Sustainable Production of Tomato Using Fish Effluents Improved Plant Growth, Yield Components, and Yield in Northern Senegal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Manure Description
2.2. Experimental Design and Treatments
2.3. Soil Sampling and Analysis
2.4. Agronomic Parameters and Economic Indicators
2.5. Statistical Analyses
3. Results and Discussion
3.1. Plant Growth
3.2. Yield Components
3.3. Fruit Weight
3.4. SPAD Values
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Wrachien, D.; Schultz, B.; Goli, M.B. Impacts of population growth and climate change on food production and irrigation and drainage needs: A world-wide view. Irrig. Drain. 2021, 70, 981–995. [Google Scholar] [CrossRef]
- Diatta, A.A.; Min, D.; Jagadish, S.K. Drought stress responses in non-transgenic and transgenic alfalfa—Current status and future research directions. Adv. Agron. 2021, 170, 35–100. [Google Scholar]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Junior, N.V.; Carcedo, A.J.P.; Min, D.; Diatta, A.A.; Araya, A.; Prasad, P.V.; Diallo, A.; Ciampitti, I. Management adaptations for water-limited pearl millet systems in Senegal. Agric. Water Manag. 2023, 278, 108173. [Google Scholar] [CrossRef]
- Kimera, F.; Sewilam, H.; Fouad, W.M.; Suloma, A. Sustainable production of Origanum syriacum L. using fish effluents improved plant growth, yield, and essential oil composition. Heliyon 2021, 7, e06423. [Google Scholar] [CrossRef]
- Cerozi, B.S.; Arlotta, C.G.; Richardson, M.L. Fish Effluent as a Source of Water and Nutrients for Sustainable Urban Agriculture. Agriculture 2022, 12, 1975. [Google Scholar] [CrossRef]
- Robaina, L.; Pirhonen, J.; Mente, E.; Sánchez, J.; Goosen, N. Fish diets in aquaponics. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer: Berlin/Heidelberg, Germany, 2019; pp. 333–352. [Google Scholar]
- Zohry, A.; Hefny, Y.; Ouda, S. Evaluation of different crop sequences and water qualities treatments on orange yield under intercropping conditions in sandy soil. In Proceedings of the 16th International Conference on Crop Science, Cairo, Egypt, 16 October 2020; pp. 315–340. [Google Scholar]
- Mariscal-Lagarda, M.M.; Páez-Osuna, F.; Esquer-Méndez, J.L.; Guerrero-Monroy, I.; del Vivar, A.R.; Félix-Gastelum, R. Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: Management and production. Aquaculture 2012, 366, 76–84. [Google Scholar] [CrossRef]
- Shpigel, M.; Neori, A.; Popper, D.M.; Gordin, H. A proposed model for “environmentally clean” land-based culture of fish, bivalves and seaweeds. Aquaculture 1993, 117, 115–128. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C. Pond Aquaculture Water Quality Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Holby, O.; Hall, P.O. Chemical Fluxes and Mass Balances in a Marine Fish Cage Farm. II. Phosphorus; Marine Ecology Progress Series; JSTOR: Ann Arbor, MI, USA, 1991; pp. 263–272. [Google Scholar]
- Isitekhale, H.; Adamu, B. Effects of Effluents on soil chemical Properties in forest Derived savanna Transition. IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 30–34. [Google Scholar]
- Kaab Omeir, M.; Jafari, A.; Shirmardi, M.; Roosta, H. Effects of irrigation with fish farm effluent on nutrient content of Basil and Purslane. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 825–831. [Google Scholar] [CrossRef]
- Castro, R.S.; Azevedo, C.M.B.; Bezerra-Neto, F. Increasing cherry tomato yield using fish effluent as irrigation water in Northeast Brazil. Sci. Hortic. 2006, 110, 44–50. [Google Scholar] [CrossRef]
- da Rocha, A.F.; Biazzetti Filho, M.; Stech, M.; Paz da Silva, R. Lettuce production in aquaponic and biofloc systems with silver catfish Rhamdia quelen. Bol. Inst. Pesca 2017, 43, 64. [Google Scholar]
