The Fusion Impact of Compost, Biochar, and Polymer on Sandy Soil Properties and Bean Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location, Soil, and Weather Characteristics
2.2. Experimental Design and Treatments
2.3. Management Practices
2.4. Soil and Plant Measurements
2.5. Economic Return
2.6. Statistical Analysis
3. Results
3.1. Soil Physiochemical Properties Subjected to Amendment Application
3.2. Faba Bean Yield and Traits Subjected to Amendment Application
3.3. Economic Returns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012; Available online: https://www.fao.org/3/ap106e/ap106e.pdf (accessed on 15 October 2012).
- Nadeem, M.A.; Yeken, M.Z.; Shahid, M.Q.; Habyarimana, E.; Yılmaz, H.; Alsaleh, A.; Hatipoğlu, R.; Çilesiz, Y.; Khawar, K.M.; Ludidi, N.; et al. Common bean as a potential crop for future food security: An overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. Biotechnol. Biotechnol. Equip. 2021, 35, 759–787. [Google Scholar] [CrossRef]
- Akibode, C.S.; Maredia, M.K. Global and regional trends in production, trade and consumption of food legume crops. 2012. Available online: https://ageconsearch.umn.edu/record/136293/ (accessed on 15 October 2012).
- Yeken, M.Z.; Kantar, F.; Çancı, H.; Özer, G.; Çiftçi, V. Breeding of dry bean cultivars using Phaseolus vulgaris landraces in Turkey. Int. J. Agric. Wildl. Sci. (IJAWS) 2018, 4, 45–54. [Google Scholar]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Lošák, T.; Bernas, J.; Koppensteiner, L.J.; Zholamanov, K.K.; Ghorbani, M.; et al. Effect of Two Seeding Rates on Nitrogen Yield and Nitrogen Fixation of Winter and Spring Faba Bean. Plants 2023, 12, 1711. [Google Scholar] [CrossRef]
- Mohamed, R.K.; El-Eraky, M.B.; Kandeal, M.S.; El-Sawy, M.A. An economic study for the important factor on the gap of faba beans in Egypt. Arab. Univ. J. Agric. Sci. 2019, 27, 1761–1770. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa–Hersztek, M.; Tabor, S. Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 2018, 315, 27–35. [Google Scholar] [CrossRef]
- Jantamenchai, M.; Sukitprapanon, T.-S.; Tulaphitak, D.; Mekboonsonglarp, W.; Vityakon, P. Organic phosphorus forms in a tropical sandy soil after application of organic residues of different quality. Geoderma 2022, 405, 115462. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Dai, H.; Cui, J.; Wang, L.; Sui, P. Effects of Organic Amendments on the Improvement of Soil Nutrients and Crop Yield in Sandy Soils during a 4-Year Field Experiment in Huang-Huai-Hai Plain, Northern China. Agronomy 2021, 11, 157. [Google Scholar] [CrossRef]
- Yang, J.; He, Z.; Yang, Y.; Stoffella, P.; Yang, X.; Banks, D.; Mishra, S. Use of amendments to reduce leaching loss of phosphorus and other nutrients from a sandy soil in Florida. Environ. Sci. Pollut. Res. Int. 2007, 14, 266–269. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Ding, Z.; Kheir, A.M.S.; Ali, O.A.M.; Hafez, E.M.; ElShamey, E.A.; Zhou, Z.; Wang, B.; Lin, X.e.; Ge, Y.; Fahmy, A.E.; et al. A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity. J. Environ. Manag. 2021, 277, 111388. [Google Scholar] [CrossRef] [PubMed]
- Eden, M.; Gerke, H.H.; Houot, S. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: A review. Agron. Sustain. Dev. 2017, 37, 11. [Google Scholar] [CrossRef]
