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Abstract: The yield and quality of rice are closely related to field management. The automatic
identification of field abnormalities, such as diseases and pests, based on computer vision currently
mainly relies on high spatial resolution (HSR) images obtained through manual field inspection.
In order to achieve automatic and efficient acquisition of HSR images, based on the capability of
high-throughput field inspection of UAV remote sensing and combining the advantages of high-
flying efficiency and low-flying resolution, this paper proposes a method of “far-view and close-look”
autonomous field inspection by unmanned aerial vehicle (UAV) to acquire HSR images of abnormal
areas in the rice canopy. First, the UAV equipped with a multispectral camera flies high to scan the
whole field efficiently and obtain multispectral images. Secondly, abnormal areas (namely areas
with poor growth) are identified from the multispectral images, and then the geographical locations
of identified areas are positioned with a single-image method instead of the most used method of
reconstruction, sacrificing part of positioning accuracy for efficiency. Finally, the optimal path for
traversing abnormal areas is planned through the nearest-neighbor algorithm, and then the UAV
equipped with a visible light camera flies low to capture HSR images of abnormal areas along the
planned path, thereby acquiring the “close-look” features of the rice canopy. The experimental results
demonstrate that the proposed method can identify abnormal areas, including diseases and pests,
lack of seedlings, lodging, etc. The average absolute error (AAE) of single-image positioning is
13.2 cm, which can meet the accuracy requirements of the application in this paper. Additionally,
the efficiency is greatly improved compared to reconstruction positioning. The ground sampling
distance (GSD) of the acquired HSR image can reach 0.027 cm/pixel, or even smaller, which can
meet the resolution requirements of even leaf-scale deep-learning classification. The HSR image
can provide high-quality data for subsequent automatic identification of field abnormalities such as
diseases and pests, thereby offering technical support for the realization of the UAV-based automatic
rice field inspection system. The proposed method can also provide references for the automatic field
management of other crops, such as wheat.

Keywords: unmanned aerial vehicle (UAV); rice canopy; abnormal area; single-image positioning;
high spatial resolution (HSR); autonomous field inspection; diseases and pests

1. Introduction

Rice is one of the most important food crops in China and even in the world. Its
production affects the food security of the country [1–3], and the yield and quality of rice
are closely related to field management [4,5]. In recent years, in order to improve the
efficiency and quality of field management, researchers in the agricultural field have devel-
oped various types of automatic equipment (such as self-driving agricultural machinery,
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agricultural UAVs, etc.) to perform management actions such as fertilization and pesti-
cide application [6–8]. However, field management decisions are currently mainly made
through manual field inspections. In order to detect diseases and pests, water and fertilizer
management problems, and other issues in time, agricultural experts regularly observe
the rice fields according to the established route. Generally, they first look at the whole
from a distance, find abnormalities, then look closer at the details and record. Manual field
inspection is not only labor-intensive and inefficient but also depends on experience and
has high subjectivity.

With the mature development of UAV and sensor technology and the popularization
of agricultural UAVs, UAVs can be equipped with various sensors for multi-modal and
high-throughput field inspection [8,9], and those equipped with multispectral cameras
are now especially widely used to achieve precision agriculture [10–13]. Compared with
manual field inspection, the advantages of UAV field inspection are shown in Table 1. In
addition, the development of artificial intelligence technology provides a “brain” for field
management decision making [14], among which the development of computer vision
technology provides technical means for automatically identifying abnormal conditions in
the field, such as diseases and pests [15–22].

Table 1. Comparison between manual field inspection and UAV field inspection.

