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1. Introduction

Precision operation technology and intelligent equipment in farmland is centered on
farmland cultivation, planting, management, harvesting, and other operations [1–4], integra-
tion of the Internet of Things [5–7], agricultural modeling [5,8–13], and robotics [11,14–17],
and other advanced technologies. In doing so, an intelligent farm equipment system, with
functions such as information collection [8,12,13,16], prescription generation [6,17–19], intel-
ligent control [20,21], and variable implementation, can be built [11]. This system is highly
integrated with agricultural machinery–agronomy–information aspects. It can fully reflect
the concept of crop production in accordance with in situ conditions, intelligent management,
maximizing productivity in farming, and environment protection. The theme of this Special
Issue is cutting-edge research on precision farming and intelligent equipment; twelve research
papers and one review article have been published, which are related to the fields of agricul-
tural sensors, machine–crop–soil interactions, crop production modeling, new agricultural
machinery, and field robots.

2. Papers in this Special Issue

Consumers are increasingly paying attention to the quality and safety of grains, which
are a necessity for human life [22–26]. The review articles [27] discussed the application
and prospect of different sensing mechanisms, such as acoustics and optics, and sensing
equipment used in grain quality detection. Current methods and products that have been
able to realize high-precision detection for different grain quality indicators have been
summarized. Meanwhile, some difficulties in applications have also been analyzed. These
difficulties include the high cost of detection associated with full-waveband instruments
and the unstable results of grain quality detection based on acoustic and thermal character-
istics. The authors believe that the future research of grain quality detection is to reduce
the cost, improve reliability, and realize a fusion of multiple quality indicators.

Lychee branch occlusion and overlap in the natural state is one of the key problems
hindering accurate picking by robots [28,29]. The second paper in this Special Issue [30]
proposed a method of branch segmentation for lychee harvesting based on the improved
DeepLabv3+ routine. It introduces an attention mechanism to improve the feature ex-
traction ability of the model, thereby overcoming the problem arising from lychee branch
segmentation by training the model with a constructed dataset that contains 488 images of
lychee plants and fruits under different conditions. The results of that research promote the
practical application of lychee-picking robots, and in the future attention should be paid to
model lightweighting to increase the speed of model analysis.

Seedling cultivation and transplanting can improve the production and quality of
vegetables [31–33]. To reduce the rate of root damage during automatic transplanting
of cucumber seedlings, the third article of this Special Issue [34] discussed the effects of
biochar, water content, and addition of nitrogen fertilizer on the cultivation of cucumber
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seedlings. The results showed that there were complex interactions among the variables
related to crop growth, and that a preferred mixing ratio of substrate nutrients could
improve water and nitrogen utilization in cucumber seedling cultivation. This article
presents a catalyst for the development of automated transplanting cultivation operations.

Identifying occluded fruits in complex natural environments has always been a key
topic for those with a research interest in image-processing techniques [35–40]. The authors
of [41] used the improved YOLOv5 model for the detection of fruit targets. To reduce
the leakage rate, a small target detection layer and a weighted frame fusion mechanism
were added to the model. In doing so, the relationship between computational speed,
accuracy, and computational volume were balanced to meet the actual needs imposed
during practical fruit detection.

Pest detection is a prerequisite for precise drug application [42–44], and due to the
small size, shape, color, and environmental similarity of some of the pest detection ob-
jects [45], the detection success rate is impaired, and the once high, stable crop yield is
diminished [46–48]. The authors of [49] proposed a small-target detection algorithm to
detect small-sized pests by taking the citrus woodlouse as an example, which improves the
success rate of the model in detecting small targets by introducing an attention mechanism;
the detection accuracy was 2.41% higher than that of the traditional model. This study
provides a new method for the automatic detection of crop pests and diseases.

Reasonable control of the ratio of male to female flowers is key to elevating fruit
quality and increasing yield [50,51], so the rapid counting of male and female flowers is key
to modern farm management. The authors of [52] designed a fast and intelligent male and
female flower detection system; the size of this developed detection model was only 5.91
MB, and the running power consumption was 10 W, which was significantly lower than
that of the server and PC. The detection accuracy and speed met the requirements of male
and female flower detection and statistical applications thereof. The authors can further pay
attention to the integrity of the dataset in future research to improve the generalizability
and stability of their innovative model.

The authors of [53] also conducted research on crop diseases and pests. Differing from
the study published by the authors of [49], these authors considered five common pests
and diseases as their research objectives, and proposed an improved, fully convolutional,
first-level target detection network (FCOS-FL). This network adopted G-GhostNet-3.2 as
the backbone network, realizing a lightweight model with an average accuracy of 91.3% for
detection in the natural state, and the size of the model parameter set was reduced by 45%,
which considerably accelerated its detection ability. Carried in a mobile terminal, it can
quickly and accurately identify crop pests and diseases.

