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Abstract: In complex citrus orchard environments, light changes, branch shading, and fruit overlap-
ping impact citrus detection accuracy. This paper proposes the citrus detection model YOLO-DCA
in complex environments based on the YOLOv7-tiny model. We used depth-separable convolution
(DWConv) to replace the ordinary convolution in ELAN, which reduces the number of parameters
of the model; we embedded coordinate attention (CA) into the convolution to make it a coordinate
attention convolution (CAConv) to replace the ordinary convolution of the neck network convolution;
and we used a dynamic detection head to replace the original detection head. We trained and
evaluated the test model using a homemade citrus dataset. The model size is 4.5 MB, the number of
parameters is 2.1 M, mAP is 96.98%, and the detection time of a single image is 5.9 ms, which is higher
than in similar models. In the application test, it has a better detection effect on citrus in occlusion,
light transformation, and motion change scenes. The model has the advantages of high detection
accuracy, small model space occupation, easy application deployment, and strong robustness, which
can help citrus-picking robots and improve their intelligence level.

Keywords: computer vision; deep learning; attention mechanism; citrus detection; YOLOv7-tiny

1. Introduction

Citrus is one of the most critical global cash crops and one of the most productive
fruit categories in the world. In South China, citrus is the fruit tree with the most exten-
sive cultivation area and the most critical economic status [1]. In 2022, the national citrus
production amounted to 6.0389 million tons [2]. However, due to the complex environ-
ment of citrus picking, picking still mainly relies on manual operation, which is the most
significant labor input in the fruit production process, accounting for 50% to 70% of the
overall workload [3]. To solve this problem, in recent years, the development of intelligent
agriculture has promoted the research of fruit-picking robots [4]. The vision system is one
of the critical components of picking robots [5], and how to accurately identify and detect
citrus fruits in complex environments will directly affect the accuracy and efficiency of the
determining robots [6].

Traditional image techniques for fruit detection usually require manual feature ex-
traction, mainly through features such as color [7], shape [8], and texture [9], and feature
extraction is highly dependent on the researcher’s experience. In addition, the detection
accuracy is low, and the real-time generalization ability is poor in the case of changing
lighting conditions, the presence of occlusion of the fruit [10], the similarity of the fruit
and the background color [11,12], and even weather and environmental changes. In addi-
tion, the detection and classification of citrus fruits can also be performed using infrared
imaging and multispectral imaging techniques [13–17], but the equipment cost is high and
requires expertise.
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With the development of deep learning in recent years, deep convolutional neural net-
work (CNN) has become a mainstream algorithm for fruit target detection due to its strong
robustness and generalization ability [18]. It has been studied by many scholars [19–22].
CNN-based target detection algorithms can be divided into two stages and one stage.
The two-stage detection algorithm first generates candidate regions that may contain the
target through several strategies, and these candidate regions are then passed through
a convolutional neural network to classify samples to determine if they contain the target
object [23]. The representative algorithms are Fast R-CNN [24] and Faster R-CNN [25].
Using Faster R-CNN, Xiong et al. [26] conducted experiments on green mandarin oranges in
the natural environment, which were divided into different light, size, and numbers to carry
out, and the average detection accuracies were 77.45%, 73.53%, and 82.58%, respectively.
Juntao et al. [27] used the Faster R-CNN model to detect green mandarin oranges on the
tree, and the average of the test set accuracy (mAP) was 85.49%. The average computation
time for seeing a single image was 0.4 s. However, the two-stage detection algorithm suffers
from higher complexity and slower detection speed.

The one-stage detection algorithm directly predicts the category probability and
location of the output target, which reduces the complexity while increasing the detection
speed and thus receives more attention [28]. The representative algorithms are SSD [29]
and the YOLO series [30–36]. Li et al. [37] proposed a citrus detection algorithm based on
improved SSD, with an average accuracy of 87.89%. However, the dataset of the paper
was derived from the laboratory and differed from the natural environment. Lv et al. [38]
proposed a citrus recognition method based on improved YOLOv3-LITE with an average
precision (AP) value of 92.75%. However, the model occupies a large amount of memory,
which could not be more conducive to practical deployment. Mirhaji [39] et al. used
YOLOv4 for detecting and counting oranges in an orchard, with an accuracy, recall, F1,
and mAP of 91.23%, 92.8%, 92%, and 90.8%, respectively. However, the method needs
to improve its average precision. Chen et al. [40] used the improved YOLOv4 citrus
detection algorithm and pruned the trained model with an average accuracy of 96.04%.
Zheng et al. [41] pruned the backbone of YOLOv4 and removed the redundant portion of
the neck network to propose the YOLO BP green citrus detection algorithm with an average
precision of 91.55%. Huo et al. [42] used “Shantanju” citrus collected from Conghua,
Guangzhou, and improved the YOLOv5s algorithm to detect and locate mature citrus.
The recall rates under uneven, weak, and good lighting were 99.55%, 98.47%, and 98.48,
respectively. The average detection time per frame was 78.96 ms. However, the detection
speed of this method needs to be improved. Xinyang et al. [43] improved YOLOv5s by
introducing ShuffleNetV2, SimAM attention, and Alpha-IoU using images taken from
Foshan citrus orchards in Guangdong Province, as well as pictures acquired from the
web, and proposed the YOLO-DoC citrus detection method, with a p value and a mAP
value of 98.8% and 99.1%, respectively, and an FPS of 187. However, the model’s training
samples need to be increased. In a study by Liu et al. [44], by using CA attention, replacing
PAFPN with BiFPN, and using the zoom loss function, YOLOv5 was improved to detect
four varieties of citrus collected from Lingui City, Guilin, Guangxi, namely, “Kumquat”,
“Nanfeng tangerine”, “Fertile tangerine”, and “Shatang tangerine”. “Fertile tangerine” and
“Shatang tangerine” were collected from Lingui City, Guilin, Guangxi Province, and the
mAP was 98.4% and 98.4%, and the detection time for a single image was 19 ms. However,
the number of parameters for this model is large. The above research method supports the
application of CNN on citrus detection and provides a reference for designing subsequent
algorithms. However, the current citrus detection algorithms need more research on citrus
detection work in complex environments. Table 1 provides the citrus variety, dataset sizes,
models used, and experimental results for some references.