Manual Field Inspection UAV Field Inspection

High labor intensity, low efficiency, and low
frequency

Easy to automate, high efficiency, and high
frequency

Visual observation,
limited field of view, and high subjectivity

Machine recognition, wide field of view, and
high objectivity

Difficult to go to the ground in the middle and
later stages of crop growth Available in the whole growth period of crops

Difficult to record and trace Easy to record and trace

Su et al. [23] proposed a method for identifying wheat yellow rust by learning from
multispectral UAV imagery, and the experimental results indicated that (1) good classifi-
cation performance (with an average precision, recall, and accuracy of 89.2%, 89.4%, and
89.3%) was achieved; (2) the top three vegetation indices (VIs) for separating healthy and
yellow rust infected wheat plants were the Ratio Vegetation Index (RVI), Normalized Dif-
ference Vegetation Index (NDVI), and Optimized Soil-Adjusted Vegetation Index (OSAVI),
while the top two spectral bands were Near-Infrared (NIR) and Red. A high-throughput
method for above-ground estimation of biomass in rice using multispectral imagery cap-
tured at different scales of the crop was proposed by Devia et al. [24], in which seven VIs
were calculated to model the relationship, and the results have shown that the proposed
approach was able to estimate the biomass of large areas of the crop with an average
correlation of 0.76. Kim et al. [25] used the VI extracted from UAV multispectral imagery
for crop damage assessment after chemical exposure, and the results demonstrated that the
NDVI was capable of reflecting the plant response to chemical exposure and was feasible
as an alternative for crop monitoring, damage assessment after chemical exposure, and
yield prediction. Wang et al. [12] studied the estimation of the nitrogen status of paddy rice
at the vegetative phase using UAV-based multispectral imagery and found an index-based
model which correlated well with the N-index values. Many studies have shown that
the VI based on UAV multispectral remote sensing images can be used to monitor the
growth status of rice and other crops [10–13,23–26]. However, there is a contradiction in
the low-altitude remote sensing of UAVs: by flying high, the efficiency is high, but the
image spatial resolution is low; by flying low, the image spatial resolution is high, but the
efficiency is low. In addition, multispectral remote sensing has the problem of the same
spectrum and foreign objects (namely different abnormalities with the same appearance in
remote sensing images), which makes it difficult to discriminate different abnormalities [26].
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Therefore, exploring how to efficiently inspect the field to acquire rich and useful data
for determining whether crop growth exhibits abnormal conditions and even identifying
specific types of abnormalities is the objective of this study.

State-of-the-art large-scale deep learning frameworks have been tested by Rahman
et al. [15] to investigate the effectiveness in rice plant disease and pest identification from
images collected from real-life environments, while they proposed a novel two-stage light-
weight Convolutional Neural Network (CNN) highly effective for mobile device based
rice plant disease and pest detection, which could be an effective tool for farmers in a
remote environment. Chen et al. [16] have combined the DenseNet and inception module
to achieve an average predicting accuracy of no less than 94.07% in the public dataset.
Shrivastava et al. [17] used VGG16 for classifying the diseases from the 1216 images of
seven classes and achieved 93.11% accuracy. Patil et al. [18] proposed a novel multi-modal
data fusion framework to diagnose rice diseases using the numerical features extracted
from agro-meteorological data collected from sensors and the visual features extracted from
the captured rice images, and the experimental results demonstrated that the proposed
framework outperformed the outcome of unimodal frameworks. For rapid detection of
nutrient stress, Anami et al. [19] used VGG16 for different biotic and abiotic stress detection
in rice, while Wang et al. [20] combined CNN and reinforcement learning for NPK detection.
Dey et al. [21] have evaluated the performance of CNN-based pre-trained models for the
efficient detection of biotic stressed rice leaves caused by two fungal diseases, one insect
pest, and three abiotic stressed leaves caused by NPK deficiency by using both public and
field data collected, respectively, from laboratory and real field conditions. Hu et al. [22]
proposed a rice pest identification method based on a CNN and migration learning, which
effectively improved the recognition accuracy of pest images and significantly reduced
the number of model parameters. From the above literature, it can be seen that significant
achievements have been made in the automatic identification of field abnormalities, such
as diseases and pests, based on visible light images [15–22,26]. However, the training and
application of the recognition model all rely on HSR images, currently mainly obtained
manually, which is not only inefficient but also labor-intensive. Therefore, the automatic
acquisition of HSR images is also the starting point of this research.