- Alkhasha, A.; Al-Omran, A.; Aly, A. Effects of Biochar and Synthetic Polymer on the Hydro-Physical Properties of Sandy Soils. Sustainability 2018, 10, 4642. [Google Scholar] [CrossRef]
- Ding, Z.; Ali, E.F.; Elmahdy, A.M.; Ragab, K.E.; Seleiman, M.F.; Kheir, A.M.S. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agric. Water Manag. 2021, 244, 106626. [Google Scholar] [CrossRef]
- Aiad, M.A.; Amer, M.M.; Khalifa, T.H.H.; Shabana, M.M.A.; Zoghdan, M.G.; Shaker, E.M.; Eid, M.S.M.; Ammar, K.A.; Al-Dhumri, S.A.; Kheir, A.M.S. Combined Application of Compost, Zeolite and a Raised Bed Planting Method Alleviate Salinity Stress and Improve Cereal Crop Productivity in Arid Regions. Agronomy 2021, 11, 2495. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota-a review. Soil Biol. Biochem 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Pandian, K.; Subramaniayan, P.; Gnasekaran, P.; Chitraputhirapillai, S. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch. Agron. Soil Sci. 2016, 62, 1293–1310. [Google Scholar] [CrossRef]
- Novak, J.M.; Johnson, M.G.; Spokas, K.A. Concentration and release of phosphorus and potassium from lignocellulosic- and manure-based biochars for fertilizer reuse. Front. Sustain. Food Syst. 2018, 2, 54. [Google Scholar] [CrossRef]
- Premalatha, R.P.; Poorna Bindu, J.; Nivetha, E.; Malarvizhi, P.; Manorama, K.; Parameswari, E.; Davamani, V. A review on biochar’s effect on soil properties and crop growth. Front. Energy Res. 2023, 11, 1092637. [Google Scholar] [CrossRef]
- Ghorbani, M.; Neugschwandtner, R.W.; Soja, G.; Konvalina, P.; Kopecký, M. Carbon Fixation and Soil Aggregation Affected by Biochar Oxidized with Hydrogen Peroxide: Considering the Efficiency of Pyrolysis Temperature. Sustainability 2023, 15, 7158. [Google Scholar] [CrossRef]
- Banedjschafie, S.; Durner, W. Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality. J. Plant Nutr. Soil Sci. 2015, 178, 798–806. [Google Scholar] [CrossRef]
- Tian, X.; Wang, K.; Liu, Y.; Fan, H.; Wang, J.; An, M. Effects of polymer materials on soil physicochemical properties and bacterial community structure under drip irrigation. Appl. Soil Ecol. 2020, 150, 103456. [Google Scholar] [CrossRef]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, G.; Camerlynck, R. Chemical Analysis of Plant and Soil; Laboratory of Analytical and Agrochemistry, State University Ghent: Ghent, Belgium, 1982; Volume 63. [Google Scholar]
- Klute, A.; Page, A.L. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Madison, WI, USA, 1986. [Google Scholar]
- Culley, J. Density and compressibility. In Soil Sampling and Methods of Analysis; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 529–539. [Google Scholar]
- NÖMmik, H. A modified procedure for determination of organic carbon in soils by wet combustion. Soil Sci. 1971, 111, 330–336. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1983; Volume 9, pp. 643–698. [Google Scholar]
- Waskom, M.; Botvinnik, O.; O’Kane, D.; Hobson, P.; Lukauskas, S.; Gemperline, D.C.; Augspurger, T.; Halchenko, Y.; Cole, J.B.; Warmenhoven, J.; et al. mwaskom/seaborn: v0.8.1 (September 2017). 2017. Available online: https://www.zenodo.org/record/883859 (accessed on 15 October 2012).
