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Abstract: Deep-learning-based methods for plant disease recognition pose challenges due to their
high number of network parameters, extensive computational requirements, and overall complex-
ity. To address this issue, we propose an improved residual-network-based multi-plant disease
recognition method that combines the characteristics of plant diseases. Our approach introduces a
lightweight technique called maximum grouping convolution to the ResNet18 model. We made three
enhancements to adapt this method to the characteristics of plant diseases and ultimately reduced
the convolution kernel requirements, resulting in the final model, Model_Lite. The experimental
dataset comprises 20 types of plant diseases, including 13 selected from the publicly available Plant
Village dataset and seven self-constructed images of apple leaves with complex backgrounds contain-
ing disease symptoms. The experimental results demonstrated that our improved network model,
Model_Lite, contains only about 1/344th of the parameters and requires 1/35th of the computational
effort compared to the original ResNet18 model, with a marginal decrease in the average accuracy of
only 0.34%. Comparing Model_Lite with MobileNet, ShuffleNet, SqueezeNet, and GhostNet, our pro-
posed Model_Lite model achieved a superior average recognition accuracy while maintaining a much
smaller number of parameters and computational requirements than the above models. Thus, the
Model_Lite model holds significant potential for widespread application in plant disease recognition
and can serve as a valuable reference for future research on lightweight network model design.

Keywords: computer vision; deep learning; image processing; disease identification; convolutional
neural networks

1. Introduction

Plant diseases significantly impact growers’ productivity [1–3]. Weather, the environ-
ment, microorganisms, viruses, and bacteria make plants vulnerable to various diseases
during their growth. Among these diseases, leaf diseases are the most commonly encoun-
tered. However, relying solely on visual observation and empirical judgment often proves
challenging for the timely and accurate identification of disease types due to the large
number of diseases and their similarities. Consequently, delayed diagnosis exacerbates
disease spread and leads to significant losses in crop yield and economic benefits. Therefore,
it is imperative to swiftly and accurately determine disease types to facilitate effective plant
disease control.

Traditional plant disease recognition algorithms [4–6] have significantly progressed in
extracting and analyzing image features using conventional classification methods. For
instance, Wu et al. [7] extracted features, including color, HSV, texture, and histograms
of directional gradients, from diseased grape leaf images. They employed principal com-
ponent analysis (PCA) for dimensionality reduction and a multi-feature fusion approach
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for feature vector formation. Ultimately, the support vector machine (SVM) algorithm
was utilized for disease recognition, achieving an accuracy of 92.5%. Mokhtar et al. [8]
utilized a support vector machine (SVM) algorithm with different kernel functions for
the classification and identification of tomato mosaic disease with an average accuracy
of 92%. Despite the success of these approaches, the manual feature extraction process is
intricate and subjective, making it difficult to determine an optimal and robust feature set.
Furthermore, plant diseases often exhibit comprehensive features encompassing texture,
shape, and color, posing significant challenges to traditional plant leaf disease recognition
algorithms and limiting improvements in recognition outcomes.

The advent of deep learning has introduced a novel approach to disease recogni-
tion. Plant leaf disease recognition methods based on convolutional neural networks
(CNNs) [9–11] offer notable advantages, including independence from specific features
and high recognition accuracy. For instance, Yang et al. [12] proposed a fine-grained clas-
sification model, LFC-Net, with a self-supervised mechanism to classify images of eight
tomato diseases and healthy leaf images with 99.7% accuracy. X Sun et al. proposed a
transfer-learning-based method for maize disease recognition, fine-tuning pre-trained in-
ception series network models, resulting in an improved recognition accuracy and reduced
training time [13]. Yan et al. presented an enhanced model based on VGG16 for identifying
apple leaf diseases, achieving an overall accuracy of 99.01% in apple leaf classification [14].
By replacing the first layer of the convolutional kernel with three 3 × 3 convolutional
kernels and adjusting the base number to 64, Wang et al. achieved a recognition accuracy
of 90.22% in detecting 276 actual corn disease images using an improved version of the
original ResNeXt101 model [15]. However, traditional enhanced CNNs and similar ap-
proaches fail to further analyze disease features, exhibiting numerous parameters and high
computational complexity. Although these methods yield superior recognition results, they
necessitate abundant computational resources and extensive storage space for operation,
thereby limiting their application in resource-constrained mobile devices. Consequently,
there is a growing demand for lightweight network models that offer a high performance
with a low computational cost in plant disease recognition applications in real-life scenarios.
A typical neural-network-lightweighting approach replaces the original convolutional
layers using depth-separable convolution. However, the introduced depth-separable con-
volution may ignore or lose some vital information, which leads to a decrease in the
recognition accuracy of the model [16–19]. We also tried depth-separable convolution as a
lightweighting strategy in our initial experiments, which resulted in about a 2% decrease in
the recognition accuracy of the model without shrinking the convolution kernel.

So, based on depth-separable convolution, we propose a new lightweighting method.
We removed the pointwise convolution operation in depth-separable convolution and
set the number of groups to the number of input channels in the depthwise convolution
operation, which we call extreme grouping convolution. Considering the advantages of
ResNet18 [20], such as its small size, good performance, and extensibility with a modular
design, we used it as our improved model.

Our improvement points are as follows:

(1) We used the extreme grouping convolution method to replace the original model con-
volutional layer in order to reduce the number of model parameters and computation
amount to achieve lightweighting while maintaining the recognition accuracy.

