Enhancing Fertilizer Effect of Bioprocessed Brewers’ Spent Grain by Microbial Consortium Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Soil Description
2.2. Experimental Design
2.3. Plant Analyses
2.4. Efficiency Coefficients
- R/F, or removal to fertilizer ratio, was calculated according to the following equation:
- AR, or apparent recovery, was calculated as suggested by Zavattaro et al., (2016) [33]:
2.5. Microbiological Analysis
2.6. Statistical Analysis
3. Results
3.1. Plant Growth
3.2. Quality Characteristic
3.3. Microbial Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frasetya, B.; Harisman, K.; Maulid, S.; Ginandjar, S. The Effect of Vermicompost Application on the Growth of Lettuce Plant (Lactuca sativa L.). J. Phys. Conf. Ser. 2019, 1402, 033050. [Google Scholar] [CrossRef]
- Muscolo, A.; Romeo, F.; Marra, F.; Mallamaci, C. Recycling Agricultural, Municipal and Industrial Pollutant Wastes into Fertilizers for a Sustainable Healthy Food Production. J. Environ. Manag. 2021, 300, 113771. [Google Scholar] [CrossRef] [PubMed]
- Cobo, S.; Levis, J.W.; Dominguez-Ramos, A.; Irabien, A. Economics of Enhancing Nutrient Circularity in an Organic Waste Valorization System. Environ. Sci. Technol. 2019, 53, 6123–6132. [Google Scholar] [CrossRef] [PubMed]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Lao, E.J.; Dimoso, N.; Raymond, J.; Mbega, E.R. The Prebiotic Potential of Brewers’ Spent Grain on Livestock’s Health: A Review. Trop. Anim. Health Prod. 2020, 52, 461–472. [Google Scholar] [CrossRef]
- Barth-Haas Group. Barth-Haas Report 2021/2022; Barth-Haas Group: Nürnberg, Germany, 2022. [Google Scholar]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ Spent Grain: A Review with an Emphasis on Food and Health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Agapios, A.; Andreas, V.; Marinos, S.; Katerina, M.; Antonis, Z.A. Waste Aroma Profile in the Framework of Food Waste Management through Household Composting. J. Clean. Prod. 2020, 257, 120340. [Google Scholar] [CrossRef]
- Jara-Samaniego, J.; Pérez-Murcia, M.D.; Bustamante, M.A.; Pérez-Espinosa, A.; Paredes, C.; López, M.; López-Lluch, D.B.; Gavilanes-Terán, I.; Moral, R. Composting as Sustainable Strategy for Municipal Solid Waste Management in the Chimborazo Region, Ecuador: Suitability of the Obtained Composts for Seedling Production. J. Clean. Prod. 2017, 141, 1349–1358. [Google Scholar] [CrossRef]
- Vigoroso, L.; Pampuro, N.; Bagagiolo, G.; Cavallo, E. Factors Influencing Adoption of Compost Made from Organic Fraction of Municipal Solid Waste and Purchasing Pattern: A Survey of Italian Professional and Hobbyist Users. Agronomy 2021, 11, 1262. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, J.; Zhu, A.; Zhang, C. Effects of Long-Term (23 Years) Mineral Fertilizer and Compost Application on Physical Properties of Fluvo-Aquic Soil in the North China Plain. Soil Tillage Res. 2016, 156, 166–172. [Google Scholar] [CrossRef]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa-Hersztek, M.; Tabor, S.; Stanek-Tarkowska, J. Fertilization Effects of Compost Produced from Maize, Sewage Sludge and Biochar on Soil Water Retention and Chemical Properties. Soil Tillage Res. 2020, 197, 104493. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Mijangos, I.; Garbisu, C. Commercial and Farm Fermented Liquid Organic Amendments to Improve Soil Quality and Lettuce Yield. J. Environ. Manag. 2020, 264, 110422. [Google Scholar] [CrossRef]
- Moretti, B.; Bertora, C.; Grignani, C.; Lerda, C.; Celi, L.; Sacco, D. Conversion from Mineral Fertilisation to MSW Compost Use: Nitrogen Fertiliser Value in Continuous Maize and Test on Crop Rotation. Sci. Total Environ. 2020, 705, 135308. [Google Scholar] [CrossRef]
- Chia, W.Y.; Chew, K.W.; Le, C.F.; Lam, S.S.; Chee, C.S.C.; Ooi, M.S.L.; Show, P.L. Sustainable Utilization of Biowaste Compost for Renewable Energy and Soil Amendments. Environ. Pollut. 2020, 267, 115662. [Google Scholar] [CrossRef]
- Pampuro, N.; Preti, C.; Cavallo, E. Recycling Pig Slurry Solid Fraction Compost as a Sound Absorber. Sustainability 2018, 10, 277. [Google Scholar] [CrossRef]