In general, UAVs have been widely used in the field of agriculture, and UAVs equipped
with multispectral cameras have greatly improved the efficiency of field inspections. How-
ever, if UAVs fly high, the image spatial resolution will be low, and if UAVs fly low, the
efficiency will be low. In addition, automatic recognition relies on HSR images. If we can
simulate the method of manual field inspection, “first view far then look close”, and com-
bine the advantages of high-flying and low-flying, or specifically, first preliminarily identify
abnormal areas efficiently at a high altitude and then accurately identify abnormal areas at
a low altitude, both efficiency and precision can be achieved. Based on the above idea, we
propose an automatic field inspection system, as shown in Figure 1. Based on this system, a
method for acquiring HSR images of rice canopy abnormal areas by autonomous UAV field
inspection is proposed in this paper. First, the UAV equipped with a multispectral camera
flies high to scan the whole field efficiently and obtain multispectral images. Secondly,
abnormal areas (namely areas with poor growth) are identified from the multispectral
images, and then the geographical locations of identified abnormal areas are positioned
with a single-image method instead of the most used method of reconstruction, sacrificing
part of positioning accuracy for efficiency. Finally, the optimal path for traversing abnormal
areas is planned through the nearest-neighbor algorithm, and then the UAV equipped
with a visible light camera flies low to capture HSR images of abnormal areas along the
planned path.
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Figure 1. Automatic field inspection system.

2. Materials and Methods

The natural rice field environment is very complex, and it is necessary to reduce back-
ground disturbances such as soil. In addition, the jointing booting stage and heading and
flowering stage are the main control periods for rice diseases and pests [27], and VIs during
this period are also relatively stable [28]. Therefore, the method in this paper is mainly
applied to the jointing booting stage and heading and flowering stage of rice. According to
previous research results, the NDVI has a strong linear or exponential relationship with
the leaf area index (LAI), biomass, leaf chlorophyll content, etc. [25,29], which means the
NDVI can be used to judge the growth status of crops. The main processing flow of the
method in this paper is shown in Figure 2: far view with multispectral UAV; identification
of abnormal areas; positioning of the center point of the abnormal area; path planning; and
close look with visible light UAV.

2.1. Far View with Multispectral UAV

A UAV equipped with a multispectral camera, GNSS, IMU, and gimbal is used to
perform an aerial orthophoto scanning at a high altitude on the target field, as shown in
Figure 3, and the position and orientation information obtained from GNSS and IMU is
recorded in the multispectral images for positioning. A multispectral image taken by DJI
Phantom 4 Multispectral (P4M) is shown in Figure 4, including visible light (RGB), blue (B),
green (G), red (R), red edge (RE), and NIR.

2.2. Identification of Abnormal Areas

Abnormal conditions such as diseases and pests, lack of fertilizer, lodging, etc., usually
lead to poor crop growth [30], and the main purpose of field inspection is to find abnormal-
ities. Therefore, the idea of this paper is to regard the area with poor growth as a suspicious
abnormal area and then accurately identify the area at a low altitude to achieve both ef-
ficiency and precision. As one of the most widely used VIs currently, the NDVI is used
to judge the growth status of rice in this paper [31,32]. In actual production, due to noise
interference from soil, leaf variations, shadows, etc., in the natural rice field environment,
the abnormality of the rice canopy, especially the early symptoms of diseases and pests,
usually appears as scattered points rather than blocks in the low-spatial-resolution NDVI
obtained at a high altitude, which makes it difficult to extract effective regional features
from the NDVI [26]. To address this problem, from the perspective of probability and
statistics, this paper first identifies the abnormal points from the NDVI and then counts the
dense areas of abnormal points to identify the abnormal areas. As such, the identification
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of abnormal areas is transformed into the detection of abnormal point-dense areas in the
NDVI. Based on the above idea, this paper proposes a method for identifying abnormal
areas based on the NDVI. The detailed process is shown in Figure 5:
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1. The multispectral images obtained are traversed to calculate NDVIs with Equation (1) [32].
One of the results is shown in Figure 6b.