Firstly, citrus-picking robots face different fruit sizes, random distribution, fruit over-
lapping, and branch and leaf shading when picking citrus grown in natural environments.
Secondly, the light intensity and angle of light in the natural environment vary randomly,
which significantly impacts the image quality. Thirdly, the picking robot will cause blurring
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of the image due to the varying movement speed when the material is outdoors. Finally,
when using models trained by deep convolutional neural networks, they tend to require
more significant memory, which could be more conducive to deploying edge devices.

Table 1. Some reference datasets, models, and results.

Authors Citrus Variety Number
of Images Image Size Main

Model
mAP0.5

(%)
FPS

(GPU)
Params

(M) MS (MB)

Li et al. [37] 2500 768 × 768 SSD 87.89 49.33 / /
Lv et al. [38] Citrus 620 416 × 416 YOLOv3 91.13 59.17 / 28.00

Mirhaji [39]
et al.

IranDezful’s
orange 766

3000 × 4000
and

2592 × 3872
YOLOv4 90.80 42.37 / /

Chen et al. [40]
Kumquats,
Nanfeng

tangerines
1750 512 × 424 YOLOv4 96.04 16.67 / 187.00

Zheng et al. [41]
emperor citrus
and tangerine

citrus
890

4496 × 3000
and

2592 × 1944
and

3042 × 4032

YOLOv4 91.55 18.00 / /

Huo et al. [42] Shantanju 4855 1920 × 1080 YOLOv5s / 12.66 / /
Xinyang
et al. [43] Citrus 1435 640 × 480 YOLOv5s 99.10 187.00 / 2.80

Liu et al. [44]

Kumquat,
Nanfeng

tangerine, Fertile
tangerine, and

Shatang tangerine

1500 1280 × 720 YOLOv5l 98.40 52.63 50.90 /

This paper proposes a lightweight citrus detection model based on YOLOv7-tiny for
recognizing ripe fruits in a complex citrus orchard environment. By comparing different
light backbone networks, the use of depth separable convolution (DWConv) to replace the
regular convolution in an efficient layer aggregation network (ELAN) to reduce the number
of parameters in the model is finally determined. In the neck network, the coordinate
attention mechanism (CA) is combined with ordinary convolution to form CAConv, which
is experimentally shown to improve the feature extraction ability of the model. In the detec-
tion part, the Dynamic Head is used instead of the ordinary detection head to improve the
model’s ability to detect citrus fruits at different scales based on fusing multi-layer features.

The lightweight citrus detection model proposed in this paper can provide vision
algorithm support for the picking robot and improve the robot’s environmental adaptability.
Meanwhile, this model’s small memory and low computation make it easy to deploy on
the robot. In addition, the method proposed in this paper achieves fast real-time detection
of citrus.

2. Materials and Methods
2.1. Data Acquisition

We collected image data of a ripe mandarin citrus named “Yongxing Bingtang Citrus”
in the citrus plantation in Yongxing County, Hunan Province. We used the Mi10Ultra
(Xiaomi Technology Co., Ltd., Beijing, China) as the acquisition equipment, and the acquired
images had a size of 4000 × 3000 pixels. The collected data comprised citrus images taken
at different times of the day under various lighting conditions, sizes of citrus trees, and
angles. The distance between the capture device and the citrus ranged from 0.3 m to
2 m. We aligned the images with citrus grown in its natural environment, which included
front-light, Dark-light, overlap, and occlusion. After processing, we obtained 1908 images
with precise target contours and textures. Figure 1 shows examples of a citrus orchard



Agronomy 2023, 13, 2667 4 of 23

in a natural environment with lush foliage and more occluded fruits, creating a complex
picking scene.
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Figure 1. Collected citrus images from an orchard, including (a) a side-lit citrus, (b) occluded citrus,
and (c) a dark-lit citrus.