(2) Considering the characteristics of extreme grouping convolution, there is less infor-
mation interaction between groups. We added an SE [21] attention module with a
squeeze ratio of 16 to each basic block, which promotes the information interaction
between groups and, at the same time, emphasizes the critical diseases and suppresses
the influence of irrelevant factors on the model.

(3) Combining the characteristics of small and similar plant lesions, we canceled the
downsampling in layers 3 and 4 of the model, increased the resolution of the feature
map to 4 times that of the original, and introduced dilated convolution [22] to maintain
the size of the receptive field of the model.
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(4) We improved the residual connection in the original model so that the model can
learn the errors of two neighboring layers to further improve the performance of the
network model.

(5) Finally, by reducing the number of convolution kernels to (16, 32, 64, 128) and remov-
ing the network redundancy, we constructed a lightweight residual network called
Model_Lite.

2. Materials and Methods
2.1. Dataset Construction
2.1.1. Acquisition of Datasets

The dataset of this study contained two parts with a total of 18,491 plant disease
images, aiming to better fit the actual plant disease recognition situation and enhance the
robustness and generalization ability of the model. The first part of the set of disease images
was taken at the experimental apple field of Jilin Agricultural University in Changchun,
Jilin Province, and a small number of them were obtained online. The shooting was
conducted from 8:00 a.m. to 5:00 p.m., and the images were taken with an iPhone 13 device
with 3024 × 4032 pixels. After being recognized by agricultural experts, 6686 apple disease
images in seven categories with complex backgrounds were finally obtained. Characterized
by the fact that they were all taken under natural light conditions, the environments were
complex and conformed to the actual situation, as shown in Figure 1n–t. The second
part included simple background disease images, covering 13 categories and totaling
11,805 images, which were selected from the Plant Village [23] dataset and characterized
by a standardized shooting and laboratory background environment, which was used as a
complement to the first part of the data, as shown in Figure 1a–m.
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Figure 1. Sample dataset. The sample (a–t) categories are explained in Table 1 below.
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Table 1. Number of samples for each disease in dataset.

Plant Name Number Disease Name Number of
Images Plant Name Number Disease Name Number of

Images

Cherry a Healthy 854

Tomato

c Late Blight 1000
b Powdery Mildew 1000 f Early Blight 1000

Corn
d Cercospora Leaf Lpot 513 g Bacterial Spot 1000

e Northern Leaf Blight 985

Apple

p Complex 1000

Pepper h Bacterial Spot 997 t Frog Eye Leaf Spot 1000
i Healthy 1000 s Healthy 1000

Potato
j Early Blight 1000 o Scab Frog Eye Leaf Spot 686
k Late Blight 1000 n Scab 1000

Strawberry l Leaf Scorch 1000 q Rust 1000
m Healthy 456 r Powdery Mildew 1000

2.1.2. Data Preprocessing

Due to the existence of dataset images with different sizes, to reduce the recogni-
tion errors caused by image irregularities, the image size was first uniformly adjusted to
256 × 256 pixels, and then the training set and validation set were divided according to a
ratio of 8:2. Before feeding the images into the model, central cropping was performed to
resize them to 224 × 224 pixels while maintaining their width and height. Additionally,
data standardization was applied to enhance the model’s stability and training efficiency.
Table 1 displays the distribution of samples for different types of plant diseases in the
dataset. In order to improve the diversity of the dataset and mitigate the risk of overfit-
ting, several data augmentation techniques were employed. These techniques included
randomly applying horizontal or vertical flips, random rotation, simulating rain and foggy
weather, color dithering, and affine transformation. This augmentation process aimed to
enhance the model’s generalization ability. Figure 2 provides examples of samples before
and after data augmentation. Horizontal and vertical flips and random rotations simulated
variations in the plant leaf morphology encountered in real-life scenarios. Simulating rainy
and foggy weather was used to replicated detection situations during inclement weather.
Brightness adjustment was used to capture the diverse lighting conditions associated with
sunny and cloudy weather. Lastly, affine transformation allowed for the simulation of
various shooting angles.
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2.2. Experimental Design
2.2.1. Introduction to Group Convolution

Grouped convolution [24] was employed as a replacement for all the convolutional
layers within the original ResNet18 model. This approach, based on the split–transform–
merge concept [25], balances high recognition accuracy, a reduced number of parameters,
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and computational efficiency. By utilizing grouped convolution, feature maps with distinct
focus points are obtained, which complement each other and provide a more comprehensive
representation of the image features. Additionally, grouped convolution enhances the
diagonal correlation among convolution kernels, reducing the number of parameters and
alleviating overfitting issues, similar to regularization techniques.

The grouped convolutional computation process is shown in Figure 3 (c is the number
of input feature map channels, c′ is the number of convolution kernels, g is the number
of subgroups, k is the convolution kernel size, and W′ and H′ are the output feature map
dimensions). Grouped convolution decomposes the input feature map and performs
convolution operations on each grouping. Since the number of input and output channels
for convolution is reduced, the parameters and computation are also reduced. The ratios
of the number of parameters and the computation amount of the grouped convolution
operation to the ordinary convolution operation are shown in the following equations
(Equations (1) and (2)), which show that when the number of groupings is g, the number
of parameters and the computation amount of the grouped convolution is 1/g of the
ordinary convolution.

c× k2 × c′
c
g × k2 × c′

g × g
=

1
g

(1)

C× k2 × C′ × H′ ×W ′
C
g × k2 × C′

g × g× H′ ×W ′
=

1
g

(2)
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2.2.2. SE Attention Module Addition