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Su, J.-Y.; Liu, C.-H.; Tampus, K.; Lin, Y.-C.; Huang, C.-H. Organic Amendment Types Influence Soil Properties, the Soil Bacterial Microbiome, and Tomato Growth. Agronomy 2022, 12, 1236. [Google Scholar] [CrossRef]
- Zheng, H.; Mei, P.; Wang, W.; Yin, Y.; Li, H.; Zheng, M.; Ou, X.; Cui, Z. Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis. Agric. Water Manag. 2023, 282, 108290. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Zhao, S.; Han, Q.; Pan, X.; He, F.; Chen, C. Assessment of the responses of soil pore properties to combined soil structure amendments using X-ray computed tomography. Sci. Rep. 2018, 8, 695. [Google Scholar] [CrossRef]
- Zheng, T.; Liang, Y.; Ye, S.; He, Z. Superabsorbent hydrogels as carriers for the controlled-release of urea: Experiments and a mathematical model describing the release rate. Biosyst. Eng. 2009, 102, 44–50. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, B.; Guo, H.; Xiao, H.; Wei, T. The effect of super absorbent polymers on soil and water conservation on the terraces of the loess plateau. Ecol. Eng. 2017, 102, 270–279. [Google Scholar] [CrossRef]
- Yaseen, R.; Hegab, R.; Kenawey, M.; Eissa, D. Effect of super absorbent polymer and bio fertilization on Maize productivity and soil fertility under drought stress conditions. Egypt. J. Soil Sci. 2020, 60, 377–395. [Google Scholar] [CrossRef]
- Takahashi, M.; Kosaka, I.; Ohta, S. Water Retention Characteristics of Superabsorbent Polymers (SAPs) Used as Soil Amendments. Soil Syst. 2023, 7, 58. [Google Scholar] [CrossRef]
- Orikiriza, L.J.B.; Agaba, H.; Tweheyo, M.; Eilu, G.; Kabasa, J.D.; Hüttermann, A. Amending Soils with Hydrogels Increases the Biomass of Nine Tree Species under Non-water Stress Conditions. CLEAN—Soil Air Water 2009, 37, 615–620. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Chen, Z.; Guo, C.; Li, S. Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol. Eng. 2014, 62, 27–32. [Google Scholar] [CrossRef]
- Ni, B.; Liu, M.; Lü, S.; Xie, L.; Zhang, X.; Wang, Y. Novel Slow-Release Multielement Compound Fertilizer with Hydroscopicity and Moisture Preservation. Ind. Eng. Chem. Res. 2010, 49, 4546–4552. [Google Scholar] [CrossRef]
- Mahmoud, E.; Ibrahim, M.; Ali, N.; Ali, H. Spectroscopic analyses to study the effect of biochar and compost on dry mass of canola and heavy metal immobilization in soil. Commun. Soil Sci. Plant Anal. 2018, 49, 1990–2001. [Google Scholar] [CrossRef]
- Eissa, M.A. Effect of Compost and Biochar on Heavy Metals Phytostabilization by the Halophytic Plant Old Man Saltbush [Atriplex nummularia Lindl]. Soil Sediment Contam. Int. J. 2019, 28, 135–147. [Google Scholar] [CrossRef]
- Brendecke, J.W.; Axelson, R.D.; Pepper, I.L. Soil microbial activity as an indicator of soil fertility: Long-term effects of municipal sewage sludge on an arid soil. Soil Biol. Biochem. 1993, 25, 751–758. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. Effects of Irrigation with Saline Water on Crop Growth and Yield in Greenhouse Cultivation. Water 2016, 8, 127. [Google Scholar] [CrossRef]
- Kheir, A.M.S.; Mkuhlani, S.; Mugo, J.W.; Elnashar, A.; Nangia, V.; Devare, M.; Govind, A. Integrating APSIM model with machine learning to predict wheat yield spatial distribution. Agron. J. 2023; accepted. [Google Scholar] [CrossRef]
Chemical Characteristics | Value | Physical Characteristics | Value | Soil Moisture Content | Value |
---|---|---|---|---|---|
EC (paste extract) dS m−1 | 2.83 | Particle size distribution (%) | FC% | 5.70 | |
pH (suspension 1:2.5 w:v) | 7.79 | Sand | 68.96 | WP% | 15.00 |
SOC (g kg−1) | 0.60 | Silt | 15.34 | AW% | 9.30 |
Available NPK (mg kg−1) | Clay | 15.70 | |||