2.2. Dataset Construction

From the above dataset, 120 samples targeting citrus with less than 30% surface
shading were selected as mild shading test set A. Part of test set A is shown in Figure 2.
In addition, 120 citrus targets targeting citrus with more than 30% surface shading and
relatively dense fruit distribution were used as severe shading test set B. Part of test set
B is shown in Figure 3. The original complete test set is A + B with 240 images. Then,
1500 pictures were randomly selected from the remaining authentic images as the training
set and 168 as the validation set.
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In the actual data collection, it is difficult to cover all application scenarios, so to
enhance the model’s robustness, improve the model’s generalization ability, and reduce
the risk of overfitting the model, a data augmentation strategy was introduced to expand
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the dataset. The augmentation techniques used are random brightness variation, −90◦ to
90◦ random flip, Gaussian noise, motion blur, random erasure, and Mosaic. The data
augmentation diagram is shown in Figure 4.
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Figure 4. Citrus data augmentation images, (a) original image, (b) random luminance, (c) random
90◦ flip, (d) Gaussian noise, (e) motion blur, (f) random erasure, and (g) Mosaic.

Targets in the images were manually labeled using the open-source annotation tool
LabelImg [45]. When labeling, the rectangular box fits the citrus contour. For targets
occluded by leaves, branches, and other fruits, the approximate outline of the target was
labeled according to manual experience. Meanwhile, when the citrus surface area is
occluded after more than 80% or the citrus is in the distant background, in principle, the
target fruit is not labeled, and the label of the target fruit is named “citrus.” The labeled data
were saved, XML tag files corresponding to images were generated, and Python scripts
were written to convert the XML tag files into txt tag files that the YOLO model could
recognize. The annotation is shown in Figure 5.
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2.3. Citrus Detection Model YOLO-DCA
2.3.1. Network Architecture

According to the different network depths and widths, YOLOv7 can be divided into
seven versions: YOLOv7-tiny, YOLOv7, YOLOv7-X, YOLOv7-W6, YOLOv7-E6, YOLOv7-
D6, and YOLOv7E6E. To deploy this model on embedded devices, YOLOv7-tiny was
selected as the baseline model in this paper based on the lightweight consideration and the
need for accuracy.

YOLOv7 is a single-stage target detection algorithm based on ANCHOR, according
to which the YOLOv7-tiny algorithm is streamlined from YOLOv7, retains the composite
model scaling method, and uses efficient layer aggregation networks (ELAN) [46] instead
of extended efficient layer aggregation networks (E-ELAN), which guarantees the accuracy
with a faster number of model parameters and detection speed. This makes it very suitable
for the real-time demand of citrus detection and easy to deploy for embedded devices;
therefore, in this paper, we choose to improve on YOLOv7-tiny. YOLOv7-tiny consists of
three parts: backbone, neck, and head, as shown in Figure 6.
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Backbone: This mainly consists of CBL, ELAN, MP, and SPPCSPC modules. ELAN
mainly consists of VoVNet [47] and CSPNet [48], which solves the problem that the model
is difficult to converge during training after scaling and optimizes the gradient length of the
whole network. Using SPPCSPC, which is an improvement from SPP (spatial pyramid and
pooling) [49], the model achieves feature map fusion of local and global features. It enriches
the expressive ability of feature maps and aggregates the feature gradient information,
resulting in a reduction of parameters while maintaining faster performance.

Neck: This uses the same path-aggregated feature pyramid (PAFPN) architecture
as YOLOv5, combines FPN [50] with PANet [51], a top-down fusion of low-resolution
high-semantic information feature maps and high-resolution low-semantic information
feature maps, and, at the same time, obtains localization information along the top-down
path enhancement.

Head: This uses the feature maps of different scales generated by the Neck part, after
three ordinary convolutions, three branches are output to output feature maps of 80 × 80,
40 × 40, and 20 × 20 sizes to detect large, medium, and small targets, respectively, and
obtain the final prediction results.

Although YOLOv7-tiny has been streamlined compared to YOLOv7, it still needs
many parameters and a complex model. To facilitate the deployment of the model on
robot-embedded devices, we propose several modifications to lighten the YOLOv7-tiny
network despite its streamlining compared to YOLOv7. Specifically, we replaced the ELAN
module in the original YOLOv7-tiny with a lightweight ELAN-DW module, combined the
lightweight attention mechanism CA with the CBL module to replace the original CBL
module, and replaced the original detector head with the Dynamic Head, which is adapted
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to detect targets of different scales by accommodating changes in scale features. The
resulting improved YOLOv7-tiny model, named YOLO-DCA, has an enhanced network
structure diagram as shown in Figure 7.
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2.3.2. Lightweight ELAN Module

ELAN can aggregate multiple features better due to its excellent feature aggregation
structure. However, even after YOLOv7-tiny has simplified the original E-ELAN, there
is still room for simplification. In order to satisfy the purpose of lightweight, this study
uses Depthwise Separable Convolution (DWConv) to replace the ordinary convolution in
ELAN, which first appeared in MobileNetV1 and reduces the number of parameters in
convolution calculation by splitting the spatial dimension and channel dimension while
maintaining the accuracy of the model.

DWConv first uses channel-by-channel convolution (Depthwise Convolution) to split
the input N × H ×W feature map into N 1 × H ×W feature maps, and a convolution
kernel is only responsible for calculating the feature maps of one channel, which produces
feature maps with the same number of channels as the input channels. Afterward, point-
by-point convolution (Pointwise Convolution) is used, which operates in the same way
as ordinary convolution, with a convolution kernel size of 1 × 1 × N, with N being the
number of channels in the previous layer, after which a weighted summation is performed
in the channel dimensions to generate a new feature map, as shown in Figure 8. The
replaced ELAN module is shown in Figure 9.