- Pampuro, N.; Busato, P.; Cavallo, E. Gaseous Emissions after Soil Application of Pellet Made from Composted Pig Slurry Solid Fraction: Effect of Application Method and Pellet Diameter. Agriculture 2018, 8, 119. [Google Scholar] [CrossRef]
- Atieno, M.; Herrmann, L.; Nguyen, H.T.; Phan, H.T.; Nguyen, N.K.; Srean, P.; Than, M.M.; Zhiyong, R.; Tittabutr, P.; Shutsrirung, A.; et al. Assessment of Biofertilizer Use for Sustainable Agriculture in the Great Mekong Region. J. Environ. Manag. 2020, 275, 111300. [Google Scholar] [CrossRef] [PubMed]
- Yassen, A.A.; Essa, E.M.; Marzouk, N.M.; Zaghloul, S.M. Impact of Vermicompost and Foliar Spray of Vermiwash on Growth, Yield and Nutritional Status of Lettuce Plants. Plant Arch. 2020, 20, 449–455. [Google Scholar]
- Radziemska, M.; Vaverková, M.D.; Adamcová, D.; Brtnický, M.; Mazur, Z. Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste Biomass Valorization 2019, 10, 2537–2545. [Google Scholar] [CrossRef]
- Assandri, D.; Pampuro, N.; Zara, G.; Bianco, A.; Cavallo, E.; Budroni, M. Co-Composting of Brewers’ Spent Grain with Animal Manures and Wheat Straw: Influence of Two Composting Strategies on Compost Quality. Agronomy 2021, 11, 1349. [Google Scholar] [CrossRef]
- Alromian, F.M. Effect of Type of Compost and Application Rate on Growth and Quality of Lettuce Plant. J. Plant Nutr. 2020, 43, 1–13. [Google Scholar] [CrossRef]
- AOAC International. Official Methods No. III. 1; AOAC International: Rockville, MD, USA, 1999; pp. 1–222. [Google Scholar]
- Golia, E.E.; Chartodiplomenou, M.-A.; Papadimou, S.G.; Kantzou, O.-D.; Tsiropoulos, N.G. Influence of Soil Inorganic Amendments on Heavy Metal Accumulation by Leafy Vegetables. Environ. Sci. Pollut. Res. 2021, 30, 8617–8632. [Google Scholar] [CrossRef] [PubMed]
- Zandvakili, O.R.; Barker, A.V.; Hashemi, M.; Etemadi, F. Biomass and Nutrient Concentration of Lettuce Grown with Organic Fertilizers. J. Plant Nutr. 2019, 42, 444–457. [Google Scholar] [CrossRef]
- Bottoms, T.G.; Smith, R.F.; Cahn, M.D.; Hartz, T.K. Nitrogen Requirements and N Status Determination of Lettuce. HortScience 2012, 47, 1768–1774. [Google Scholar] [CrossRef]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca sativa L.) Growth, Soil Properties, and Soil Microbial Activity and Abundance. Int. J. Agron. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Yoo, J.-H.; Luyima, D.; Lee, J.-H.; Park, S.-Y.; Yang, J.-W.; An, J.-Y.; Yun, Y.-U.; Oh, T.-K. Effects of Brewer’s Spent Grain Biochar on the Growth and Quality of Leaf Lettuce (Lactuca sativa L. var. crispa.). Appl. Biol. Chem. 2021, 64, 10. [Google Scholar] [CrossRef]
- Gomah, H.H.; Ahmed, M.M.M.; Abdalla, R.M.; Farghly, K.A.; Eissa, M.A. Utilization of Some Organic Wastes as Growing Media for Lettuce (Lactuca sativa L.) Plants. J. Plant Nutr. 2020, 43, 2092–2105. [Google Scholar] [CrossRef]
- Slamet, W.; Purbajanti, E.D.; Darmawati, A.; Fuskhah, E. Leaf Area Index, Chlorophyll, Photosynthesis Rate of Lettuce (Lactuca sativa L.) under N-Organic Fertilizer. Indian J. Agric. Res. 2017, 51, 221–232. [Google Scholar] [CrossRef]
- Viacava, G.E.; Gonzalez-Aguilar, G.; Roura, S.I. Determination of Phytochemicals and Antioxidant Activity in Butterhead Lettuce Related to Leaf Age and Position. J. Food Biochem. 2014, 38, 352–362. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Vo, K.T.K.; Bui, L.T.T.; Hua, H.H.; Oko, G.E. Gries—Ilosvay Spectrophotometry for Determination of Nitrite in Water and Vegetables in Vietnam. Asian J. Chem. Sci. 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Zavattaro, L.; Assandri, D.; Grignani, C. Achieving Legislation Requirements with Different Nitrogen Fertilization Strategies: Results from a Long Term Experiment. Eur. J. Agron. 2016, 77, 199–208. [Google Scholar] [CrossRef]
- ISO 14189:2013; Water Quality—Enumeration of Clostridium Perfringens—Method Using Membrane Filtration. The International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. The International Organization for Standardization: Geneva, Switzerland, 2017.