N | 15.36 | Texture | Sandy loam | ||
P | 4.81 | CEC (cmolc kg−1) | 0.90 | ||
K | 51.93 | Bulk density (Mg m−3) | 1.58 |
Treatments | Seed Yield (kg ha−1) | Straw Yield (kg ha−1) | Plant Height (cm) | Seed Weight (g) | N in Seeds (%) | P in Seeds (%) | K in Seeds (%) |
---|---|---|---|---|---|---|---|
Control | 1111.667 e | 1290.683 d | 141.0000 e | 52.35657 d | 2.100000 h | 0.150 e | 1.200 e |
SAP1 | 1118.333 e | 1288.967 d | 144.3333 cd | 59.25136 c | 2.266667 g | 0.156 e | 1.206 e |
SAP2 | 1267.333 c | 1440.743 bc | 147.3333 bc | 62.08754 a | 2.353333 f | 0.170 e | 1.240 e |
Biochar | 1160.000 de | 1322.716 cd | 142.6667 de | 59.79686 c | 2.406667 ef | 0.200 d | 2.063 b |
Compost | 1173.333 d | 1342.977 bcd | 143.6667 de | 61.04588 b | 2.576667 c | 0.220 cd | 1.740 d |
SAP1 + Biochar | 1225.000 c | 1405.065 bcd | 147.3333 bc | 60.80972 b | 2.466667 de | 0.220 cd | 2.093 b |
SAP1 + Compost | 1265.000 c | 1454.032 b | 150.0000 b | 62.08800 a | 2.666667 b | 0.243 bc | 1.780 d |
SAP2 + Biochar | 1356.000 ab | 1670.421 a | 154.0000 a | 62.16394 a | 2.513333 cd | 0.250 b | 2.173 a |
SAP2 + Compost | 1386.333 a | 1725.045 a | 154.6667 a | 62.88508 a | 2.766667 a | 0.263 ab | 1.873 c |
Biochar + Compost | 1318.333 b | 1716.747 a | 154.3333 a | 62.88155 a | 2.826667 a | 0.280 a | 2.200 a |
LSD | 50.696 | 125.783 | 3.155 | 0.827 | 0.070 | 0.025 | 0.051 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CV | 2.404 | 5.038 | 1.252 | 0.802 | 1.667 | 6.888 | 1.713 |
Seasons | 2020/2021 | 2021/2022 | 2022/2023 | ||||||
---|---|---|---|---|---|---|---|---|---|
Treatments | Total Cost | Total Return | Net Return | Total Cost | Total Return | Net Return | Total Cost | Total Return | Net Return |
Control | 1272 | 2189 | 918 | 2048 | 2450 | 405 | 1419 | 1911 | 783 |
SAP 1 | 1577 | 2202 | 625 | 2048 | 2553 | 508 | 1419 | 2071 | 942 |
SAP 2 | 1882 | 2474 | 593 | 2048 | 2771 | 726 | 1419 | 2256 | 1128 |
Biochar | 1558 | 2278 | 721 | 2048 | 2634 | 589 | 1419 | 2144 | 1015 |
Compost | 1509 | 2302 | 794 | 2048 | 2761 | 715 | 1419 | 2133 | 1005 |
SAP1 + Biochar | 1863 | 2396 | 535 | 2048 | 2639 | 594 | 1419 | 2207 | 1079 |
SAP1 + Compost | 1814 | 2470 | 657 | 2048 | 2761 | 715 | 1419 | 2207 | 1078 |
SAP2 + Biochar | 2168 | 2636 | 470 | 2048 | 2928 | 882 | 1419 | 2362 | 1234 |
SAP2 + Compost | 2119 | 2691 | 574 | 2048 | 3004 | 958 | 1419 | 2379 | 1250 |
B2.5 + Compost | 1795 | 2567 | 773 | 2048 | 2994 | 948 | 1419 | 2362 | 1234 |
Exchange rate (1 USD = EGP) | 15.75 | 15.76 | 15.76 | 15.75 | 15.77 | 15.77 | 24.59 | 30.93 | 30.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheir, A.M.S.; Govind, A.; Zoghdan, M.G.; Khalifa, T.H.; Aboelsoud, H.M.; Shabana, M.M.A. The Fusion Impact of Compost, Biochar, and Polymer on Sandy Soil Properties and Bean Productivity. Agronomy 2023, 13, 2544. https://doi.org/10.3390/agronomy13102544
Kheir AMS, Govind A, Zoghdan MG, Khalifa TH, Aboelsoud HM, Shabana MMA. The Fusion Impact of Compost, Biochar, and Polymer on Sandy Soil Properties and Bean Productivity. Agronomy. 2023; 13(10):2544. https://doi.org/10.3390/agronomy13102544
Chicago/Turabian StyleKheir, Ahmed M. S., Ajit Govind, Medhat G. Zoghdan, Tamer H. Khalifa, Hesham M. Aboelsoud, and Mahmoud M. A. Shabana. 2023. "The Fusion Impact of Compost, Biochar, and Polymer on Sandy Soil Properties and Bean Productivity" Agronomy 13, no. 10: 2544. https://doi.org/10.3390/agronomy13102544
APA StyleKheir, A. M. S., Govind, A., Zoghdan, M. G., Khalifa, T. H., Aboelsoud, H. M., & Shabana, M. M. A. (2023). The Fusion Impact of Compost, Biochar, and Polymer on Sandy Soil Properties and Bean Productivity. Agronomy, 13(10), 2544. https://doi.org/10.3390/agronomy13102544