- Silva, E.F.L.; Botelho, H.A.; Venceslau, A.; Magalhaes, D.S. Fish farming effluent application in the development and growth of maize and bean plants. Cient. Jaboticabal 2018, 46, 74–81. [Google Scholar] [CrossRef]
- Abdelraouf, R. Reuse of fish farm drainage water in irrigation. In Unconventional Water Resources and Agriculture in Egypt; Springer: Berlin/Heidelberg, Germany, 2019; pp. 393–410. [Google Scholar]
- Ibrahim, L.A.; Abu-Hashim, M.; Shaghaleh, H.; Elsadek, E.; Hamad, A.A.A.; Alhaj Hamoud, Y. A Comprehensive Review of the Multiple Uses of Water in Aquaculture-Integrated Agriculture Based on International and National Experiences. Water 2023, 15, 367. [Google Scholar] [CrossRef]
- Ouda, S.; Zohry, A.E.-H.; Zohry, A.E.-H.; Ouda, S. Fish Farms Effluents for Irrigation and Fertilizer: Field and Modeling Studies. In Climate-Smart Agriculture: Reducing Food Insecurity; Springer: Berlin/Heidelberg, Germany, 2022; pp. 43–66. [Google Scholar]
- Diatta, A.A.; Bassène, C.; Manga, A.G.B.; Abaye, O.; Thomason, W.; Battaglia, M.; Babur, E.; Uslu, Ö.; Min, D.; Seleiman, M.; et al. Integrated use of organic amendments increased mungbean (Vigna radiata (L.) Wilczek) yield and its components compared to inorganic fertilizers. Urban Agric. Reg. Food Syst. 2023, 8, e20048. [Google Scholar] [CrossRef]
- Ojobor, S.; Tobih, F. Effects of fish pond effluent and inorganic fertilizer on amaranthus yield and soil chemical properties in Asaba, Delta State, Nigeria. J. Agric. Environ. Sci. 2015, 4, 237–244. [Google Scholar]
- Fruscella, L.; Kotzen, B.; Paradelo, M.; Milliken, S. Investigating the effects of fish effluents as organic fertilisers on onion (Allium cepa) yield, soil nutrients, and soil microbiome. Sci. Hortic. 2023, 321, 112297. [Google Scholar] [CrossRef]
- Rakocy, J.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. In Proceedings of the South Pacific Soilless Culture Conference-SPSCC 648, Palmerston North, New Zealand, 1 February 2004; pp. 63–69. [Google Scholar]
- Adler, P.R.; Summerfelt, S.T.; Glenn, D.M.; Takeda, F. Mechanistic approach to phytoremediation of water. Ecol. Eng. 2003, 20, 251–264. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Li, G.; Wu, H.-B.; Liu, X.-G.; Yao, Y.-H.; Tao, L.; Liu, H. An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aquac. Eng. 2011, 45, 93–102. [Google Scholar] [CrossRef]
- Abdul-Rahman, S.; Saoud, I.P.; Owaied, M.K.; Holail, H.; Farajalla, N.; Haidar, M.; Ghanawi, J. Improving water use efficiency in semi-arid regions through integrated aquaculture/agriculture. J. Appl. Aquac. 2011, 23, 212–230. [Google Scholar] [CrossRef]
- Zohry, A.; Hefny, Y.; Ouda, S. Interplanting four legume crops under orange trees using different irrigation water and fertilizer sources in sandy soil. In Proceedings of the 16th International Conference on Crop Science, Cairo, Egypt, 10 October 2020; pp. 341–346. [Google Scholar]
- Danaher, J.J.; Pickens, J.M.; Sibley, J.L.; Chappell, J.A.; Hanson, T.R.; Boyd, C.E. Tomato seedling growth response to different water sources and a substrate partially replaced with dewatered aquaculture effluent. Int. J. Recycl. Org. Waste Agric. 2016, 5, 25–32. [Google Scholar] [CrossRef]
- Dey, M.; Prein, M. Increasing and Sustaining the Productivity of Fish and Rice in the Flood-Prone Ecosystems in South and Southeast Asia; Final Report to IFAD; WorldFish Center: Penang, Malaysia, 2004; pp. 1–94. [Google Scholar]
- Dey, M.M.; Prein, M.; Mahfuzul Haque, A.; Sultana, P.; Cong Dan, N.; Van Hao, N. Economic feasibility of community-based fish culture in seasonally flooded rice fields in Bangladesh and Vietnam. Aquacult. Econ. Manage 2005, 9, 65–88. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 September 2023).