To mitigate the influence of complex background classes and irrelevant factors in the
plant disease images, this study incorporated the SE (squeeze-and-excitation networks)
attention module. The SE module is a lightweight attention mechanism designed to
enhance inter-channel attention, thereby improving the model’s ability to extract crucial
disease features while reducing the impact of other interferences and enhancing the disease
recognition performance. The structure of the SE module consists of two components:
squeeze and excitation. Figure 4 illustrates the architecture of the SE module. The squeeze
component utilizes global average pooling to capture contextual information for each
channel dimension of the feature map. This process compresses the 2D features (H ×W)
of each channel into a single actual number, transforming the feature map [h, w, c] into
[1, 1, c], thus obtaining global features at the channel level. In the excitation component,
two fully connected layers generate weight values for each feature channel, establishing
correlations among the channels. The output weights align with the number of input
feature map channels, and the weights for the different channels are learned based on
their relationships. These weights are then normalized and applied to the features of each
channel through a scale operation. By incorporating the SE module, the model learns to
assign higher weights to important features while reducing the sensitivity to irrelevant
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features. This mechanism allows the model to focus on disease-related characteristics,
selectively enhancing the disease recognition performance.

Agronomy 2023, 13, x FOR PEER REVIEW 6 of 21 
 

 

attention module. The SE module is a lightweight attention mechanism designed to en-
hance inter-channel attention, thereby improving the model’s ability to extract crucial dis-
ease features while reducing the impact of other interferences and enhancing the disease 
recognition performance. The structure of the SE module consists of two components: 
squeeze and excitation. Figure 4 illustrates the architecture of the SE module. The squeeze 
component utilizes global average pooling to capture contextual information for each 
channel dimension of the feature map. This process compresses the 2D features (H × W) 
of each channel into a single actual number, transforming the feature map [h, w, c] into 
[1, 1, c], thus obtaining global features at the channel level. In the excitation component, 
two fully connected layers generate weight values for each feature channel, establishing 
correlations among the channels. The output weights align with the number of input fea-
ture map channels, and the weights for the different channels are learned based on their 
relationships. These weights are then normalized and applied to the features of each chan-
nel through a scale operation. By incorporating the SE module, the model learns to assign 
higher weights to important features while reducing the sensitivity to irrelevant features. 
This mechanism allows the model to focus on disease-related characteristics, selectively 
enhancing the disease recognition performance. 

 
Figure 4. SE module structure diagram. 

2.2.3. Improved Feature Map Resolution 
Considering that the nuances in plant diseases mainly stem from their differences, it 

has been observed that the original ResNet18 model experiences a reduction in the feature 
map resolution to 7 × 7 after four layers of downsampling. This decrease in the resolution 
leads to a significant loss of spatial information and hampers the model’s ability to extract 
features effectively. This study adopted a solution to address this limitation by eliminating 
the downsampling operations in layer 3 and layer 4 of the original model. Instead, dilated 
convolution with an expansion factor of 2 was incorporated to maintain an unchanged 
receptive field. By doing so, the resolution of the subsequent feature maps in layers 3 and 
4 is kept at 28 × 28, thus preserving more spatial information about the plant disease. This 
modification successfully resolves the issue of low-resolution feature maps, which miti-
gates the problem of inadequate feature extraction in the model. The improved structure 
of the model, incorporating dilated convolution and maintaining higher-resolution fea-
ture maps, is illustrated in Figure 5. 

Figure 4. SE module structure diagram.

2.2.3. Improved Feature Map Resolution

Considering that the nuances in plant diseases mainly stem from their differences, it
has been observed that the original ResNet18 model experiences a reduction in the feature
map resolution to 7 × 7 after four layers of downsampling. This decrease in the resolution
leads to a significant loss of spatial information and hampers the model’s ability to extract
features effectively. This study adopted a solution to address this limitation by eliminating
the downsampling operations in layer 3 and layer 4 of the original model. Instead, dilated
convolution with an expansion factor of 2 was incorporated to maintain an unchanged
receptive field. By doing so, the resolution of the subsequent feature maps in layers 3 and 4
is kept at 28 × 28, thus preserving more spatial information about the plant disease. This
modification successfully resolves the issue of low-resolution feature maps, which mitigates
the problem of inadequate feature extraction in the model. The improved structure of the
model, incorporating dilated convolution and maintaining higher-resolution feature maps,
is illustrated in Figure 5.
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2.2.4. Improved Residual Connection

By incorporating factors such as plant disease color, texture, and contour, it is evident
that plant diseases exhibit certain similarities in their features, while different instances of
the same plant disease pose challenges in terms of discrimination. To address this, residual
learning is utilized, significantly enhancing the network’s ability to extract disease features.
Consequently, residual networks have been widely adopted in plant disease recognition
research [26–28]. A residual block can be expressed as shown in the following equation
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(Equation (3)) (XL and XL + 1 are the Lth and (L + 1)th layer feature maps, respectively, WL
is the Lth layer convolution parameter, and F is the convolution operation parameter):

XL+1 = XL + F(XL, WL) (3)

