Benefits through Innovative Cropping Patterns in the Hilly Regions of Southwest China: An Integrated Assessment of Emergy and Economic Returns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Experiment
2.3. Measurement Indicators and Methods
2.3.1. Yield
2.3.2. Biomass
2.3.3. Energy
2.3.4. Economic Benefits
2.4. Measurement Indicators and Methods
2.4.1. Evaluation Rationale and Methodology
2.4.2. Input Energy Calculation
2.4.3. Energy Value Input-Output Programs
2.4.4. Emergy Analysis Index
2.5. Statistical Analysis
3. Results
3.1. Cropping Patterns Economic Yield and Capacity
3.2. Yield and Production Capacity of Cropping Model Biomes
3.3. Analysis of Economic Benefits of Different Cropping Patterns
3.4. Emergy Analysis of Different Cropping Patterns
3.4.1. Emergy Input and Emergy Output
3.4.2. Emergy Index Analysis
Renewable and Non-Renewable Natural Resource Emergy Ratios
Proportion of Industrial Auxiliary Energy and Proportion of Organic Auxiliary Energy
Energy Input Ratio (EIR)
Energy-Yield Ratio (EYR)
Environmental Load Ratio (ELR)
Emergy Density (ED)
Energy Sustainability Index (ESI)
System Production Advantage
System Production Advantage
4. Discussion
4.1. Productivity and Economic Benefit of Novel Triple Cropping System
4.2. Emergy Benefits of the Novel Triple Cropping System
4.3. Problems and Coping Strategies in Promoting the Novel Triple Cropping System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef]
- Turchini, G.M. Aquaculture sustainability: Global challenges need local actions. Rev. Aquacult. 2023, 15, 402–403. [Google Scholar] [CrossRef]
- Christophe, G.; Houssein, G. Nutrition Transition and the Structure of Global Food Demand. Am. J. Agric. Econ. 2019, 101, 383–403. [Google Scholar]
- Janne, H.; Hans-Peter, W. A model for estimating phosphorus requirements of world food production. Agric. Syst. 2019, 176, 102666. [Google Scholar]
- Audun, K. Relations between nitrogen leaching and food productivity in organic and conventional cropping systems in a long-term field study. Agric. Ecosyst. Environ. 2008, 127, 177–188. [Google Scholar]
- Yin, M.H.; Li, Y.N.; Fang, H.; Chen, P.P. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric. Water Manag. 2019, 216, 127–137. [Google Scholar] [CrossRef]
- He, J.; Li, J.; Gao, Y.; He, X.; Hao, G. Nano-based smart formulations: A potential solution to the hazardous effects of pesticide on the environment. J. Hazard. Mater. 2023, 456, 131599. [Google Scholar] [CrossRef]
- Wang, H.; Xie, T.; Yu, X.; Zhang, C. Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau. Agric. Water Manag. 2021, 244, 106462. [Google Scholar] [CrossRef]
- Rizzo, G.; Monzon, J.P.; Ernst, O. Cropping system-imposed yield gap: Proof of concept on soybean cropping systems in Uruguay. Field Crop Res. 2021, 260, 107944–107952. [Google Scholar] [CrossRef]
- Garbelini, L.G.; Debiasi, H.; Junior, A.A.B.; Franchini, J.C.; Coelho, A.E.; Telles, T.S. Diversified crop rotations increase the yield and economic efficiency of grain production systems. Eur. J. Agron. 2022, 137, 126528. [Google Scholar] [CrossRef]
- Xia, H.; Qiao, Y.; Li, X.; Xue, Y.; Wang, N.; Yan, W. Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study. Agric. Syst. 2023, 204, 103540. [Google Scholar] [CrossRef]