2.3.3. CAConv

In deep learning, the more popular attention mechanisms are SE (squeeze-and-
excitation network) [52], CBAM (convolutional block attention module) [53], and BAM
(bottleneck attention module) [54]. SE only considers the information between encoding
channels, ignoring the importance of positional information to the visual task; CBAM
and CBM, although they enhance the capture of positional information, cannot effectively
capture the information of distant dependencies of the feature map because convolution
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only focuses on local information. Coordinate attention (CA) [55], a coordinate atten-
tion mechanism, captures spatial information while preserving positional information.
Unlike channel attention, which converts the feature tensor into individual feature vec-
tors through 2D global pooling, coordinate attention decomposes the channel attention
into two one-dimensional feature encoding processes, which aggregate features along
two spatial directions, respectively.
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CA attention consists of two parts: coordinate information embedding and coordinate
attention generation. The coordinate information embedding phase encodes each channel
along the horizontal and vertical coordinates for a given input X using pooled kernels of (H,
1) and (1, W), respectively, after which features are aggregated along the spatial directions
to produce a pair of direction-aware feature maps. The coordinate attention generation
phase uses the two feature maps generated by coordinate embedding, then splice, and uses
the 1 × 1 convolution to compress the channel dimensions. The horizontal and vertical
direction information is then encoded using BatchNorm and ReLU activation, after which,
along the spatial dimension, the feature maps split again, and the 1 × 1 convolution is used
to generate the feature maps with the same number of channels as the input X. Finally, they
are normalized, weighted, and fused by Sigmoid. Afterward, the output is combined as
input to the ordinary convolution to complete the injection of coordinate attention, making
it a coordinate attention convolution (CAConv). The CAConv is shown in Figure 10.

2.3.4. Dynamic Detection Head

The complexity of classification and localization in target detection tasks requires
that the target detection head adapts to features at different scales to detect targets at
different scales. Dynamic Head, proposed by Dai et al. [56], enables the target detection
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head to be scale-aware, spatial-aware, and task-aware by combining the attention mecha-
nisms between feature hierarchies, spatial locations, and output channels to improve the
model performance.
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Before using Dynamic Head, it is necessary to use Feature Pyramid (FPN) to adjust the
output features to the same scale to form a 3D tensor F ∈ RL×S×C, which uses them as the
input of Dynamic Head, and afterward stacks several DyHead blocks sequentially. Among
them, the DyHead module consists of three parts: the scale-aware module, the spatial-
aware module, and the task-aware attention module. The structure is shown in Figure 11.
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The scale-aware attention module dynamically fuses features at different scales ac-
cording to semantic importance. The spatial-aware attention module uses deformable
convolution to sparsify the attention, followed by cross-level feature fusion at different
locations in the same space for regions with similar target features. The task-aware attention
module reduces feature dimensionality through average pooling, followed by dynamic
switching of ON and OFF feature channels using two fully connected layers and a nor-
malization function to achieve joint learning and generalization of objects and, finally,
task-aware attention.

2.4. Experimental Platform and Parameters

We performed all experiments on a platform with the following specifications: CPU:
Intel(R) Xeon(R) Platinum 8358P, RAM: 30 GB, GPU: RTX A5000 with 24 GB memory,
the Ubuntu version 20.04 operating system, CUDA version 11.3, Python version 3.8, and
PyTorch version 1.10. Furthermore, we conducted subsequent comparative experiments on
the same platform. For repeating this experiment, this paper recommends using a TITAN
Xp and the above graphics card with 6 GB of graphics memory, CUDA version 11.0 and
above, and a PyTorch version no less than 1.70.
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We set the initial learning rate to 0.01 during training and adjusted the learning rate
using cosine annealing decay. We implemented the learning rate preheating strategy for
the first three epochs. We utilized the SGD optimizer with a momentum parameter of 0.937
and weight decay of 0.0005 to optimize the network. We trained the model for 300 epochs
using a batch size of 64 for the dataset.

2.5. Evaluation Metrics

In order to comprehensively evaluate the performance of the model in this paper,
precision (P), recall (R), mean average precision (mAP), number of network parameters
(Params), model size (MB), gig floating point operations per second (GFLOPs), and de-
tection speed (FPS) are used as evaluation metrics in this paper. P, R, FPS, and mAP are
defined as follows:

P =
Tp

Tp + Fp
× 100% (1)

R =
Tp

Tp + Fn
× 100% (2)

FPS =
1
T

(3)

AP =
∫ 1

0
P(R)dR× 100% (4)

mAP =
∑ AP

N
× 100% (5)

where Tp is the number of citrus fruits correctly predicted by the model, Fp is the number
of citrus fruits incorrectly predicted by the model, and Fn is the number of citrus fruits
omitted to be predicted by the model. P is the proportion of citrus fruits correctly predicted
by the model, and R is the proportion of citrus fruits correctly predicted by the model to
the total number of citrus fruits. T is the time required by the model to detect a single
image. n is the number of detection categories. Since there is only one citrus in this paper,
N = 1. AP is the area under the P and R curves. mAP is the average AP value of all citrus
categories in the dataset, and in this paper, AP is equal to mAP. Model weights are the
magnitude of the weights after the model is trained. Model parameter refers to the number
of parameters of the model. GFLOPs refer to gigaflops floating point operations per second,
which are used to evaluate the computational complexity of the network. Detection speed
refers to the number of images detected by the model per second and is used to assess the
real-time detection performance of the model. The accuracy mentioned in this paper refers
to mAP0.5.