NDVI =
NIR− R
NIR + R

(1)

2. In actual production, due to many factors such as different varieties, different growth
periods, different management, and different row spacing and plant spacing, it is
impossible to obtain a fixed segmentation threshold T, used to judge an NDVI lower
than T as poor growth. Through the statistical analysis of the NDVI, it is found that
the histogram of the rice canopy NDVI basically conforms to the bell curve shown
in Figure 7, which reminds us of the normal distribution. As a strict mathematical
distribution is not required in the engineering application of this paper, it can be
assumed that the rice canopy NDVI is approximately normally distributed.
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Normal distribution, also known as Gaussian distribution, is a natural phenomenon,
and many events are normally distributed, which is why it is very important in the fields
of mathematics, physics, engineering, etc. If the random variable X follows a normal
distribution, it can generally be recorded as follows:

X ∼ N(µ, σ2) (2)

Its probability density function is as follows:

ƒ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3)

where µ is the mathematical expectation value (namely mean value), which determines the
location of the distribution; σ is the standard deviation, which determines the magnitude
of the distribution.
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Assuming that there are n points (x1, x2, · · · , xn) subject to a normal distribution,
the mean value µ and standard deviation σ are, respectively:

µ = ∑n
i=1 xi/n (4)

σ =
√

∑n
i=1 (xi − µ)2/n (5)

In outlier detection based on normal distribution, points outside the value region
µ± 3σ can be marked as outliers [33].

As the above normal distribution theory, µ− 3σ can be adaptively used as the segmen-
tation threshold T for abnormal point detection. In other words, points (namely pixels) with
an NDVI less than T are judged as abnormal points with poor growth, thereby obtaining a
binary image. One of the binary images is shown in Figure 6c.

3. Based on the characteristics of random noise, the median filter is used to filter the
above binary images to reduce the noise interference caused by soil, shadows, etc. [34].
One of the results is shown in Figure 6d.

4. Each filtered binary image is traversed with a sliding square window of 1 m2 and
50% overlap, while the proportion n of abnormal points in the window is counted.
The 1 m2 square window can be calculated with the GSD (namely, the actual physical
distance each pixel represents).

5. A preset discrimination threshold, N, is used to discriminate between normal and
abnormal windows. If n > N, the window is judged as abnormal, while the corre-
sponding area is recorded as an abnormal area with poor growth. Since adjacent
abnormal areas are usually caused by the same reason, the neighborhood method is
used for deduplication, as shown in Figure 5, to reduce the same adjacent abnormal
areas and improve the system efficiency. As a result, only one abnormal area with the
largest proportion, n, is retained in the same neighborhood.

2.3. Positioning of the Center Point of the Abnormal Area

In agricultural remote sensing, the current most used positioning method is using
photogrammetry technology to reconstruct a two-dimensional (2D) map and then perform
positioning (such as DJI Terra) [35]. However, this method requires high along-track and
cross-track overlap in the orthophoto scanning mentioned in Section 2.1. The generated
large volume of data and the intensive computational requirements for reconstruction
require high-performance computers or even computer clusters for processing, which is
not only time-consuming but also currently requires human involvement. In addition,
the efficiency of data acquisition and map reconstruction in the reconstruction method is
insufficient to support high-frequency field inspections of large farms.