- Kimera, F.; Sewilam, H.; Fouad, W.M.; Suloma, A. Efficient utilization of aquaculture effluents to maximize plant growth, yield, and essential oils composition of Origanum majorana cultivation. Ann. Agric. Sci. 2021, 66, 1–7. [Google Scholar] [CrossRef]
- Al-Jaloud, A.A.; Hussain, G.; Alsadon, A.A.; Siddiqui, A.Q.; Al-Najada, A. Use of aquaculture effluent as a supplemental source of nitrogen fertilizer to wheat crop. Arid Land Res. Manag. 1993, 7, 233–241. [Google Scholar] [CrossRef]
- Herrick, J.E.; Urama, K.C.; Karl, J.W.; Boos, J.; Johnson, M.-V.V.; Shepherd, K.D.; Hempel, J.; Bestelmeyer, B.T.; Davies, J.; Guerra, J.L. The global Land-Potential Knowledge System (LandPKS): Supporting evidence-based, site-specific land use and management through cloud computing, mobile applications, and crowdsourcing. J. Soil Water Conserv. 2013, 68, 5A–12A. [Google Scholar] [CrossRef]
- Gupta, S.C.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Chopart, J. Etude au Champ des Systèmes Racinaires des Principales Cultures Pluviales au Sénégal (Arachide-Mil-Sorgho-Riz Pluvial). Ph.D. Thesis, National Polytechnic Institute of Toulouse, Toulouse, France, 1980. [Google Scholar]
- Mathieu, C.; Pieltain, F.; Jeanroy, E. Analyse Chimique des Sols: Méthodes Choisies; Tec & Doc: Olympia, WA, USA, 2003. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Olsen, S. Phosphorus. Methods Soil Anal. 1982, 2, 403–430. [Google Scholar]
- Kjeldahl, C. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 1883, 22, 366. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 961–1010. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Hailu, F.A.; Wakjira, M.; Getahun, A. Fishpond Wastewater Versus Chemical Fertilizer on Tomato Productivity in Jimma, Oromia Region, Ethiopia. World 2018, 7, 82–89. [Google Scholar]
- Segura, M.; Granados, M.; Moreno, J.; Urrestarazu, M. Response of greenhouse melon and tomato crops to wastewater fertirrigation. In Proceedings of the XXVI International Horticultural Congress: Protected Cultivation 2002: In Search of Structures, Systems and Plant Materials for 633, Toronto, ON, Canada, 11 August 2002; pp. 391–396. [Google Scholar]
- Khater, E.-S.G.; Bahnasawy, A.H.; Shams, A.E.-H.S.; Hassaan, M.S.; Hassan, Y.A. Utilization of effluent fish farms in tomato cultivation. Ecol. Eng. 2015, 83, 199–207. [Google Scholar] [CrossRef]
- Gravel, V.; Dorais, M.; Dey, D.; Vandenberg, G. Fish effluents promote root growth and suppress fungal diseases in tomato transplants. Can. J. Plant Sci. 2015, 95, 427–436. [Google Scholar] [CrossRef]
- Pattillo, D.A.; Foshee, W.G.; Blythe, E.K.; Pickens, J.; Wells, D.; Monday, T.A.; Hanson, T.R. Performance of aquaculture effluent for tomato production in outdoor raised beds. HortTechnology 2020, 30, 624–631. [Google Scholar] [CrossRef]
- Shaw, C.; Knopf, K.; Kloas, W. Toward feeds for circular multitrophic food production systems: Holistically evaluating growth performance and nutrient excretion of African catfish fed fish meal-free diets in comparison to Nile tilapia. Sustainability 2022, 14, 14252. [Google Scholar] [CrossRef]
- Diatta, A.A.; Abaye, O.; Thomason, W.E.; Lo, M.; Thompson, T.L.; Vaughan, L.J.; Gueye, F.; Diagne, N. Evaluating pearl millet and mungbean intercropping in the semi-arid regions of Senegal. Agron. J. 2020, 112, 4451–4466. [Google Scholar] [CrossRef]
- Kolozsvári, I.; Kun, Á.; Jancsó, M.; Bakti, B.; Bozán, C.; Gyuricza, C. Utilization of fish farm effluent for irrigation short rotation willow (Salix alba L.) under lysimeter conditions. Forests 2021, 12, 457. [Google Scholar] [CrossRef]