- Pandey, P.C.; Pandey, M. Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals. Sustain. Dev. 2023, 31, 3175–3195. [Google Scholar] [CrossRef]
- Adrian, G.W.; Eric, A.; Daniel, L.S. Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. Int. J. Life Cycle Assess. 2010, 15, 855–868. [Google Scholar]
- Falconnier, G.N.; Corbeels, M.; Boote, K.J.; Affholder, F.; Webber, H. Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-saharan africa. Glob. Chang. Biol. 2020, 26, 5942–5964. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, R.; Wu, J.; Zhang, Y.Z.; Lin, L.L.; Deng, S.H.; Hong, P. An emergy evaluation of the sustainability of Chinese crop production system during 2000–2010. Ecol. Indic. 2016, 60, 622–633. [Google Scholar] [CrossRef]
- Odum, H.T. Self-Organization, Transformity, and Information. Science 1988, 242, 1132–1139. [Google Scholar] [CrossRef]
- Odum, H.T.; Nils, P. Simulation and evaluation with energy systems blocks. Ecol. Model. 1996, 93, 155–173. [Google Scholar] [CrossRef]
- Timothy, R.W.; David, R.T.; Elliot, C. Emergy analysis to evaluate the sustainability of two oyster aquaculture systems in the Chesapeake Bay. Ecol. Eng. 2015, 85, 103–120. [Google Scholar]
- Ju, L.P.; Chen, B. Embodied energy and emergy evaluation of a typical biodiesel production chain in China. Ecol. Model. 2011, 222, 2385–2392. [Google Scholar] [CrossRef]
- Odum, H.T. Energy Analysis of the Environmental Role in Agriculture. In Energy and Agriculture; Stanhill, G., Ed.; Springer: Berlin, Germany, 1984; pp. 24–51. [Google Scholar]
- Amiri, Z.; Asgharipour, M.R.; Campbell, D.E.; Armin, M. A sustainability analysis of two rapeseed farming ecosystems in Khorramabad, Iran, based on emergy and economic analyses. J. Clean. Prod. 2019, 226, 1051–1066. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Chen, J.; Hu, N.; Zhu, L. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment. J. Clean. Prod. 2021, 310, 127493. [Google Scholar] [CrossRef]
- Yue, J.; Yuan, X.; Li, B.; Ren, H.; Wang, X. Emergy and exergy evaluation of a dike-pond project in the drawdown zone (DDZ) of the Three Gorges Reservoir. Ecol. Indic. 2016, 71, 248–257. [Google Scholar] [CrossRef]
- Houshyar, E.; Wu, X.F.; Chen, G.Q. Sustainability of wheat and maize production in the warm climate of southwestern Iran: An emergy analysis. J. Clean. Prod. 2018, 172, 2246–2255. [Google Scholar] [CrossRef]
- Rasul, G. Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region. Environ. Sci. Policy 2014, 39, 35–48. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Brunner, J.F. Integrated Pest Management in Tree Fruit Crops, Encyclopedia of Agriculture and Food Systems; Academic Press: Oxford, UK, 2014; pp. 12–15. [Google Scholar]
- Li, L.; Zhou, Y.; Li, M.; Cao, K.; Tao, Y.; Liu, Y. Integrated modelling for cropping pattern optimization and planning considering the synergy of water resources-society-economy-ecology-environment system. Agric. Water Manag. 2022, 271, 107808. [Google Scholar] [CrossRef]
- Chen, Y.X.; Liu, J.; Chen, X.P.; Zhang, C.C.; Huang, W.; Tang, Y.Q. Dry matter accumulation, yield and nitrogen use efficiency of crops ratation and intercropping systems Sichuan. J. China Agric. Sin. 2013, 18, 68–79. (In Chinese) [Google Scholar]