That is, by transforming the desired complex mapping H(XL, WL):=XL + 1 to H(XL,
WL):=XL + F(XL, WL), the superimposed convolutional layers only need to fit F(XL, WL):=H(XL,
WL) − XL. This transformation makes it easier to optimize the deeper network, assuming that
the network learns XL optimally and that the convolution of the deeper layers of the network
with the weights set to 0 will be able to remain in the later convolutional layers without causing
accuracy degradation. If the optimal result approximates XL, the deeper convolutional layers
will mostly only be fine-tuned rather than learning a new mapping. The residual structure is
simple, as shown in Figure 6a below. The residual module improves the performance of the
deeper network by introducing shortcut connections (cross-layer connections), which preserve
the information in the previous layers in the training of the network and reduce the risk of
gradient vanishing.
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On the other hand, the improved connection updates the learning parameters by
learning the residuals of the two neighboring layers, which is based on the same principle
as the original residual connection. Its computational formula can be expressed as the
following equation (Equation (4)) (where XL and XL+1 denote the inputs of the Lth and
(L + 1)th layers, respectively, F denotes the mapping function between the residual blocks
of the two layers, and WL and WL+1 denote the weight matrices of the Lth and (L + 1)th
layers, respectively):

XL+2 = XL + F(XL, WL, WL+1) (4)

The enhanced residual connection, as depicted in Figure 6b, is introduced. This
improved design incorporates a two-layer residual connection, enabling the network to
learn from the errors of adjacent network layers and the errors of the two neighboring
layers. This advancement facilitates a more refined network update process and promotes
comprehensive and intricate feature learning.

2.2.5. Convolution Kernel Reduction

By adjusting the number of convolutional kernels within the model, we can explore its
complexity and expressive power. Increasing the number of convolutional kernels enhances
the feature expressiveness and consequently improves the model’s performance. However,
it also escalates the computational requirements, increases the number of parameters, and
may lead to overfitting issues. Conversely, reducing the number of convolutional kernels
may diminish the model’s perceptual ability and recognition accuracy. Nonetheless, it
efficiently reduces the model complexity and computational costs. Reducing the number
of convolutional kernels allows us to eliminate network model redundancy, decrease
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computational effort, and simplify the model structure with minimal compromise in terms
of recognition accuracy. This ensures optimal model performance while achieving the
objective of model lightweighting.

2.2.6. Lightweight Residual Network Structure

A schematic representation of the lightweight residual network can be seen in Figure 7.
This model is built upon the architecture of ResNet18. To improve the model’s performance
and reduce computational requirements, the original convolution layers are replaced with
group convolutions, where the number of groups equals the number of channels. This
modification enhances the model’s efficiency while reducing the number of parameters.
In order to accentuate the disease characteristics and strengthen inter-group information
interactions within the group convolution, an SE (squeeze-and-excitation) module is in-
corporated after each basic block. This module helps the network to focus on important
disease-related features.
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Furthermore, in layers 3 and 4, the downsampling operation in the initial convolutional
layer of the traditional residual structure is removed. This adjustment preserves the feature
map resolution at 28 × 28, allowing for more spatial feature information to be captured. To
maintain an intact receptive field, dilated convolutions are introduced. Lastly, the original
residual connection is further improved to enhance the model’s overall performance.

2.3. Experimental Environment Setting

The experimental environment configuration used in this study is outlined in Table 2.
The training process was conducted over 200 epochs, with a sample input size of 256 × 256.
The ReLU activation function was employed, and the Adam optimizer was utilized. The
cross-entropy function was applied for optimization purposes, with an initial learning
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rate of 0.001. A detailed step-by-step methodology flow for training the plant disease
recognition model is illustrated in Figure 8.

Table 2. Experimental environment configuration.

Experimental Environment Configuration Parameters

Operating system ubuntu20.04
GPU RTX 3080
CPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz

Deep learning frameworks PyTorch1.11.0
Programming language Python 3.8

GPU Acceleration Library Cuda 11.3
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This study chose the average recognition accuracy, the number of network parameters,
and the million floating point operations per second (MFLOPs) as the metrics for evaluating
the network.

The average identification accuracy (P, %) refers to the ratio of correctly predicted
samples to all observations in the model, as shown in Equation (5). In the equation, TPi and
FPi denote the number of correctly and incorrectly predicted samples of disease samples
of category I in the validation set, respectively, and N denotes the number of disease
species. The average recognition accuracy measures the recognition accuracy of the model
for the entire plant disease dataset of 20 diseases, which facilitates the comparison of the
performance of different models from a macroscopic perspective.

P =
N

∑
i=1

TPi
TPi + FPi

× 100% (5)

The spatial complexity of an algorithm refers to the number of parameters in the model,
which directly affects the hardware level and memory consumption. A smaller number
of parameters indicates a smaller model capacity, which is beneficial for deployment on
mobile devices with limited memory resources. On the other hand, the computation
amount reflects the algorithm’s time complexity. It is crucial to minimize the computation
amount while maintaining accuracy to improve the efficiency and processing speed of the
model. The number of parameters and the computation amount are crucial indicators for
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evaluating the strengths and weaknesses of a network model. Therefore, it is essential to
consider these two aspects when enhancing a network model comprehensively.