In aerial photogrammetry, the collinearity equation is one of the fundamental formulas
that describes the mathematical relationship between the object point, image point, and
projection center (typically the lens center), stating that they lie on the same line [36]:

x− xo = − f
a1(XA − Xs) + b1(YA −Ys) + c1(ZA − Zs)

a3(XA − Xs) + b3(YA −Ys) + c3(ZA − Zs)
(6)

y− yo = − f
a2(XA − Xs) + b2(YA −Ys) + c2(ZA − Zs)

a3(XA − Xs) + b3(YA −Ys) + c3(ZA − Zs)
(7)

where (x, y) are the image point coordinates in the image plane; xo, yo, and f are the internal
orientation parameters of the camera; (Xs, Ys, Zs) are the object space coordinates of the
camera position; (XA, YA, ZA) are the object space coordinates of the object point; ai, bi, and
ci (i = 1, 2, 3) are the nine direction cosines, composed of the three exterior orientation angle
parameters ψ, ω, and κ of the image, as shown in Equation (8).
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R =

cos ψ 0 − sinψ
0 1 0

sin ψ 0 cos ψ

1 0 0
0 cos ω − sinω
0 sin ω cos ω

cos κ − sinκ 0
sin κ cos κ 0

0 0 1

 =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 (8)

Among these parameters, xo, yo, and f are fixed camera parameters; Xs, Ys, and Zs can be
measured by GNSS; and ψ, ω, and κ can be measured by IMU. If ZA (namely, the elevation)
is known, the object point (XA, YA) corresponding to the image point (x, y) can be obtained
by the collinearity Equations (6) and (7). In other words, single-image positioning can be
achieved by combining the digital elevation model (DEM) and the collinearity equation.

In order to reduce data volume and computational requirements and improve the
overall efficiency and automation performance of the system, the positioning approach
in this paper is to sacrifice part of positioning accuracy for system efficiency. First, the
orthophoto scanning mentioned in Section 2.1 is performed with low overlap; secondly,
taking advantage of prior knowledge that the rice canopy is approximately flat [37], the
position and orientation information recorded in the orthophoto is used to achieve single-
image positioning based on the above theory. In this paper, the center point p of the
abnormal area is chosen as the positioning point. The reducing overlap schematic diagram
and the single-image positioning schematic diagram are shown in Figure 8a,b, respectively.
The detailed process of single-image positioning is shown in Figure 9:
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1. As shown in Figure 10, the GSD is calculated as follows using the flight height h and
camera parameters:

GSD =
flight height h× sensor size
focal length × image size

(9)

2. Based on the GSD, the coordinates (x, y) of the center point p in the Cartesian co-
ordinate system XOY with the image center point O as the origin are calculated:

x = image plane coordinate in x direction×GSD (10)

y = image plane coordinate in y direction×GSD (11)
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3. The coordinates (x′, y′) of the center point p in the northeast Cartesian coordinate
system X′OY′ with the image center point O as the origin are calculated with the yaw
angle θ from the orientation information recorded in the image:

x′ = x cos θ + y sin θ (12)

y′ = y cos θ − x sin θ (13)

where Y’(N) and X’(E) in Figure 8b point to the true north (N) and true east (E)
directions, respectively. In general, the coordinates in the non-northeast coordinate
system are mapped to the northeast coordinate system using only the yaw angle θ.

4. From the recorded position information in the image, the latitude and longitude of
the image center point O are obtained, and the corresponding projected coordinates
(xo, yo) can be obtained by applying the Gauss–Krüger projection [38]. Therefore, the
projected coordinates of the center point p can be calculated as (xo + x′, yo + y′). Finally,
the latitude and longitude of point p can be obtained by performing the inverse
Gauss–Krüger projection.
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2.4. Path Planning

Since there are usually multiple identified and positioned abnormal areas in natural
fields, it is necessary to plan a path to efficiently traverse these areas. This is a typical
traveling salesman problem (TSP), which belongs to the class of NP-complete problems [39].
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There is no perfect algorithm that can solve the optimal path in polynomial time. The
mathematical description of TSP is as follows:

G(V, E) (14)