3. Results and Analysis
3.1. Ablation Experiments

In order to verify the improvement of the model by each module, we conducted
experiments on the YOLOv7-tiny network. We replaced the convolution of the backbone
network with DWConv, inserted CA in the neck network, and replaced the original detec-
tion head with Dynamic Head. Subsequently, we analyzed and evaluated the experimental
results presented in Table 2. Part of the ablation experimental metrics curves are shown
in Figure 12.

According to the experimental results, by replacing the ordinary convolution with
DWConv, the number of model parameters is reduced by 91.01%, and mAP is reduced by
1.95% compared to the original model. When adding CA to YOLOv7-tiny, the parameters
increased by 0.03 M and mAP improved by 1.78%. Similarly, when adding the Dynamic
Head in YOLOv7-tiny instead of the original detection head, the parameters increased by
0.04 M and mAP increased by 1.92%. When adding CA to DWConv, mAP increased by
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1.85%, and the parameter count decreased by 3.77 M. After using CA and Dynamic Head,
mAP increased by 2.41%, and the number of parameters increased by 0.07 M. When using
Dynamic Head after DWConv, mAP increased by 0.61%. The parameter count decreased
by 3.90 M. When using all three structures simultaneously, mAP improved by 2.09%, and
the parameter count decreased by 3.73 M, providing an even more significant overall
performance improvement over the original YOLOv7-tiny.

Table 2. YOLO-DCA ablation experiment. Where ×means this part is not used,
√

means this part
is used.

DWConv CAConv Dynamic Head mAP0.5 (%) Params (M) GFLOPs

× × × 94.79 6.01 13.2√
× × 92.84 0.54 1.5

×
√

× 96.57 6.04 13.2
× ×

√
96.71 6.05 12.5√

×
√

95.40 2.11 4.3
×

√ √
97.20 6.08 12.6√ √

× 96.64 2.24 8.0√ √ √
96.98 2.28 6.7
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3.2. Comparison of Lightweight BackBone Networks

In order to compare the effectiveness of the lightweight of this model, a commonly used
lightweight network is selected as the backbone network of YOLOv7-tiny, and comparative
experiments are conducted in this paper. The experimental results are shown in Table 3.
Part of the lightweight backbone experimental metrics curve is shown in Figure 13.

Table 3. Comparison of lightweight networks.

BackBone P (%) R (%) mAP0.5 (%) Params (M) GFLOPs

MobileNetv2 93.05 88.16 95.66 4.7 10.3
MobileNetv3 92.49 88.06 94.44 3.43 8.8

GhostNet 91.20 87.97 95.08 4.23 8.6
ShuffleNetv2 93.55 89.76 96.65 5.51 10.6

Original 91.05 90.55 95.02 6.01 13.2
Improve 94.12 91.55 96.38 1.53 4.0

According to the experimental results, when using MobileNetv2, MobileNetv3, Ghost-
Net, ShuffleNetv2, and the improved backbone network in this paper as the backbone
network of YOLOv7-tiny, the number of parameters and the number of floating-point oper-
ations (GFLOPs) are reduced to different degrees compared with the original YOLOv7-tiny.
Among them, the backbone network that was improved with the DW-CA structure has
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the most significant reduction, with a 74.5% reduction in parameter quantity and a 69.7%
reduction in GFLOPs compared to the original model. The proposed network outperforms
the other compared models regarding precision and recall and is only 0.27% lower than
the best ShuffleNetv2 on mAP0.5. It can be attributed to the CA module’s ability to fuse
features across locations and channels. However, when other parametric metrics are con-
sidered together, this slight decrease in average accuracy has an almost negligible effect on
YOLOv7-DCA.
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3.3. Attention Detection Head Comparison

Embedding an attention mechanism into the detection head part of a target detection
model is a commonly used technique that can help the model’s detection effectiveness. In
this paper, we select the commonly used attention mechanisms, SE, CBAM, and ECA, and
insert them into the detection head to verify the effectiveness of Dynamic Head (Dynamic
Head) in this model; the experimental results are shown in Table 4. The attention module
mAP0.5 metric curve is shown in Figure 14.

Table 4. Attention detection head comparison.

Model Attetion Module P (%) R (%) mAP0.5 (%) Params (M) GFLOPs

YOLOv7-tiny

SE 93.75 91.02 96.53 6.02 13.3
CBAM 93.08 91.09 96.39 6.01 13.2
ECA 92.53 90.46 96.32 6.01 13.2

Dynamic Head 93.86 90.56 96.71 6.05 12.5
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Table 4 shows that the Dynamic Head performs better than other attention detection
heads, indicating a more vital generalization ability, robustness, and detection effect. At the
same time, the number of parameters added by Dynamic Head is relatively tiny compared
to other attention mechanisms, which has little impact on the complexity of the model.

3.4. Comparison of Occluded Object Recognition

In citrus orchards in natural environments, it is often the case that fruits overlap each
other, and leaves, branches, and weeds obscure fruits. Losing the contour information
of the fruit parts increases the difficulty of fruit detection. When the occlusion becomes
severe, the fruit contour information is more lost, and the size information of the occluded
part after the feature pyramid transfer becomes less and less, making it difficult to detect.
Therefore, the model’s accuracy in detecting citrus with different levels of occlusion must
be analyzed. We selected slightly occluded test set A and severely occluded test set B as
the test experimental datasets, and the detection results of the Faster R-CNN, YOLOv3,
YOLOv4, YOLOv5s, YOLOX-s, YOLOv6s, and YOLOv7 models are shown in Table 5.