3. Results and Discussion
3.1. Experimental Analysis
3.1.1. Impact of the Number of Grouped Convolutions on the Model

To improve the original network and explore the effect of the number of groups on the
network model, grouped convolution was added to each residual module of the original
ResNet18 model in our study. We conducted experiments to construct three network
models, namely Model_g16, Model_g32, and Model_gMax, where grouped convolutions
were performed based on the original model. The groups used were 16, 32, and in_channel
(the maximum number of groups equal to the number of input channels of the convolution
layer), respectively. The corresponding loss curves are depicted in Figure 9, which illustrates
the trends of the loss functions for the three different numbers of groups, i.e., 16, 32, and
in_channel. As shown in Figure 9, the model exhibited rapid convergence and effectively
captured the disease features. After five rounds of training, the recognition accuracy rate
of the model exceeded 80%, and this rate was further improved to over 90% after sixteen
rounds of training. This was because the model inherits the residual network’s excellent
structure, making the network easier to optimize. The grouped convolution used can focus
on different feature maps that complement each other to represent the image features more
completely and improve the ability of the network model to fit the disease features. It is
worth noting that there was a certain degree of overfitting in the model with only grouped
convolution. The overfitting problem of the model was solved after adding subsequent
improvement points, and the loss curve of the final lightweight model, Model_Lite, is
shown in the following section (Section 3.4).
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The experimental results are summarized in Table 3. In Model_g16, where the group-
ing number was set to 16, the parameters were approximately 1/12 of the original model,
while the computational operations decreased to about 1/7. Similarly, in Model_gMax with
a maximum grouping number (equal to the number of input channels), the parameters
were roughly 1/46 of the original model, and the computational operations decreased
by around 1/11. The accuracy rate of Model_g16 exceeded that of the original model by
1.2%. This improvement can be attributed to two factors: first, with a grouping number
of 16, there were more channels within each group, which enabled a better retention of
the relevance among the input features and facilitated the transfer and integration of in-
formation, ultimately enhancing the model’s performance. Second, reducing the number
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of parameters and computational operations in Model_g16 helped to improve the overall
efficiency. Model_g32 and Model_gMax exhibited accuracy improvements of 0.96% and
0.47%, respectively, compared to the average accuracy of the original model. Although
these improvements were slightly lower than in Model_g16 with a grouping number of
16, the corresponding reduction in parameters and computational operations was more
significant than in Model_g16.

Table 3. Experiment results of group convolution.

Model Accuracy/% Params MFLOPs

ResNet18 91.55 1.1 × 107 1823.53
Model_g16 92.75 8.9 × 105 252.02
Model_g32 92.51 5.4 × 105 199.64

Model_gMax 92.02 2.4 × 105 160.80

We found that grouped convolution could also improve the model performance while
significantly reducing the parameters and computation of the network model. The larger the
number of groups, the smaller the number of parameters and analyses, but the recognition
accuracy of the model was slightly reduced compared to the small number of groups.

3.1.2. Impact of the SE Attention Module on the Model

Based on Model_g16, Model_g32, and Model_gMax, we introduced the SE attention
module between the BasicBlock models to explore the effect of the SE attention module on
the performance of the network model.

Table 4 shows that the number of parameters and the computation volume of Model_g16,
Model_g32, and Model_gMax increased slightly after adding the SE attention module. The
average accuracies of Model_g32 and Model_gMax were improved by 0.06% and 0.48%,
respectively. However, the average accuracy of Model_g16 was decreased by 0.37%. We
know that the larger the number of groups, the less information interaction there is between
groups. At the same time, the added SE module increased the information interaction
between the different groups, especially for the model where the number of groups was
equal to the number of channels, which improved the perceptual ability most obviously. In
this experiment, the SE attention module was suitable for the models with a large number
of groups and could improve the model accuracy at a small cost of computation and
parameters. On the other hand, the average accuracy of Model_g16 decreased, probably
because the model size and computational effort were already significant, and the addition
of the SE module led to model redundancy and some overfitting phenomena.

Table 4. Experiment results of the SE attention module.

Model Accuracy/% Params MFLOPs

Model_g16 92.75 8.9 × 105 252.02
Model_g16+SE 92.38 9.7 × 105 252.86

Model_g32 92.51 5.4 × 105 199.64
Model_g32+SE 92.57 6.3 × 105 200.48
Model_gMax 92.02 2.4 × 105 160.80

Model_gMax+SE 92.50 3.2 × 105 161.64

3.1.3. Impact of Increased Feature Map Resolution on the Model

Based on the experiments above, we conducted further investigations by increasing
the resolution of the feature map to 28 × 28 after eliminating downsampling in layer 3
and layer 4 of the network model. We replaced the original convolution with dilated
convolution to preserve the receptive field. The objective was to examine the impact of the
enhanced feature map resolution on the overall performance of the network model.
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After removing the downsampling operation and introducing an increased feature
map resolution through dilated convolution, there was no change in the number of model
parameters. However, there was a significant increase in the computational requirements.
Additionally, the model exhibited a minor degree of overfitting, resulting in a slight decrease
in the average accuracy of Model_g16. Conversely, Model_g32 and Model_gMax improved
the average accuracy by 0.26% and 0.53%, respectively. We know that different plant
diseases are often manifested in subtle color and texture differences, and the downsampling
operation will continuously reduce the image accuracy, which may lead to subtle but
essential image features being overlooked in the process. Table 5 further reveals that,
with the enhancement of the feature map resolution and the incorporation of dilated
convolution, there was a slight decrease in the average accuracy of Model_g16 accompanied
by a corresponding increase in the computation by 581.72 MFLOPs. On the other hand,
Model_gMax achieved a maximum improvement in accuracy of 0.53% with a minimum
increase in the computation of 145.49 MFLOPs. These results indicate that enhancing the
feature map resolution and introducing dilated convolution in this experiment could be
applied to the models with many grouped convolutional groups.

Table 5. Experiment results of improving feature map resolution.