Currently, the measurement of soybean yields is mainly realized by detecting the
number of pods in a single plant, and accurate counting remains a difficult problem due to
the crowding and uneven distribution of pods [54,55]. Based on the VFNet detector, the
authors of [56] proposed a deformable attention recurrent feature pyramid network, which
was trained using a dense soybean dataset, with a final average accuracy of 90.35%. This is
a significant improvement in accuracy compared to the previous detection model, and it
has good stability for soybean yield measurement, with different numbers of single pods,
plant shapes, and densities. In the future, it can be mounted on mobile terminals for field
detection to minimize the workload in soybean breeding.

Nitrogen content is one of the important indicators for the detection of crop nu-
trients [57–59], which can directly affect crop photosynthesis and productivity [60–62].
Unmanned aerial vehicles (UAVs) have the characteristics of being mobile and flexible
and less affected by the terrain [63,64]. The authors of [65] used a UAV platform to detect
nitrogen in walnut trees, and proposed a canopy simulation method that contains spectral
information of walnut tree canopies to realize canopy nitrogen inversion. The results of
this study provide a theoretical basis and method of realization of the rapid detection of
nutrient composition in large fruit trees.
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Variable rate fertilization application is the key to improving fertilizer utilization
efficiency in farmland: as the initial fertility of farmland is non-uniform, the use of uniform
management methods is very likely to cause a decline in crop yield [66–68]. In previous
research conducted by the authors of [69], the authors designed an automatic fertilizer
application system to control the amount of fertilizer applied between different plots
through electromagnetic flow meters. After comparison, the uniformity of fertilizer addition
between plots treated with the designed fertilization system was significantly higher than
that of manual fertilization by farmers. This system can accurately match the fertilization
strategy, thereby improving rates of fertilizer utilization.

Peanut harvesting machinery is typically based on the soil, and the fruit density is
different [70,71], so the choice of an appropriate fan speed and vibrating screen to complete
the fruit cleaning is important; however, current studies seldom consider the adhesion
characteristics between the soil peds, which leads to a poor clearing effect. The authors
of [72] coupled discrete element and fluid simulation modules, conducted experimental
research on different soil volumes and soil moisture contents, and optimized the appropriate
suspension speed to improve the cleaning effect of peanut harvesting machinery.

Weed management is one of the most important tasks in the crop production man-
agement chain [73–75]. Due to the fact that some weeds are similar in appearance to the
crop and are obscured by leaves of the crop itself, they are difficult to detect and recog-
nize when using weed control equipment [76,77]. The authors of [78] proposed a weed
detection model based on the improved Swin-Unet for common weeds in corn fields. This
model can efficiently and accurately identify corn and weeds in complex corn fields and
retain its effectiveness when it is used to identify weeds under occlusion conditions, with a
single-frame processing time of 5.28 × 10−2 s. It can also dynamically detect weeds during
the operation of weeding robots.

Pest protection for traditional fruit tree orchards is mainly achieved through manual
spraying, and the unified management method is used for fruit trees with different growth
conditions, which leads to low spraying efficiencies [79–81], sometimes leading to the
poisoning of operators and nearby staff. The authors of [82] proposed a fruit tree canopy
segmentation model against a complex orchard background to realize precise spraying
of medicinal pesticidal solutions. This is convenient for calculating the canopy size and
shape, and the image is captured using a RGB-D camera, which reduces interference arising
from the image background during segmentation via depth information. This lightweight
model can run directly in the embedded system, which provides a reference for the precise
operation of the orchard-spraying robot.

3. Conclusions

The articles in this Special Issue cover new techniques, methods, and equipment for
precision field operations. The current research into precision operating techniques and
intelligent equipment in farmland mainly focuses on the use of information technology
and intelligent control technology [83,84], and on the integration of agricultural production
management models to design or improve agricultural machinery and equipment [85,86],
resulting in results that contribute to the development of high-yield, high-quality, high-
efficiency, ecologically sound, and safe modern agriculture, and the promotion of more
intelligent agriculture. Suitable for precise cultivation, planting, management, harvesting,
and other operations, “crop-soil-agricultural machinery” system interaction mechanisms
and corrective model research, as well as interactions with the seeds, fertilizer, water, chem-
icals, precise control of the soil, crops, and weeds, and agricultural information-sensing
methods and equipment breakthroughs [87,88], we can conclude that this will improve the
productivity of fertilizers and chemicals, significantly increasing crop productivity, while
reducing labor costs and protecting the farmland environment. However, some of these
research results require further elucidation and analysis; future research should investigate
the instability of detection models against complex backgrounds [52], the high cost of
making the sensing equipment [27], etc.
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