V = {1, 2, · · · , n} (15)

E = {(i, j)|i, j ∈ V} (16)

where G is a complete undirected graph composed of n vertices; V is the set of vertices;
and E is the set of edges. The objective is to find an optimal vertex arrangement l =
(v1, v2, · · · , vn, v1) that minimizes the following:

ƒ(l) = ∑n
k=1 dvkvk+1 (17)

where dvkvk+1 is the edge weight from vertex vk to vertex vk+1.
In order to reduce computational complexity, this paper adopts a simple nearest-

neighbor algorithm to solve the approximate optimal path [40]. Although the nearest-
neighbor algorithm is straightforward, it does not guarantee finding the optimal path. The
algorithm flow is illustrated in Figure 11. Starting from the initial vertex v1, at each step,
the nearest unvisited vertex is selected as the next destination vertex vk+1, until all vertices
have been visited once before finally returning to the initial vertex v1. Here, the distance
(namely the edge weight dvkvk+1 ) is defined as the Euclidean distance of the Gauss–Krüger
projected coordinates, which is calculated as Equation (18).

dvkvk+1 =

√
(xk+1 − xk)

2 + (yk+1 − yk)
2 (18)
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2.5. Close Look with Visible Light UAV

Finally, a UAV equipped with a visible light camera, GNSS, IMU, and gimbal is used
to autonomously fly along the planned path and capture HSR images of the abnormal areas
at close range, as shown in Figure 12. GNSS is used for navigation and positioning to the
center of the abnormal area, while IMU and gimbal control the shooting angle. In order to
obtain rich visual features, it is preferable to use a high-definition telephoto camera.
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3. Results
3.1. Experiments

To verify the feasibility and effectiveness of the proposed method, the entire process
was implemented using the Python programming language. Experiments were conducted
in the Simiao Rice Modern Agricultural Industrial Park (as shown in Figure 13), Zhucun
Street, Zengcheng District, Guangzhou City, Guangdong Province, China, using DJI UAVs
P4M and Mavic 3 Thermal (M3T) (as shown in Figure 14 and introduced in Table 2). The
rice varieties included 19 Xiang and Xiangya Xiangzhan. In addition, the experiments took
place from 1 May to 30 June 2023, between 10:00 a.m. and 04:00 p.m., under clear weather
conditions with no wind or a light breeze.

Table 2. Function introduction of P4M and M3T.

UAV

Camera
Gimbal

(Ctrl Pitch)

GNSS (RTK)
Psn Accuracy

IMU
Bias

Type FOV
(◦)

Focal Len
(mm)

Image
Resolution

Sensor
Size

(mm)
Planar Elevation ACCL Gyro

P4M MS 62.7 5.74 1600 × 1300 4.96 × 3.72 [−90◦, +30◦] 1.0 cm
+1 ppm

1.5 cm
+1 ppm 0.002 0.001

M3T VL 15 30 4000 × 3000 6.4 × 4.8 [−90◦, +35◦] 1.0 cm
+1 ppm

1.5 cm
+1 ppm 0.002 0.001

M3T is equipped with 3 cameras (wide-angle camera, telephoto camera, and thermal imaging camera), and
the M3T camera introduced in Table 2 refers to the telephoto camera. MS—multispectral; VL—visible light;
FOV—field of view; len—length; ctrl—controllable; psn—positioning; and ACCL—accelerometer.

Experimental procedures and parameter settings were as follows:

1. Utilizing the mapping aerial photography function of P4M, the experimental fields
were orthographically scanned (camera parameters are introduced in Table 2) at a
flight height of 30 m with 10% overlap of both along track and cross track. The gimbal
pitch angle was set to −90◦, capturing multispectral images at equidistant intervals
with a time interval of 2 s.
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2. Following the steps outlined in the P4 Multispectral Image Processing Guide (https://dl.
djicdn.com/downloads/p4-multispectral/20200717/P4_Multispectral_Image_Processing_
Guide_EN.pdf, accessed on 1 April 2023), the NDVI was calculated to identify ab-
normal areas using the proposed method. The size of the median filter was set to
5 × 5, the discrimination threshold N was set to 2%, and the size of the deduplication
neighborhood was set to 9 × 9 (i.e., only one abnormal area was retained within a
range of 2 m).