Table 5. Comparison of occlusion experiments with different models.

Model Test Set P (%) R (%) mAP (%)

Faster R-CNN
A 98.22 97.97 97.02
B 70.21 70.11 70.48

YOLOv3
A 96.88 97.97 98.30
B 64.64 64.00 84.80

YOLOv4
A 99.50 99.92 99.50
B 93.30 86.10 86.60

YOLOX-s
A 98.54 99.54 98.10
B 78.78 78.52 84.20

YOLOv5s
A 97.90 99.60 99.50
B 94.80 83.00 90.30

YOLOv6s
A 99.10 98.70 99.50
B 91.40 78.10 88.40

YOLOv7-tiny A 99.60 98.70 99.20
B 91.40 80.60 80.10

YOLOv7
A 99.60 99.93 99.90
B 97.20 87.20 87.50

YOLO-DCA
A 99.60 99.95 99.95
B 94.70 88.70 89.20

The experimental results show that YOLO-DCA performs the best among all the
compared models in the slight occlusion scenario. Under a severe occlusion scenario,
YOLOv7 has the highest p value; it is 2.5% higher than YOLO-DCA. However, under the R
and mAP metrics, YOLO-DCA performs best at 88.7% and 89.2%, which is 1.5% and 1.7%
higher than YOLOv7, respectively. In summary, compared to other models, YOLO-DCA
performs better in the comprehensive metrics.

Table 5 displays the detection results of the three models on the test sets under different
occlusion degrees. As shown in Figure 15, slight occlusion does not significantly affect
citrus contour and color features, and all models successfully detected the fruit with no
leaks. However, Faster R-CNN experienced issues with repeated detection. As shown
in Figure 16, with the occlusion increased, all models except YOLO-DCA struggled with
recognition difficulties, resulting in leakage, false detection, and repeated detection. There-
fore, YOLO-DCA exhibited superior recognition performance for detecting citrus fruit in
severe occlusion. The statistical results of some detection with different occlusion degrees
are shown in Table 6.
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Figure 15. Example of different models’ detection with slight occlusion. (a) Faster R-CNN;
(b) YOLOv3; (c) YOLOv4; (d) YOLOv5s; (e) YOLOX-s; (f) YOLOv7-tiny; (g) YOLOv7; (h) YOLO-DCA.
We used the green rectangular box to mark duplicate detection errors.
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Figure 16. Example of different models’ detection with several occluded. (a,b) Faster R-CNN;
(c,d) YOLOv3; (e,f) YOLOv4; (g,h) YOLOv5s; (i,j) YOLOX-s; (k,l) YOLOv7-tiny; (m,n) YOLOv7;
(o,p) YOLO-DCA. We used the green rectangular box to mark duplicate detection errors, the cyan oval
box to mark missed detection errors, and the yellow rectangular box to mark false detection errors.
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Table 6. Part of different occlusion degree detection number statistics.

Model Degree of Occlusion Real Nums. Detect Nums. Mean Confidence Score

Faster R-CNN

Slightly

4 5 0.95
YOLOv3 4 4 0.97
YOLOv4 4 4 0.97
YOLOv5s 4 4 0.97
YOLOX-s 4 4 0.90

YOLOv7-tiny 4 4 0.97
YOLOv7 4 4 0.98

YOLO-DCA 4 4 0.97
Faster R-CNN

Several

19 20 0.88
YOLOv3 19 15 0.72
YOLOv4 19 20 0.89
YOLOv5s 19 20 0.90
YOLOX-s 19 20 0.90

YOLOv7-tiny 19 16 0.79
YOLOv7 19 18 0.89

YOLO-DCA 19 19 0.91

3.5. Comparison of Detection under Different Light Conditions

To test the robustness of models in different illumination angles, we selected 30 front-
light, 30 side-light, and 30 dark-light images from the mildly occluded dataset A, severely
blocked dataset B, and the validation set. We then used them as experimental materials.
Table 7 and Figure 17 show the corresponding test results. YOLO-DCA’s comprehensive
performance in front-light and side-light scenarios is slightly lower than that of YOLOv7.
Still, both of them are better than YOLOv7 in dark–light environments. However, the
combined performance of all three models decreases in dark–light situations, affecting the
model’s detection accuracy due to the loss of fruit color and texture features caused by the
lack of light.

Table 7. Comparison of different illumination angle detection.