- Zhang, Y.F.; Qu, H.H.; Yang, X.G.; Wang, M.T.; Qin, N.S.; Zou, Y.J. Cropping system optimization for drought prevention and disaster reduction with a risk assessment model in Sichuan Province. Glob. Ecol. Conserv. 2020, 23, e01095. [Google Scholar] [CrossRef]
- Xiang, D.B.; Yong, T.W.; Yang, W.Y.; Yu, X.B.; Guo, K. Effects of planting system on soil and water conservation and crop output value in a sloping land of Southwest China. Chin. J. Appl. Ecol. 2010, 21, 1461–1467. (In Chinese) [Google Scholar]
- Geeta, S.; Ranjan, B.; Das, T.K.; Sharma, A.R.; Gohsh, A.; Das, S.; Jha, P. Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plains. Soil Tillage Res. 2018, 184, 291–300. [Google Scholar]
- Kong, X.; Zhang, X.; Lal, R.; Zhang, F.; Chen, X.; Niu, Z.; Son, W. Groundwater Depletion by Agricuitural Intensification in China’s HHPlains, since 1980s. Adv. Agron. 2016, 135, 59–106. [Google Scholar]
- Wang, Y.Q.; Zhang, Y.H.; Zhang, R.; Li, J.P.; Zhang, M.; Zhou, S.L.; Wang, Z.M. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain. Sci. Total Environ. 2018, 618, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.Y.; Xu, X.B.; Lin, W.L.; Ge, B.Z.; Xie, Y.L.; Song, B. Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmos. Chem. Phys. 2018, 18, 167–184. [Google Scholar] [CrossRef]
- Xu, X.M.; Lan, Y. Spatial and temporal patterns of carbon footprints of grain crops in China. J. Clean. Prod. 2017, 146, 218–227. [Google Scholar] [CrossRef]
- Yan, Z.J.; Zhou, J.; Yang, L.; Gunina, A.; Yang, Y.; Peixoto, L.; Kuzyakov, Y. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: Results of three fractionation methods. Sci. Total Environ. 2022, 824, 153878. [Google Scholar] [CrossRef]
- Wang, L.C.; Zou, C.M.; Zhang, Y.L.; Zhang, S.; Zhang, X.Y.; Zhou, H.F. Influences of Conservation Tillage Practices on Farmland Soil Ecological Factors and Productive Benefits in Dryland Region with Triple Cropping System. Acta Agron. Sin. 2013, 39, 1880–1890. (In Chinese) [Google Scholar] [CrossRef]
- MOA. Potato Has Gradually Become the Fourth Major Staple Crop in China after Rice, Wheat and Corn. Beijing. 2015. Available online: https://www.moa.gov.cn (accessed on 6 September 2023).
- Yao, Y.P.; Su, G.L.; Luo, W.H.; Dai, J.F. A Photo-Thermal Resources Bsed System for Greenhouse Zonation and Energy Consumption Estimation in China. Sci. Agric. Sin. 2011, 44, 898–908. (In Chinese) [Google Scholar]
- Wang, X.L.; Wu, X.; Yan, P.; Gao, W.S.; Chen, Y.Q.; Sui, P. Integrated analysis on economic and environmental consequences of livestock husbandry on different scale in China. J. Clean. Prod. 2016, 119, 1–12. [Google Scholar] [CrossRef]
- Guo, X.; Wang, M.T.; Li, J.J.; Li, M.X. The agro-climatic suitability analysis and refined regionalization of rapeseed in Sichuan Basin. Southwest China Agric. Sci. 2015, 28, 846–852. (In Chinese) [Google Scholar]
- Chen, F. Agroecology; China Agricultural University Press: Beijing, China, 2002. [Google Scholar]
- Lan, S.F.; Qing, P.; Lu, H.F. Emergy Analysis of Eco-Economic System; Chemical Industry Press: Beijing, China, 2002. [Google Scholar]
- Gao, W.S. Agricultural Macro Analysis Method and Application; China Agricultural University Press: Beijing, China, 2009. [Google Scholar]
- Jiang, M.M.; Chen, B.; Zhou, J.B.; Tao, F.R.; Li, Z.; Yang, Z.F.; Chen, G.Q. Emergy account for biomass resource exploitation by agriculture in China. Energy Policy 2007, 35, 4704–4719. [Google Scholar] [CrossRef]