Parameters | Soil | Poultry Manure † | Cattle Manure † | Sheep Manure † |
---|---|---|---|---|
Clay (%) | 8.25 | – | – | – |
Sand (%) | 75.00 | – | – | – |
Silt (%) | 16.75 | – | – | – |
BD | 1.526 | – | – | – |
FC (cm3 water/cm3 soil) | 0.156 | – | – | – |
pH (1/2.5) | 8.23 | 7.24 | 7.12 | 7.62 |
EC (1/2.5) (mS cm−1) | 0.269 | 6.530 | 3.340 | 6.470 |
C (%) | 0.793 | 7.890 | 5.897 | 10.257 |
N (%) | 0.124 | 4.006 | 1.766 | 2.861 |
C:N | 6.395 | 1.970 | 3.339 | 3.585 |
OM (%) | 1.364 | – | – | – |
Available P (mg kg−1) | 34.740 | – | – | – |
Exchangeable Ca (cmol kg−1) | 2.625 | 6.00 | 6.00 | 3.75 |
Exchangeable Mg (cmol kg−1) | 0.75 | 3.75 | 1.125 | 3.75 |
Exchangeable Na (cmol kg−1) | 0.155 | 0.155 | 0.0525 | 0.15 |
Exchangeable K (cmol kg−1) | 0.0728 | 0.0686 | 0.0224 | 0.0476 |
Parameters | River Water | Clarias gariepinus | Oreochromis niloticus |
---|---|---|---|
pH (1/2.5) | 6.35 | 6.32 | 6.07 |
CE (1/2.5) (µs cm−1) | 8.41 | 29.2 | 16.19 |
Exchangeable Ca (cmol kg−1) | 0.525 | 0.6 | 0.375 |
Exchangeable Mg (cmol kg−1) | 0.15 | 0.3 | 0.375 |
Exchangeable Na (cmol kg−1) | 0.105 | 0.195 | 0.1725 |
Exchangeable K (cmol kg−1) | 0.0098 | 0.021 | 0.0238 |
No. | Treatments | Stem Diameter (cm) | Plant Height (cm) | Number of Ramifications | Number of Flowers |
---|---|---|---|---|---|
T1 | River water—Control | 4.33 †,de,†† | 56.67 a | 4.00 cde | 9.67 bcd |
T2 | C. gariepinus effluent | 6.67 a | 53.67 a | 5.00 abcd | 10.67 ab |
T3 | O. niloticus effluent | 5.33 abcde | 54.33 a | 1.33 e | 7.00 bcd |
T4 | Recommended NPK | 5.50 abcde | 54.67 a | 5.00 abcd | 5.67 d |
T5 | Cattle manure | 5.50 abcde | 52.33 a | 3.67 cde | 5.67 d |
T6 | Poultry manure | 4.67 cde | 48.67 a | 2.67 de | 6.00 cd |
T7 | Sheep manure | 4.00 e | 44.67 a | 3.33 de | 6.00 cd |
T8 | C. gariepinus + Cattle manure | 5.67 abcd | 50.67 a | 6.33 abc | 10.00 bc |
T9 | C. gariepinus + Poultry manure | 6.00 abc | 49.00 a | 7.00 ab | 9.00 bcd |
T10 | C. gariepinus + Sheep manure | 6.33 ab | 56.00 a | 7.33 a | 14.67 a |
T11 | O. niloticus + Cattle manure | 5.67 abcd | 58.67 a | 3.33 de | 7.33 bcd |
T12 | O. niloticus + Poultry manure | 5.00 bcde | 54.00 a | 4.33 bcd | 8.67 bcd |
T13 | O. niloticus + Sheep manure | 5.00 bcde | 53.67 a | 3.33 de | 11.00 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diatta, A.A.; Manga, A.G.B.; Bassène, C.; Mbow, C.; Battaglia, M.; Sambou, M.; Babur, E.; Uslu, Ö.S. Sustainable Production of Tomato Using Fish Effluents Improved Plant Growth, Yield Components, and Yield in Northern Senegal. Agronomy 2023, 13, 2696. https://doi.org/10.3390/agronomy13112696
Diatta AA, Manga AGB, Bassène C, Mbow C, Battaglia M, Sambou M, Babur E, Uslu ÖS. Sustainable Production of Tomato Using Fish Effluents Improved Plant Growth, Yield Components, and Yield in Northern Senegal. Agronomy. 2023; 13(11):2696. https://doi.org/10.3390/agronomy13112696
Chicago/Turabian StyleDiatta, Andre A., Anicet G. B. Manga, César Bassène, Cheikh Mbow, Martin Battaglia, Mariama Sambou, Emre Babur, and Ömer Süha Uslu. 2023. "Sustainable Production of Tomato Using Fish Effluents Improved Plant Growth, Yield Components, and Yield in Northern Senegal" Agronomy 13, no. 11: 2696. https://doi.org/10.3390/agronomy13112696
APA StyleDiatta, A. A., Manga, A. G. B., Bassène, C., Mbow, C., Battaglia, M., Sambou, M., Babur, E., & Uslu, Ö. S. (2023). Sustainable Production of Tomato Using Fish Effluents Improved Plant Growth, Yield Components, and Yield in Northern Senegal. Agronomy, 13(11), 2696. https://doi.org/10.3390/agronomy13112696