Illumination Angle Model P (%) R (%) mAP (%)

Front-light
YOLOv7-tiny 94.50 86.70 86.70

YOLOv7 96.80 90.10 90.80
YOLO-DCA 96.10 88.90 89.10

Side-light
YOLOv7-tiny 95.40 87.70 88.40

YOLOv7 96.80 88.90 89.30
YOLO-DCA 96.20 90.10 89.80

Dark-light
YOLOv7-tiny 91.10 78.90 78.50

YOLOv7 94.10 80.20 80.30
YOLO-DCA 93.70 80.80 80.60

Nevertheless, the combined performance of YOLO-DCA is the highest among all
models. It indicates that YOLO-DCA is more adaptable to scenes with complex lighting
and robust to changes in illumination angles. Figure 17 shows that YOLOv7-tiny has
a leakage problem in the front-light background, while citrus presents a clear texture in the
Side-light scene, and there is no leakage of signatures in all models. YOLOv7 has a leakage
problem in the Dark-light background. However, YOLO-DCA had no leakage problems in
the above three scenarios.
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Figure 17. Detection results of different light conditions. Front-light: (a) YOLOv7-tiny;
(b) YOLOv7; (c) YOLO-DCA. Side-light: (d) YOLOv7-tiny; (e) YOLOv7; (f) YOLO-DCA. Dark-
light: (g) YOLOv7-tiny; (h) YOLOv7; (i) YOLO-DCA. We used the cyan oval box to mark missed
detection errors.

3.6. Comparison of Different Blur Detection

To verify the fault tolerance of YOLO-DCA for blurred images, we randomly se-
lected 30 shots from the unenhanced mildly occluded dataset A and the severely occluded
dataset B, totaling 60 images. These images simulate problems in outdoor working environ-
ments, such as dirty lenses, mechanical shake, and ambient light variations. In this paper,
we investigate the lens shake at different motion movement speeds of the picking robot
by applying motion blur operation and setting the blur radius to 11, 31, and 51. Table 8
displays the statistical results; Figure 18 displays the test results.

Table 8. Comparison of different blur detection.

Radius of Blur Model P (%) R (%) mAP (%)

11
YOLOv7-tiny 93.90 75.00 74.60

YOLOv7 97.00 78.20 78.30
YOLO-DCA 97.00 79.00 79.20

31
YOLOv7-tiny 94.90 60.50 59.90

YOLOv7 93.60 58.90 57.90
YOLO-DCA 95.00 61.30 60.90

51
YOLOv7-tiny 76.50 41.90 38.70

YOLOv7 79.10 42.70 39.60
YOLO-DCA 84.40 43.50 41.40
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Figure 18. Detection results for different blur radii. Radius of 11: (a) YOLOv7-tiny; (b) YOLOv7;
(c) YOLO-DCA. Radius of 31: (d) YOLOv7-tiny; (e) YOLOv7; (f) YOLO-DCA. Radius of 51:
(g) YOLOv7-tiny; (h) YOLOv7; (i) YOLO-DCA. We used the cyan oval box to mark missed detection
errors.

The analysis of the experimental data shows that YOLOv7-tiny, YOLOv7, and YOLO-
DCA can accurately detect the target at a blur radius of 11, and YOLOv7 and YOLO-DCA
can also accurately identify some targets at a blur radius of 31. However, in the case of a blur
radius of 51, YOLOv7-tiny and YOLOv7 cannot remember the main target correctly, while
YOLO-DCA can still identify the target accurately. These results show that YOLO-DCA
exhibits strong fault tolerance in the face of blurred images.

3.7. Visual Analysis of Model

Convolutional neural networks can only obtain detection results when dealing with
target detection problems but could not be more interpretable in network processing.
Therefore, this study uses visual activation heatmaps to compare the visualization of
YOLOv7-tiny, YOLOv7, and the improved YOLO-DCA model to visualize the features
extracted after the last convolution for citrus detection. The darker the red region in the
heatmap, the more significant the impact of the location on detection and differentiation.
As shown in Figure 19, the feature extraction ability of YOLO-DCA is generally more
robust than that of the unimproved YOLOv7-tiny as well as YOLOv7 under different
lighting conditions and different disturbing factors. The proposed lightweight citrus target
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detection model YOLO-DCA is more suitable to be deployed to the citrus picking robotic
terminal for citrus recognition.
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Figure 19. Results of different model visualizations: (a) moreover, (b,c) are YOLOv7-tiny;
(d) moreover, (e,f) are YOLOv7; (g) moreover, (h,i) are YOLO-DCA. The darker the color in the
diagram, the more the model focuses on this area.

3.8. Comparison of Different Models

To verify the performance of YOLO-DCA, 16 models of Faster R-CNN, YOLOv3,
YOLOv4, YOLOv5 series, YOLOv6 series, YOLOX-tiny, YOLOX-S, YOLOv7-tiny, YOLOv7,
and YOLO-DCA were selected for comparison. Table 9 shows the results. Part of the metric
curve of the comparison models is shown in Figure 20.

According to the experimental results, YOLO-DCA is second only to YOLOv5n in
terms of GFLOPs, number of parameters, and model size, with an increase of 2.7 GFLOPs,
0.33 M, and 0.8 MB, respectively. Still, it has a better overall performance with a rise of
1.8% and 75.4 FPS in mAP and detection rate, respectively, than YOLOv5n. In addition,
YOLO-DCA is second only to YOLOv7 in terms of mAP, which is only 0.15% lower than
YOLOv7, but the GFLOPS and Params of YOLO-DCA are 93.5% and 94.24% lower than
YOLOv7. Meanwhile, in terms of detection rate, YOLO-DCA has the fastest detection rate
among all compared models, with a detection rate of 169.8 FPS.