- Odum, H.T. Folio #2: Emergy of Global Processes. In Handbook of Emergy Evaluation; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Li, Z.X.; Wang, L.; Liu, S.T.; Zhao, B.; Qian, X.; LI, Q.Q. Annual High Efficiency Utilization of Water and Fertilizer of a Wheat-Maize Double Cropping System. Sci. Agric. Sin. 2020, 53, 4333–4341. (In Chinese) [Google Scholar]
- Mikhaylin, S.; Patouillard, L.; Margni, M. Milk protein production by a more environmentally sustainable process: Bipolar membrane electrodialysis coupled with ultrafiltration. Green Chem. 2018, 20, 449–456. [Google Scholar] [CrossRef]
- Pergner, I.; Lippert, C. On the effects that motivate pesticide use in perspective of designing a cropping system without pesticides but with mineral fertilizer—A review. Agron. Sustain. Dev. 2023, 43, 24. [Google Scholar] [CrossRef]
- Nathalie, L.; Sébastien, R.; Sylvestre, D. A protocol for the conceptualisation of an agro-ecosystem to guide data acquisition and analysis and expert knowledge integration. Eur. J. Agron. 2012, 38, 104–116. [Google Scholar]
- Carof, M.; Godinot, O.; Le Cadre, E. Biodiversity-based cropping systems: A long-term perspective is necessary. Sci. Total Environ. 2022, 838, 156022. [Google Scholar] [CrossRef]
- Xiao, D.P.; Shen, Y.J.; Qi, Y.Q.; Moiwo, J.P.; Min, L.L.; Zhang, C.Y.; Pei, H.W. Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain. Region. Agric. Syst. 2017, 153, 109–117. [Google Scholar] [CrossRef]
- Liu, M.; Tao, H.B.; Wang, P.; Lv, L.H.; Zhang, Y.J. Analysis of different cropping systems using optimizing water-nitrogen management on yield, water and nitrogen utilization and economic benefits. J. China Agric. Univ. 2008, 13, 12–18. (In Chinese) [Google Scholar]
- Li, J.Z.; Li, F.C.; Zhao, B.Q. Analysis of Economic Benefits of Wheat-maize Intercropping Mode. J. Shandong Agric. Univ. 1997, 28, 383–390. (In Chinese) [Google Scholar]
- de Bello, F.; Lavorel, S.; Hallett, L.M. Functional trait effects on ecosystem stability: Assembling the jigsaw puzzle. Trends Ecol. Evol. 2021, 36, 822–836. [Google Scholar] [CrossRef]
- Hagoes, R.; Shaibu, A.S.; Zhang, L.; Cai, X.; Liang, J.L.; Wu, J.; Lin, R.M.; Wang, X.W. Ethiopian Mustard (Brassica carinata A. Braun) as an Alternative Energy Source and Sustainable Crop. Sustainability 2020, 12, 7492. [Google Scholar] [CrossRef]
- Chalise, D.; Kumar, L.; Sharma, R.; Kristiansen, P. Assessing the impacts of tillage and mulch on soil erosion and corn yield. Agronomy 2020, 10, 63. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Jia, Z.H.; Peng, L.; Chen, Q.; He, L.; Jiang, Y.M. Life cycle assessment of conventional and organic apple production systems in China. J. Clean. Prod. 2018, 201, 156–168. [Google Scholar] [CrossRef]
- Nall, I.M.; Oudho, H.; Rattan, L. Emergy analysis for maize fields under different amendment applications in Guyana. J. Clean. Prod. 2020, 258, 120761. [Google Scholar]
- Chen, G.Q.; Jiang, M.M.; Chen, B.; Yang, Z.F.; Lin, C. Emergy analysis of Chinese agriculture. Agric. Ecosyst. Environ. 2006, 115, 161–173. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Shahgholi, H.; Campbell, D.E.; Khamari, I.; Ghadiri, A. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environ. Monit. Assess. 2018, 191, 2. [Google Scholar] [CrossRef] [PubMed]