Model Accuracy/% Params MFLOPs

Model_g16 92.75 8.9 × 105 252.02
Model_g16+ER 92.63 8.9 × 105 833.74

Model_g16+SE+ER 92.98 9.7 × 105 835.63
Model_g32 92.51 5.4 × 105 199.64

Model_g32+ER 92.77 5.4 × 105 553.75
Model_g32+SE+ER 92.79 6.3 × 105 555.65

Model_gMax 92.02 2.4 × 105 160.80
Model_gMax+ER 92.55 2.4 × 105 306.29

Model_gMax+SE+ER 92.89 3.2 × 105 308.18

The comprehensive evaluation of the average accuracy, number of parameters, and
computational volume revealed that the optimal model performance was achieved by
incorporating the SE module and improving the resolution of the feature map simultane-
ously. Model_gMax exhibited the most remarkable improvement regarding the average
accuracy, increasing by up to 0.87%. The elimination of downsampling and the subsequent
increase in the feature map resolution ensured that the network did not overlook any
critical fine-grained features associated with plant diseases. Furthermore, adding the SE
module enhanced the network’s focus on crucial feature channels, promoting informa-
tion interaction among the groups during group convolutions. These two components
worked synergistically to enhance the overall network performance. For the subsequent
experiments, the models with the SE module, increased feature map resolution, and dilated
convolution were denoted as Model_16, Model_32, and Model_Max, respectively. This
selection ensured consistency across Model_g16, Model_g32, and Model_gMax.

3.1.4. Impact of Improving Residual Connections on Model Performance

The original ResNet18 architecture updates the learning parameters by learning the
network layer residuals of adjacent layers. However, as different plant disease features
exhibit some similarities, enhancing the original one-layer residual connections to include
two adjacent layers enhances the feature diversity and results in more refined network
updates. This improvement leads to an enhanced feature extraction capability and gen-
eralization ability of the network. Table 6 presents the results of improving the residual
connections (IRC) for Model_16, Model_32, and Model_Max. The number of parameters
and the computational volume remained unchanged before and after the improvement
since the calculation involved a simple matrix addition without requiring additional param-
eters to learn the connection. Among the models, Model_Max demonstrated a tremendous
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improvement in terms of the average accuracy, increasing by up to 0.19%. These findings
prove that improving the residual connections could effectively enhance the model accuracy
while maintaining the stability of the model parameters and computational effort.

Table 6. Experimental results of improved residual connection.

Model Accuracy/% Params MFLOPs

Model_16 92.98 9.7 × 105 835.63
Model_16+IRC 92.99 9.7 × 105 835.63

Model_32 92.60 6.3 × 105 555.65
Model_32+IRC 92.62 6.3 × 105 555.65

Model_Max 92.89 3.2 × 105 308.18
Model_Max+IRC 93.08 3.2 × 105 308.18

3.1.5. Impact of Reducing the Number of Convolutional Kernels on Model Performance

To obtain the final lightweight model, this study conducted experiments on the
Model_16, Model_32, and Model_Max models, which underwent an improvement in
terms of residual connections. The objective was to reduce the number of convolution
kernels used in the models. Specifically, the convolution kernels in the four layers were
reduced to (32, 64, 128, 256) and (16, 32, 64, 128). The results of these experiments are pre-
sented in Table 7. It is important to note that for the Model_32 residual module, which had
32 subgroups for convolution, the condition did not hold when the number of convolution
kernels was smaller than the number of subgroups.

Table 7. Experimental results of reducing the number of convolution kernels.

Model Number of Convolution Kernels Accuracy/% Params MFLOPs

ResNet18 (64, 128, 256, 512) 91.55 1.1 × 107 1823.53

Model_16
(64, 128, 256, 512) 92.99 9.7 × 105 835.63
(32, 64, 128, 256) 91.97 2.5 × 105 244.08
(16, 32, 64, 128) 91.31 6.6 × 104 78.61

Model_32
(64, 128, 256, 512) 92.30 6.3 × 105 555.65
(32, 64, 128, 256) 92.15 1.7 × 105 174.09

— — — —

Model_Max
(64, 128, 256, 512) 93.08 3.2 × 105 308.18
(32, 64, 128, 256) 92.33 9.7 × 104 120.35
(16, 32, 64, 128) 91.21 3.2 × 104 51.74

From Table 7, it can be seen that when the number of convolutional kernels was (16,
32, 64, 128), Model_Max was comparable to the original ResNet18 model, with 1/344 of
its number of parameters and 1/35 of its computation. At the same time, the average
accuracy was decreased by only 0.34%. Model_16 had 1/167 of its number of parameters
and 1/23 of its computation, while the average accuracy was decreased by 0.24%. When the
number of convolutional kernels was (32, 64, 128, 256), Model_Max was comparable to the
original ResNet18, with 1/113 of the number of parameters and 1/15 of the computation.
The average accuracy was 0.78% higher than that of the original model. Model_32 had
1/65 of the number of parameters and 1/10 of the computation, and the average accuracy
was 0.60% higher than that of the original model. Model_16 had 1/44 of the number of
parameters and 1/163 of the computation, while the average accuracy was decreased by
0.24%. The number of parameters for Model_16 was 1/44, the calculation amount was 1/8,
and the average accuracy was 0.42% higher than that of the original model.