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Pagliarini, E.; Gaggìa, F.; Quartieri, M.; Toselli, M.; Di Gioia, D. Yield and Nutraceutical Value of Lettuce and Basil Improved by a Microbial Inoculum in Greenhouse Experiments. Plants 2023, 12, 1700. [Google Scholar] [CrossRef] [PubMed]
- Angelina, E.; Papatheodorou, E.M.; Demirtzoglou, T.; Monokrousos, N. Effects of Bacillus Subtilis and Pseudomonas Fluorescens Inoculation on Attributes of the Lettuce (Lactuca sativa L.) Soil Rhizosphere Microbial Community: The Role of the Management System. Agronomy 2020, 10, 1428. [Google Scholar] [CrossRef]
- Aguilar-Paredes, A.; Valdés, G.; Araneda, N.; Valdebenito, E.; Hansen, F.; Nuti, M. Microbial Community in the Composting Process and Its Positive Impact on the Soil Biota in Sustainable Agriculture. Agronomy 2023, 13, 542. [Google Scholar] [CrossRef]
- Cacace, C.; Cocozza, C.; Traversa, A.; Coda, R.; Rizzello, C.G.; Pontonio, E.; De Mastro, F.; Brunetti, G.; Verni, M. Potential of Native and Bioprocessed Brewers’ Spent Grains as Organic Soil Amendments. Front. Sustain. Food Syst. 2022, 6, 1010890. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol Yeasts: Mechanisms and Applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Chang, Y.; Tao, Y.; Zhang, H.; Lin, Y.; Deng, J.; Ma, T.; Ding, G.; Wei, Y.; Li, J. Insight into the Dynamic Microbial Community and Core Bacteria in Composting from Different Sources by Advanced Bioinformatics Methods. Environ. Sci. Pollut. Res. 2022, 30, 8956–8966. [Google Scholar] [CrossRef] [PubMed]
- Sah, S.; Krishnani, S.; Singh, R. Pseudomonas Mediated Nutritional and Growth Promotional Activities for Sustainable Food Security. Curr. Res. Microb. Sci. 2021, 2, 100084. [Google Scholar] [CrossRef]
Parameter | Unit | Treatments | F-Value | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
COM | COM+ | CF | P6 | P6+ | TEST | ||||
Diameter | (cm) | 28 a ± 0.85 | 27 a ± 0.85 | 27 a ± 0.63 | 26 a ± 0.50 | 27 a ± 0.75 | 22 b ± 0.00 | 34.53 | 0.000 |
MC-100 | 12.2 a ± 2.45 | 10.6 a ± 2.69 | 10.1 a ± 1.84 | 11.0 a ± 2.59 | 9.8 a ± 1.28 | 10.9 a ± 0.85 | 0.66 | 0.66 | |
BBCH | 49 a ± 0.00 | 48 ab ± 0.50 | 48 ab ± 0.82 | 47 b ± 0.58 | 48 b ± 0.58 | 44 c ± 0.00 | 39.75 | 0.000 | |
Fresh weight | (g plant−1) | 461.8 a ± 67.4 | 331.1 ab ± 61.9 | 311.9 b ± 48.2 | 273.5 bc ± 26.4 | 264.0 bc ± 50.0 | 155.3 c ± 42.0 | 11.78 | 0.000 |
Leaf | (number) | 29 a ± 2.65 | 26 ab ± 0.00 | 28 ab ± 0.58 | 26 ab ± 1.15 | 25 b ± 0.96 | 22 c ± 1.15 | 11.59 | 0.000 |
Dry matter | (% g plant−1) | 0.06 b ± 0.01 | 0.08 ab ± 0.01 | 0.07 ab ± 0.01 | 0.07 ab ± 0.01 | 0.08 ab ± 0.00 | 0.08 a ± 0.01 | 3.85 | 0.02 |
LAI | (cm2) | 630 a ± 32.2 | 551 ab ± 33.6 | 607 ab ± 50.7 | 523 b ± 13.1 | 567 ab ± 33.0 | 418 c ± 7.1 | 16.65 | 0.000 |