- Bhim, B.G.; Noelle, K.; Axel, M. Emergy synthesis of conventional fodder maize (Zea mays L.) production in Denmark. Ecol. Indic. 2018, 87, 144–151. [Google Scholar]
- Zhang, L.X.; Song, B.; Chen, B. Emergy-based analysis of four farming systems: Insight into agricultural diversification in rural China. J. Clean. Prod. 2012, 28, 33–44. [Google Scholar] [CrossRef]
- Fu, S.C.; Wang, D.Q.; Zhang, Y.; Wang, L.J.; Zhao, W.; Tang, Z.Q. Sustainability of agro-ecoeconomic system in reclamation area of Heilongjiang, Northeast China based on emergy analysis. Acta Ecol. Sin. 2013, 32, 1723–1729. (In Chinese) [Google Scholar]
- Bush, J.; Doyon, A. Tackling intersecting climate change and biodiversity emergencies: Opportunities for sustainability transitions research. Environ. Innov. Soc. Transit. 2021, 41, 57–59. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Gleixner, G. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef]
- Yesuf, A.M.; Heather, L.M.; Russ, W.G.; Swetabh, P.; Frank, F.; Kyle, A.; Andrew, W.L. Establishing winter annual cover crops by interseeding into Maize and Soybean. Agron. J. 2020, 112, 719–732. [Google Scholar]
Item | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | |
---|---|---|---|---|---|---|---|---|---|
Solar radiation | 2.72 × 1013 | 2.72 × 1013 | 2.72 × 1013 | 2.72 × 1013 | 2.72 × 1013 | 2.72 × 1013 | 2.72 × 1013 | 2.72 × 1013 | |
Rain potential energy | 6.25 × 1014 | 6.25 × 1014 | 6.25 × 1014 | 6.25 × 1014 | 6.25 × 1014 | 6.25 × 1014 | 6.25 × 1014 | 6.25 × 1014 | |
Rain chemical energy | 1.29 × 1015 | 1.29 × 1015 | 1.29 × 1015 | 1.29 × 1015 | 1.29 × 1015 | 1.29 × 1015 | 1.29 × 1015 | 1.29 × 1015 | |
Wind energy | 5.51 × 1016 | 5.51 × 1016 | 5.51 × 1016 | 5.51 × 1016 | 5.51 × 1016 | 5.51 × 1016 | 5.51 × 1016 | 5.51 × 1016 | |
R | Renewable natural resources | 5.70 × 1016 | 5.70 × 1016 | 5.70 × 1016 | 5.70 × 1016 | 5.70 × 1016 | 5.70 × 1016 | 5.70 × 1016 | 5.70 × 1016 |
Net loss of topsoil | 2.30 × 1014 | 2.32 × 1014 | 2.34 × 1014 | 2.30 × 1014 | 2.19 × 1014 | 2.07 × 1014 | 2.12 × 1014 | 2.12 × 1014 | |
N | Unrenewable natural resources | 2.30 × 1014 | 2.32 × 1014 | 2.34 × 1014 | 2.30 × 1014 | 2.19 × 1014 | 2.07 × 1014 | 2.12 × 1014 | 2.12 × 1014 |
Nitrogen fertilizer | 8.32 × 1014 | 1.87 × 1015 | 1.73 × 1015 | 1.39 × 1015 | 1.66 × 1015 | 1.94 × 1015 | 2.01 × 1015 | 1.73 × 1015 | |
Phosphate fertilizer | 1.87 × 1015 | 2.40 × 1015 | 2.94 × 1015 | 2.94 × 1015 | 2.94 × 1015 | 2.94 × 1015 | 2.67 × 1015 | 2.67 × 1015 | |
Potash fertilizer | 1.78 × 1014 | 4.00 × 1014 | 4.88 × 1014 | 3.55 × 1014 | 3.55 × 1014 | 4.88 × 1014 | 7.99 × 1014 | 6.66 × 1014 | |
Pesticide | 1.25 × 1013 | 1.33 × 1013 | 1.36 × 1013 | 1.77 × 1013 | 1.62 × 1013 | 1.61 × 1013 | 1.80 × 1013 | 1.81 × 1013 | |
Film | - | - | - | 2.75 × 1013 | 2.75 × 1013 | 2.75 × 1013 | 2.75 × 1013 | 2.75 × 1013 | |
Mechanical power | 4.22 × 1016 | 4.22 × 1016 | 4.22 × 1016 | 4.22 × 1016 | 4.22 × 1016 | 4.22 × 1016 | 4.22 × 1016 | 4.22 × 1016 | |
Fuel | 7.62 × 1013 | 7.62 × 1013 | 7.62 × 1013 | 7.62 × 1013 | 7.62 × 1013 | 7.62 × 1013 | 7.62 × 1013 | 7.62 × 1013 | |
F | Industrial auxiliary emergy | 4.51 × 1016 | 4.69 × 1016 | 4.74 × 1016 | 4.70 × 1016 | 4.72 × 1016 | 4.77 × 1016 | 4.78 × 1016 | 4.74 × 1016 |
