19.00 | 29.42 | 28.64 | 44.56 | 41.54 |
Sakha 108 | 23.33 | 18.00 | 29.46 | 28.21 | 47.96 | 39.35 |
Sakha super 300 | 21.17 | 17.00 | 29.28 | 27.51 | 45.06 | 39.54 |
M206 | 22.27 | 18.00 | 29.63 | 28.60 | 47.64 | 39.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abo-Youssef, M.I.; Elbagory, M.; Elsehely, A.B.; El-Gammaal, A.A.; El Denary, M.E.; Elaty, M.S.A.; Talha, I.A.; Hazman, M.; Nehela, Y.; Omara, A.E.-D.; et al. Biochemical, Anatomical, Genetic, and Yield Assessment of Seven Rice Genotypes (Oryza sativa L.) Subjected to Drought Stress. Agronomy 2023, 13, 2542. https://doi.org/10.3390/agronomy13102542
Abo-Youssef MI, Elbagory M, Elsehely AB, El-Gammaal AA, El Denary ME, Elaty MSA, Talha IA, Hazman M, Nehela Y, Omara AE-D, et al. Biochemical, Anatomical, Genetic, and Yield Assessment of Seven Rice Genotypes (Oryza sativa L.) Subjected to Drought Stress. Agronomy. 2023; 13(10):2542. https://doi.org/10.3390/agronomy13102542
Chicago/Turabian StyleAbo-Youssef, Mahmoud I., Mohssen Elbagory, Abdelsalam B. Elsehely, Amgad A. El-Gammaal, Medhat E. El Denary, Mohamed S. Abd Elaty, Ibrahim A. Talha, Mohamed Hazman, Yasser Nehela, Alaa El-Dein Omara, and et al. 2023. "Biochemical, Anatomical, Genetic, and Yield Assessment of Seven Rice Genotypes (Oryza sativa L.) Subjected to Drought Stress" Agronomy 13, no. 10: 2542. https://doi.org/10.3390/agronomy13102542
APA StyleAbo-Youssef, M. I., Elbagory, M., Elsehely, A. B., El-Gammaal, A. A., El Denary, M. E., Elaty, M. S. A., Talha, I. A., Hazman, M., Nehela, Y., Omara, A. E. -D., & El-Kallawy, W. H. (2023). Biochemical, Anatomical, Genetic, and Yield Assessment of Seven Rice Genotypes (Oryza sativa L.) Subjected to Drought Stress. Agronomy, 13(10), 2542. https://doi.org/10.3390/agronomy13102542