3. The geographical location of the center point of the identified abnormal area was de-
termined using the single-image positioning method proposed in this paper, followed
by path planning using the nearest-neighbor algorithm.

4. Finally, the planned path and photography actions were executed using the waypoint
flight function of M3T, with a flight height of 5 m, flight speed of 5 m/s, and a
telephoto camera selected (camera parameters are introduced in Table 2).
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In addition, to verify the accuracy of single-image positioning, an experiment was
conducted at the Huashan District Football Field of South China Agricultural University,
Tianhe District, Guangzhou City, Guangdong Province, China, as shown in Figure 15.
A self-made 1 m × 1 m black-and-white positioning board was used as a marker. The
latitude and longitude of the center point of the positioning board were measured as the
true coordinates using the Huace Zhonghui i70 intelligent RTK receiver (planar accuracy:
±(2.5 + 0.5 × 10−6 × D) mm and elevation accuracy: ±(5 + 0.5 × 10−6 × D) mm). At
a flight height of 30 m, the P4M UAV was moved to position the positioning board in
different locations within the images (center, sides, corners, etc.). A total of 30 images
were captured, and the proposed single-image positioning method was used to calculate
the latitude and longitude of the center point of the positioning board. The results were
compared with the true coordinates to calculate the AAE. Furthermore, 10 positioning

https://dl.djicdn.com/downloads/p4-multispectral/20200717/P4_Multispectral_Image_Processing_Guide_EN.pdf
https://dl.djicdn.com/downloads/p4-multispectral/20200717/P4_Multispectral_Image_Processing_Guide_EN.pdf
https://dl.djicdn.com/downloads/p4-multispectral/20200717/P4_Multispectral_Image_Processing_Guide_EN.pdf
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boards were placed on the football field, and the center point coordinates were measured as
the true coordinates, also using the Huace Zhonghui i70 intelligent RTK receiver. The P4M
UAV performed mapping aerial photography three times at a flight height of 30 m (80%
along-track overlap, 70% cross-track overlap, and −90◦ of gimbal pitch angle, capturing
images at equidistant intervals with a time interval of 2 s). The DJI Terra software (Version
3.6.0) was used to reconstruct three 2D maps, then 30 center point coordinates of the black-
and-white positioning boards were determined on the 2D maps and compared with the
true coordinates to calculate the AAE.
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Figure 16. Identification results of abnormal areas (marked by red box).

The planned path obtained during the experiment conducted in the field shown in
Figure 17 is depicted by the red dashed line in the figure. In addition, the blue dots represent
the center points of the identified abnormal areas, “Start & End” indicates the takeoff and
landing points of the UAV, and the arrows indicate the direction of the path.
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4. Discussion

The experimental results indicate that the proposed method successfully identifies
abnormal areas, including symptomatic diseases and pests, lack of seedlings, lodging,
etc. As shown in Figure 16, bacterial blight, lack of seedlings, and lodging are depicted,
and only one abnormal area with the largest proportion n is retained within a 2 m range,
demonstrating the feasibility and effectiveness of the method. Additionally, by adjusting
the discrimination threshold N, the sensitivity of abnormal detection can be controlled. A
smaller N value increases sensitivity but may result in misidentification of non-abnormal
areas, reducing system efficiency. Conversely, a larger N value decreases sensitivity and may
lead to missed detection of early abnormalities. The size of the deduplication neighborhood
can be adjusted to retain only one abnormal area with the largest proportion n within a
certain range, thereby controlling the number and density of abnormal areas that require
low-altitude traversal.