Parameter | Unit | Treatments | F-Value | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
COM | COM+ | CF | P6 | P6+ | TEST | ||||
Chl. A | (mg g−1) | 0.61 ab ± 0.09 | 0.56 ab ± 0.14 | 0.56 ab ± 0.07 | 0.89 a ± 0.07 | 0.55 ab ± 0.16 | 0.46 b ± 0.22 | 3.64 | 0.03 |
Chl. B | (mg g−1) | 0.24 a ± 0.07 | 0.19 a ± 0.05 | 0.19 a ± 0.03 | 0.28 a ± 0.09 | 0.15 a ± 0.09 | 0.21 a ± 0.11 | 1.27 | 0.32 |
Caroten. | (mg g−1) | 43.2 ab ± 12.4 | 27.0 b ± 8.9 | 30.5 ab ± 6.7 | 49.9 a ± 3.9 | 33.5 ab ± 8.1 | 21.9 b ± 8.3 | 4.87 | 0.008 |
Phenolic | (µg g−1 FW) | 242.1 a ± 18.2 | 247.5 a ± 38.4 | 249.3 a ± 32.9 | 209.6 a ± 23.6 | 262.0 a ± 33.7 | 199.8 a ± 47.9 | 2.02 | 0.13 |
NO3 | (mg kg−1 FW) | 22.9 a ± 6.2 | 25.2 a ± 4.3 | 24.3 a ± 4.3 | 18.2 a ± 7.7 | 21.5 a ± 5.6 | 27.1 a ± 2.8 | 1.31 | 0.31 |
°Brix | 4.00 bc ± 0.44 | 6.50 a ± 0.68 | 5.06 b ± 0.25 | 3.33 cd ± 0.33 | 3.42 c ± 0.62 | 2.17 d ± 0.30 | 37.54 | 0.000 | |
N | (% DM) | 1.66 a ± 0.13 | 1.62 a ± 0.26 | 1.96 a ± 0.14 | 1.73 a ± 0.25 | 1.88 a ± 0.16 | 1.58 a ± 0.24 | 2.32 | 0.09 |
C | (% DM) | 39.4 ab ± 0.16 | 39.6 a ± 0.50 | 38.9 ab ± 0.11 | 39.2 ab ± 0.32 | 39.2 ab ± 0.24 | 38.6 b ± 0.28 | 4.50 | 0.009 |
P | (% DM) | 0.32 a ± 0.02 | 0.30 a ± 0.02 | 0.32 a ± 0.02 | 0.31 a ± 0.02 | 0.32 a ± 0.01 | 0.31 a ± 0.01 | 1.06 | 0.41 |
K | (% DM) | 2.49 b ± 0.13 | 1.97 c ± 0.11 | 3.27 a ± 0.25 | 3.44 a ± 0.14 | 3.51 a ± 0.20 | 3.36 a ± 0.38 | 35.25 | 0.000 |
R/F | 0.49 a ± 0.07 | 0.45 a ± 0.12 | 0.53 a ± 0.10 | 0.44 a ± 0.19 | 0.46 a ± 0.08 | 0.35 | 0.84 | ||
AR | 0.23 a ± 0.06 | 0.20 a ± 0.05 | 0.27 a ± 0.06 | 0.18 a ± 0.12 | 0.20 a ± 0.15 | 0.54 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assandri, D.; Bianco, A.; Pampuro, N.; Cavallo, E.; Zara, G.; Bardi, L.; Coronas, R.; Budroni, M. Enhancing Fertilizer Effect of Bioprocessed Brewers’ Spent Grain by Microbial Consortium Addition. Agronomy 2023, 13, 2654. https://doi.org/10.3390/agronomy13102654
Assandri D, Bianco A, Pampuro N, Cavallo E, Zara G, Bardi L, Coronas R, Budroni M. Enhancing Fertilizer Effect of Bioprocessed Brewers’ Spent Grain by Microbial Consortium Addition. Agronomy. 2023; 13(10):2654. https://doi.org/10.3390/agronomy13102654
Chicago/Turabian StyleAssandri, Davide, Angela Bianco, Niccolò Pampuro, Eugenio Cavallo, Giacomo Zara, Laura Bardi, Roberta Coronas, and Marilena Budroni. 2023. "Enhancing Fertilizer Effect of Bioprocessed Brewers’ Spent Grain by Microbial Consortium Addition" Agronomy 13, no. 10: 2654. https://doi.org/10.3390/agronomy13102654
APA StyleAssandri, D., Bianco, A., Pampuro, N., Cavallo, E., Zara, G., Bardi, L., Coronas, R., & Budroni, M. (2023). Enhancing Fertilizer Effect of Bioprocessed Brewers’ Spent Grain by Microbial Consortium Addition. Agronomy, 13(10), 2654. https://doi.org/10.3390/agronomy13102654