From the above experimental results, we can see that when the number of convolu-
tional kernels in the model is certain, the larger the grouping number of the model, the
smaller the number of parameters and computation amount and the higher the average
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recognition accuracy of the model; When the number of convolutional kernels in the model
decreases, the average recognition accuracy of the model will be slightly decreased, but it
will still be maintained at a high level. However, the number of parameters and the model’s
computation will be reduced significantly. This shows that increasing the convolutional
kernels to improve the model recognition accuracy is costly and leads to a certain degree
of redundancy in the model. By appropriately reducing the number of convolutional
kernels, the model can be significantly streamlined with a slight reduction in the model’s
recognition accuracy in order to achieve the purpose of model lightweighting. Finally, the
Model_gMax model with its reduced number of convolutional kernels (16, 32, 64, 128) was
selected as the final lightweight model, Model_Lite, by combining the average accuracy,
the number of parameters, and the computation amount.

3.2. Comparison of Different Attention Mechanisms

To investigate the impact of different attention mechanisms on the performance of
Model_Lite, three attention mechanisms were selected for comparison: the Self Attention
spatial attention mechanism [29], the ECA channel attention mechanism (Efficient Channel
and Attention) [30], and the CBAM channel spatial hybrid attention mechanism (Con-
volutional Block and Attention Module) [31]. These were compared to the SE channel
attention mechanism used in the original model. The experimental results are presented
in Table 8 below.

Table 8. Experimental results of different attention mechanisms.

Model AM Accuracy/% Params MFLOPs

Model_Lite

SE 91.21 3.2 × 104 51.74
Self Attention 86.16 8.2 × 104 165.50

ECA 90.66 2.7 × 104 51.74
CBAM 90.30 3.3 × 104 52.82

From Table 8, it can be observed that the SE and ECA channel attention mechanisms
achieved optimal performance with a high model recognition accuracy while having
low numbers of parameters and low computation amounts. The CBAM spatial channel
mixing and attention mechanism was second only to the channel attention mechanism.
In contrast, the Self Attention spatial attention mechanism had the lowest recognition
accuracy and the most extensive computation amount and number of parameters. The
reason for this is that channel attention applies weights to the feature map of each channel
to represent its association with crucial information. As the feature map size tends to
decrease with the increase in the number of dimensions in neural networks, channels
represent the feature information of the entire image. Therefore, the channel attention
mechanism can indicate important channel information for the model to effectively improve
the network’s performance.

In contrast, spatial attention is applied to the spatial feature map, and the feature map
used in the model was the only spatial feature map available. As the resolution of the
feature map in a model decreases with the increase in the number of dimensions, spatial
attention cannot provide a better enhancement effect. Therefore, the channel attention
mechanism was better suited for the model in this scenario.

3.3. Visualization of Model Concerns

To better evaluate the improved model proposed in this experiment in terms of its
ability to learn plant disease features, Grad-CAM [32] was employed to visualize the
classification results. This study’s selected data samples from the test set were visualized
using the Model_Lite model and the original ResNet18 network model. The last layer
of the network was utilized for feature visualization. Table 9 shows that the Model_Lite
model with its residual connection had a more accurate and comprehensive range of focus
in terms of the heat map attention in the simple background types of diseases such as d, h,
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and k. The heat map attention of Model_Lite with the SE module in terms of the complex
background of apple leaves was completely in the leaves, which thus avoided interference.
These improvements in the focus of the heat map coincided with the functions of the added
modules, indicating that the above modifications were helpful to the model’s performance.

Table 9. Comparison of Grad-CAM heat maps.

(d) (h) (k) (t) (s)

Original image
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Model_Lite exhibited a significantly smaller number of parameters than the other light-
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3.4. Comparative Lightweight Network Experiments

To better evaluate the performance of the network, mainstream lightweight net-
work models were selected in order to compare them with the final lightweight model,
Model_Lite, and these control network models were the MobileNet [33], ShuffleNet [34],
SqueezeNet [35], and GhostNet [36] series of lightweight network models.

The accuracy and loss curves for each network model are shown in Figure 10, from
which it can be seen that Model_Lite’s curve convergence in the previous 20 rounds
was significantly faster than that of other network models. The curves converged based
on a higher level of accuracy thanks to the lightweight residual module and the final
convolutional pruning operation, which reasonably removed redundant parameters from
the model in order to reduce the complexity of the model and the model inference time,
which in turn helped the model to converge more quickly.
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The experimental results, as presented in Table 10, indicated that Model_Lite achieved
the optimal performance based on the analysis of the average recognition accuracy. It
surpassed the series of lightweight networks discussed earlier. Furthermore, Model_Lite
exhibited a significantly smaller number of parameters than the other lightweight net-
work models listed in the table. Additionally, the computational requirements were only
slightly more prominent when compared to ShuffleNetV2_x0_5 [37] and Ghostnet-0.5x.
Model_Lite’s outstanding performance can be attributed to its utilization of the excellent
network structure inherited from ResNet18. Moreover, reasonable enhancements specific
to the disease characteristics were incorporated. Lastly, by reducing the number of convo-
lutional kernels in the model, the redundancy was effectively eliminated, resulting in a
compact model size that maintained a high recognition accuracy.

Table 10. Experimental results of lightweight network comparison.