In the approximately flat football field, the AAE of the single-image positioning
method proposed in this paper is 13.2 cm, while the AAE of the reconstruction positioning
is 4.3 cm. In the application of this paper, the real size of abnormal areas is usually much
larger than 13.2 cm, indicating that the positioning accuracy meets the requirements of
the application. Generally, the efficiency and accuracy comparison between single-image
positioning and reconstruction positioning are shown in Table 3. Although there is a slight
loss in positioning accuracy within an acceptable range, the flight efficiency is greatly
improved, the number of images is significantly reduced, and the time-consuming process
of reconstruction is eliminated, which proves the feasibility and effectiveness of single-
image positioning.
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Table 3. Efficiency and accuracy comparison between single-image positioning and reconstruction
positioning.

UAV
FH
and

GSD

Captured
Area

(mu/img)
Method

Overlap
Flight Eff

(s/mu)

No. of
Imgs

(imgs/mu)

Recon
Time
(s/mu)

AAE of
Psn
(cm)

Along
Track (%)

Cross
Track (%)

P4M
30 m

1.59 cm/pixel 0.80
Recon 80 70 53.88 20.41 53.84 4.3

Sgl-img 10 10 4.00 1.44 \ 13.2

The reconstruction time is measured in HP ZBook 15 G6 (64.0 GB RAM, Intel(R) Core(TM) i7-9750H CPU @
2.60 GHz); 1 mu ≈ 666.67 m2. FH—flight height; Sgl-img—single-image; Recon—reconstruction; eff—efficiency;
No.—number; and psn—positioning.

According to Equation (9) and Table 2, GSDs of the Figures 16 and 18 are 1.59 cm/pixel
and 0.027 cm/pixel, respectively, which indicates that the spatial resolution is greatly
improved when flying at a lower altitude compared to a higher altitude. At the leaf and
canopy scale, many studies have shown that it is possible to accurately capture diseases
and pests damage characteristics on rice leaves by acquiring HSR images [26]. In addition,
the input image size for most used deep-learning classification models is 224 pixels ×
224 pixels [15–22], and the width of mature rice leaves typically ranges from 2 cm to
3 cm [41]. If extracting an image patch of 224 pixels × 224 pixels from the HSR images
obtained by the proposed method, the rice leaf will occupy approximately 74 to 111 pixels,
accounting for about 1/3 to 1/2 of the image patch. Therefore, we can extract image patches
from the HSR images without downsampling to perform even leaf-scale deep-learning
classification and identify specific types of diseases and pests.

5. Conclusions

In summary, the proposed method in this paper enables autonomous field inspection
by UAVs to acquire HSR images of abnormal areas in the rice canopy. The HSR images can
provide high-quality data for subsequent automatic identification of field abnormalities
such as diseases and pests, thereby offering technical support for the realization of the
UAV-based automatic rice field inspection system. The experimental results demonstrate
that the proposed method can identify abnormal areas, including diseases and pests, lack
of seedlings, lodging, etc. The AAE of single-image positioning is 13.2 cm, which meets
the accuracy requirements of the application in this paper. Additionally, the efficiency is
greatly improved compared to reconstruction positioning. The GSD of the acquired HSR
image can reach 0.027 cm/pixel, or even smaller, which meets the resolution requirements
of even leaf-scale deep-learning classification.

The proposed method in this paper can also provide references for the automatic
field management of other crops, such as wheat. Additionally, the method for identifying
and positioning abnormal areas in this paper can provide targeted objectives for other
field operations, such as ground-based crop phenotyping, thereby reducing workload and
labor intensity.

In future research work, we will study the automatic identification of diseases and
pests based on HSR images captured by UAVs, which will provide further technical support
for the realization of the UAV-based automatic rice field inspection system. Additionally,
we will explore the feasibility and effectiveness of applying the proposed method to other
crops, such as wheat and peanuts.
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