This paper also compares recent fruit detection methods using YOLOv7 or YOLOv7-
tiny despite the existence of different factors such as datasets, experimental environments,
hardware equipment, and hyperparameters, which make it impossible to make a fair
comparison between related studies, since this paper uses a similar methodology with
other researchers, and the subjects of the study are more similar. The evaluation metrics
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used are similar. We present a discussion of their research results. Table 10 compares the
relevant performance indicators.

Table 9. Comparison of different mainstream models.

Model mAP0.5 (%) FPS (GPU) GFLOPs Params (M) MS (MB)

Faster R-CNN 85.40 51.60 91.03 41.10 315.00
YOLOv3 92.33 56.30 77.54 61.52 469.80
YOLOv4 94.60 73.20 52.90 24.34 245.90

YOLOv5n 95.18 94.40 4.20 1.77 3.70
YOLOv5s 94.72 153.50 15.90 7.02 13.80
YOLOv5m 94.80 108.70 47.90 20.85 40.30
YOLOv5l 95.10 86.60 107.60 46.11 88.60
YOLOv5x 94.15 58.40 203.80 86.10 165.10

YOLOX-tiny 94.21 59.30 7.570 5.03 58.10
YOLOX-s 91.65 51.10 13.32 8.94 102.90
YOLOv6n 95.70 140.10 11.34 4.63 9.90
YOLOv6s 95.70 123.70 45.17 18.50 38.70
YOLOv6m 95.90 84.10 85.62 34.80 72.50
YOLOv6l 95.90 67.90 150.40 59.54 114.10

YOLOv7-tiny 94.79 163.50 13.20 6.01 11.70
YOLOv7 97.13 101.40 103.20 36.48 71.30

YOLO-DCA 96.98 169.80 6.70 2.10 4.50
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Table 10. Comparison results with other works models.

Authors Crop Number
of Images Image Size Models mAP0.5

(%)
FPS

(GPU)
Params

(M)
MS

(MB)

Ma et al. [57] MinneApple 841 320 × 320 and
410 × 410 YOLOv7-tiny 80.40 101.01 / 5.06

Zhang
et al. [58] Citrus 1640 4864 × 3648 YOLOv7-tiny 90.34 128.83 1.02 3.98

Liu et al. [59] Yellow Peaches 1021 4000 × 3000 YOLOv7 80.40 21.00 / 51.90

Our Yongxing
Bingtang Citrus 1908 640 × 640 YOLOv7-tiny 96.98 169.80 2.10 4.50

The table is incomplete as some data are not in the related literature.
Ma et al. [57] used an improved YOLOv7-tiny to detect small apple targets using the

public dataset MinneApple, and compared to their model, YOLO-DCA has advantages
in mAP, detection speed, number of parameters, and model size. Zhang et al. [58] used
a DJI Phantom 4 RTK quadrotor UAV to collect citrus images from Sihui City, Guangdong
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Province, at an altitude of 50 m above the ground, and improved YOLOv7-tiny for the study.
Compared with their model, YOLO-DCA is 6.64% and 40.97 higher in mAP and detection
speed, respectively, while Params and Model size only increased by 1.08 M and 0.52 MB. Liu
et al. [59] used yellow peach images collected from the yellow peach plantation in Daping
Village, Jinggangshan City, Jiangxi Province, and improved YOLOv7-tiny to conduct the
study. Compared with their model, YOLO-DCA has advantages regarding mAP, detection
speed, and model size. Compared with the above models, YOLO-DCA balances the
detection speed, model parameters, and model size while improving the accuracy.

Combining the above results, YOLO-DCA has better overall performance among all
the compared models, ensures the accuracy of the model while significantly reducing the
number of model parameters and computation, and has a relatively high detection speed,
which makes it more suitable for edge devices, resource-constrained platforms, and the
deployment of mobile applications.

4. Discussion

Although the model proposed in this paper can achieve accurate and fast detection of
citrus, it will still have some limitations. (1) The data type is mature citrus fruits; green and
yellow-green citrus were not studied. (2) The accuracy of partial fruit detection in severe
occlusion is rather average. (3) No practical experiments were conducted by deploying
this model at edge devices. In future research, we will focus on obtaining more pictures
of green and yellow-green citrus, combine them with mature citrus to form a dataset, and
divide them into separate categories to detect the citrus and evaluate the maturity of the
citrus at the same time. Further research will be conducted on multi-source information
fusion methods to improve the accuracy in case of severe occlusion and actual deployment
of the present model to edge devices for experiments.

5. Conclusions

To achieve fast and accurate detection of citrus in complex environments and to deploy
the model in edge devices with limited computational resources, this paper proposes an im-
proved citrus detection model, YOLO-DCA. The proposed model reconstructs an efficient
layer aggregation network module using depth-separable convolution, integrates ordinary
convolution and CA attention, and uses the dynamic detection head. Experimental results
show that YOLO-DCA outperforms the original YOLOv7-tiny. The GFLOPs decreased
from 13.2 G to 6.7 G, and the Params decreased from 6.01 M to 2.27 M, which is a decrease
of 49.24% and 62.23%, respectively. The memory space occupied by the model was also
reduced from 11.7 MB to 4.5 MB, which is a decrease of 61.53%. Meanwhile, the mAP of
YOLO-DCA improved by 2.19% from 94.79% to 96.98%. This indicates that based on multi-
method improvement, YOLO-DCA can detect citrus accurately in complex environments
and devices with limited computational resources.
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