Model Accuracy/% Params MFLOPs

Model_Lite 91.21 3.2 × 104 51.74
MobilenetV2 91.03 2.2 × 106 326.23
MobilenetV3 89.92 1.5 × 106 61.47

ShuffleNetV2_x0_5 90.30 3.6 × 106 43.57
ShuffleNetV2_x1_0 90.96 1.3 × 106 151.71

Squeezenet1_0 87.00 7.5 × 105 734.13
Squeezenet1_1 86..91 7.3 × 105 264.35
Ghostnet-0.5x 89.67 1.3 × 106 48.43
Ghostnet-1.0x 91.15 3.9 × 106 154.61

3.5. Comparison of the Accuracy of Complex Background Disease Classification

To further investigate the performance of the models on the dataset, the confusion
matrix for each lightweight model was obtained. Interestingly, it was observed that there
was minimal variation in terms of the recognition accuracy among the models when classi-
fying simple background images in the dataset. As a result, the primary discrepancy in the
average recognition accuracy stemmed from the model’s ability to identify disease images
with miscellaneous backgrounds. Figure 11 illustrates the confusion matrix specifically for
Model_Lite on the validation set.
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As depicted in Figure 11, Model_Lite exhibited a noticeable increase in terms of the er-
ror when classifying diseases with complex backgrounds. However, it still demonstrated a
significant improvement compared to the aforementioned lightweight network models. For
further details, Table 11 presents the precision values for both Model_Lite and the selected
lightweight network models when identifying disease species with complex backgrounds.

Table 11. Accuracy of partial model identification of complex background diseases.

p t s r q n o

Model_Lite 0.69 0.83 0.92 0.95 0.91 0.84 0.74
MobileNetV3 0.64 0.82 0.89 0.94 0.91 0.89 0.67

ShuffleNetV2_x1_0 0.66 0.88 0.92 0.93 0.88 0.90 0.59
SqueezeNet1_0 0.59 0.89 0.90 0.87 0.91 0.90 0.62
SqueezeNet1_1 0.65 0.78 0.90 0.87 0.92 0.78 0.71
GhostNet-0.5x 0.56 0.88 0.92 0.91 0.94 0.85 0.63

According to the results shown in Table 11, it can be seen that in terms of the recogni-
tion of disease species in images with complex backgrounds (p–o), Model_Lite achieved
the highest recognition accuracy in all the four disease categories compared to the other
network structures, and its sample images are shown in Figure 12.
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Figure 12. Sample of Model_Lite’s optimal recognition accuracy.

The sample dataset shown in Figure 12 shows that the backgrounds of these four
diseases were particularly complex, and the leaf diseases were almost integrated with the
surrounding environment. Model_Lite could achieve a higher recognition accuracy in the
four disease categories than the other network models. Combined with the heat map in
Section 3.3, we found that this was mainly due to the model’s inclusion of the SE attention
module between each lightweight residual module, which allowed for the extraction of
features to strengthen the main disease features while ignoring the interference of irrelevant
background factors.

4. Summary and Outlook
4.1. Summary

This study proposed a lightweight plant leaf disease recognition network model based
on ResNet18, which addresses the issues of numerous parameters, extensive computation
amounts, and complexity involved in recognition models. The proposed model improved
the characteristics of the disease recognition process:

1. First, a grouping convolution method was proposed, with the number of groups being
equal to the number of channels in order to reduce the model size. The number of
parameters in the improved model was approximately 1/46 of that in the original
ResNet18 model, and the number of operations was approximately 1/11. Moreover,
the average recognition accuracy was higher by 0.47%.

2. We introduced the SE attention module to address the challenges in recognizing
diseases with complex backgrounds. This module enhanced the interaction of infor-
mation between grouped convolutional units and improved the model’s ability to
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extract the crucial features of the diseases. By incorporating the SE maximal grouping,
the average recognition accuracy of the model was improved by 0.48%.

3. To tackle the issue of losing disease features due to the low resolution of the feature
map, the downsampling operation of the original network was removed in layer 3
and layer 4 of the model. This led to an increased resolution of the feature map of
28 × 28. Furthermore, a cavity volume was incorporated to maintain the exact size of
the network’s receptive field. These modifications significantly enhanced the model’s
performance. The average recognition accuracy of the maximum grouping model
witnessed a 0.53% improvement, with only a slight increase in the computational
effort required.

4. Boosting the residual connection to make the feature extraction more comprehensive
and intricate led to further enhancements in the model’s performance. The average
recognition accuracy of the maximum grouping model was enhanced by 0.19%, while
the same number of parameters and computational resources was maintained.

5. Rational streamlining of the network models was achieved by reducing the number
of convolutional kernels.

Model_Lite, the final model with fewer convolutional kernels, had 1/344 of the
parameters and 1/35 of the computational effort of the original ResNet18 model. Despite a
0.34% decrease in the average accuracy on the experimental dataset, Model_Lite achieved
the highest recognition accuracy of 91.21% compared to lightweight networks such as
MobileNet, ShuffleNet, SqueezeNet, and GhostNet. Moreover, the number of parameters in
the model and the computation amount were significantly less than those of the mainstream
lightweight network models. Deploying the model to a mobile terminal could enable plant
growers to conveniently identify diseases and minimize the economic losses resulting from
untimely disease diagnosis. Additionally, this study’s improved methodology provides a
reference for future research on lightweight network models.

4.2. Outlook

Although this study made some breakthroughs, challenges and limitations remain.
The following are a few core issues we identified and some future research directions:

• Considering the relatively small number of complex background apple disease samples
we constructed on our own, the learning potential of the model is still not fully
unleashed. We plan to expand the dataset further to improve the model’s performance
more comprehensively.

• As the resolution of the feature map increased, the recognition accuracy of the model
was optimized, but the computational effort of the model also increased. For this
reason, subsequent research will focus on this area, seeking strategies to reduce the
computational cost while maintaining accuracy.

• Currently, our model has yet to be deployed on mobile platforms. This is an area to
be developed, and in the future, we will focus on how to make it lightweight and
optimize its performance for the mobile environment.
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