Labor force | 8.69 × 1015 | 9.66 × 1015 | 1.06 × 1016 | 1.16 × 1016 | 1.16 × 1016 | 1.55 × 1016 | 2.03 × 1016 | 1.64 × 1016 | |
Wheat seed | - | - | 1.66 × 1014 | 8.31 × 1013 | - | - | - | - | |
Rape seed | 1.75 × 1013 | 1.75 × 1013 | - | - | - | - | - | - | |
Rape seed | - | - | - | - | 3.50 × 1013 | 3.50 × 1013 | - | - | |
Potato seed | - | - | - | - | - | - | 7.10 × 1013 | 7.10 × 1013 | |
Maize seed | - | 4.13 × 1013 | 4.13 × 1013 | 4.13 × 1013 | 4.13 × 1013 | 4.13 × 1013 | 4.13 × 1013 | 4.13 × 1013 | |
Soybean seed | 1.20 × 1014 | - | - | 1.20 × 1014 | 1.20 × 1014 | - | - | 1.20 × 1014 | |
Peanut seed | - | - | - | - | - | 3.20 × 1014 | 3.20 × 1014 | - | |
R1 | Renewable organic emergy | 8.83 × 1015 | 9.72 × 1015 | 1.08 × 1016 | 1.18 × 1016 | 1.18 × 1016 | 1.58 × 1016 | 2.07 × 1016 | 1.67 × 1016 |
T | Total input of emergy | 1.11 × 1017 | 1.14 × 1017 | 1.16 × 1017 | 1.16 × 1017 | 1.16 × 1017 | 1.21 × 1017 | 1.26 × 1017 | 1.21 × 1017 |
Item | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | |
---|---|---|---|---|---|---|---|---|---|
Wheat | - | - | 5.89 × 1015 | 3.92 × 1015 | - | - | - | - | |
Rape | 5.62 × 1015 | 5.79 × 1015 | - | - | - | - | - | - | |
Forage rape | - | - | - | - | 5.10 × 1015 | 4.99 × 1015 | - | - | |
Potato | - | - | - | - | - | - | 7.57 × 1015 | 7.41 × 1015 | |
Maize | - | 8.55 × 1015 | 8.53 × 1015 | 8.01 × 1015 | 7.61 × 1015 | 7.72 × 1015 | 7.63 × 1015 | 7.70 × 1015 | |
Soybean | 3.46 × 1015 | - | - | 2.83 × 1015 | 2.90 × 1015 | - | - | 2.69 × 1015 | |
Peanut | - | - | - | - | - | 4.05 × 1015 | 4.16 × 1015 | - | |
Economic capacity | 9.08 × 1015 | 1.43 × 1016 | 1.44 × 1016 | 1.48 × 1016 | 1.56 × 1016 | 1.68 × 1016 | 1.94 × 1016 | 1.78 × 1016 | |
Straw | 7.48 × 1015 | 7.14 × 1015 | 6.22 × 1015 | 6.57 × 1015 | 5.25 × 1015 | 4.17 × 1015 | 4.54 × 1015 | 5.46 × 1015 | |
Y | Total emergy output | 1.66 × 1016 | 2.15 × 1016 | 2.06 × 1016 | 2.13 × 1016 | 2.09 × 1016 | 2.09 × 1016 | 2.39 × 1016 | 2.33 × 1016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Chen, W.; Liu, F.; Yao, H.; Huo, Q.; Zhang, W.; Yin, P.; Feng, D.; Yuan, J.; Wang, X.; et al. Benefits through Innovative Cropping Patterns in the Hilly Regions of Southwest China: An Integrated Assessment of Emergy and Economic Returns. Agronomy 2023, 13, 2640. https://doi.org/10.3390/agronomy13102640
Li T, Chen W, Liu F, Yao H, Huo Q, Zhang W, Yin P, Feng D, Yuan J, Wang X, et al. Benefits through Innovative Cropping Patterns in the Hilly Regions of Southwest China: An Integrated Assessment of Emergy and Economic Returns. Agronomy. 2023; 13(10):2640. https://doi.org/10.3390/agronomy13102640
Chicago/Turabian StyleLi, Tongliang, Wei Chen, Fan Liu, Hongqian Yao, Qi Huo, Wei Zhang, Pijiang Yin, Dongju Feng, Jichao Yuan, Xinglong Wang, and et al. 2023. "Benefits through Innovative Cropping Patterns in the Hilly Regions of Southwest China: An Integrated Assessment of Emergy and Economic Returns" Agronomy 13, no. 10: 2640. https://doi.org/10.3390/agronomy13102640
APA StyleLi, T., Chen, W., Liu, F., Yao, H., Huo, Q., Zhang, W., Yin, P., Feng, D., Yuan, J., Wang, X., & Kong, F. (2023). Benefits through Innovative Cropping Patterns in the Hilly Regions of Southwest China: An Integrated Assessment of Emergy and Economic Returns. Agronomy, 13(10), 2640. https://doi.org/10.3390/agronomy13102640