The Changes in Cropland Pattern Enhanced Carbon Storage in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sets and Pre-Processing
2.2.1. Land-Use Category and Area
2.2.2. Annual Area of Cropland Change
2.3. Calculation of Changes in Carbon Storage Induced by Cropland Change
2.3.1. Calculation of Change in Biomass Carbon Storage
2.3.2. Calculation of Changes in Soil Carbon Storage
3. Results
3.1. Spatio-Temporal Dynamics of Cropland Change
3.1.1. Temporal Dynamics of Cropland Change
3.1.2. Spatial Variability in Cropland Change
3.2. Effects of Cropland Change on Carbon Storage
3.2.1. Changes in Carbon Storage over Time
3.2.2. Carbon Storage in Different Types of Cropland Conversion
3.2.3. Spatial Variability in Carbon Storage
4. Discussion
4.1. Characteristics of Cropland Change from 2000 to 2020
4.2. Effects of Cropland Change on Carbon Storage
4.3. Strengths and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lembi, R.C.; Cronemberger, C.; Picharillo, C.; Koffler, S.; Sena, P.H.A.; Felappi, F.C.; Moraes, A.R.; Arshad, A.; Santos, J.P.; Mansur, A.V. Urban expansion in the Atlantic Forest: Applying the Nature Futures Framework to develop a conceptual model and future scenarios. Biota Neotrop. 2020, 20, e20190904. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Zaehle, S. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; p. 28. [Google Scholar]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food. 2022, 3, 19–28. [Google Scholar] [CrossRef]
- Huang, Y.; Li, F.; Xie, H. A scientometrics review on farmland abandonment research. Land 2020, 9, 263. [Google Scholar] [CrossRef]
- Molotoks, A.; Stehfest, E.; Doelman, J.; Albanito, F.; Fitton, N.; Dawson, T.P.; Smith, P. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Chang. Biol. 2018, 24, 5895–5908. [Google Scholar] [CrossRef] [PubMed]
- Spawn, S.A.; Lark, T.J.; Gibbs, H.K. Carbon emissions from cropland expansion in the United States. Environ. Res. Let. 2019, 14, 045009. [Google Scholar] [CrossRef]
- Johnson, B.G.; Zuleta, G.A. Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agric. Ecosyst. Environ. 2013, 181, 31–40. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Zhao, X.; Wang, X.; Zuo, L.; Wen, Q.; Ling, J.; Bin, S. Chinese cropland losses due to urban expansion in the past four decades. Sci. Total Environ. 2019, 650, 847–857. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zhao, X.; Wang, X.; Wu, W.; Yi, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. The changing patterns of cropland conversion to built-up land in China from 1987 to 2010. J. Geogr. Sci. 2018, 28, 1595–1610. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Z.; He, C.; Gou, S.; Bai, Y.; Wang, Y.; Shen, M. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 2020, 15, 084037. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Xiang, X.; Fan, Y.; Liu, J.; Shan, W.; Zhou, Y. Carbon emissions induced by farmland expansion in China during the past 300 years. Sci. China Earth Sci. 2019, 62, 423–437. [Google Scholar]
- He, Q.; Zeng, C.; Xie, P.; Liu, Y.; Zhang, M. An assessment of forest biomass carbon storage and ecological compensation based on surface area: A case study of Hubei Province, China. Ecol. Indic. 2018, 90, 392–400. [Google Scholar]
- Shi, L.; Sun, J.; Lin, J.; Zhao, Y. Factor decomposition of carbon emissions in Chinese megacities. J. Environ. Sci. 2019, 75, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, F.; Zhang, Q.; Li, Z.; Tian, C.; Qiao, Y.; Qiao, Y.; Du, K.; Cheng, H.; Chen, G.; et al. Soil Quality Improvement with Increasing Reclamation Years in the Yellow River Delta. Agronomy 2023, 13, 2576. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Duan, C. Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China. Sustainability 2023, 15, 10314. [Google Scholar]
- Li, Z.; Tang, Q.; Wan, X.; Chen, B.; Sun, C.; Xin, X. Grassland carbon change in Northern China due to contemporary and future land use and land cover change. Agronomy 2023, 13, 2180. [Google Scholar] [CrossRef]
- Qiu, L.; Wei, X.; Zhang, X.; Cheng, J.; Long, T. Soil organic carbon losses due to land use change in a semiarid grassland. Plant Soil. 2012, 355, 299–309. [Google Scholar]
- Li, X.; Li, Y.; Li, F.; Ma, Q.; Zhang, Q.; Yin, P. Changes in soil organic carbon, nutrients and aggregation after conversion of native desert soil into irrigated arable land. Soil Tillage Res. 2009, 104, 263–269. [Google Scholar]
- Fu, C.; Yu, G.; Fang, H.; Wang, Q. Effects of Land use and cover change on terrestrial carbon balance of China. Prog. Geogr. 2012, 31, 88–96. (In Chinese) [Google Scholar]
- Oelbermann, M.; Voroney, R.P. An evaluation of the century model to predict soil organic carbon: Examples from Costa Rica and Canada. Agroforest Syst. 2011, 82, 37–50. [Google Scholar] [CrossRef]
- Qin, Z.; Zhuang, Q.; Zhu, X. Carbon and nitrogen dynamics in bioenergy ecosystems: 1. Model development, validation and sensitivity analysis. GCB Bioenergy 2014, 6, 740–755. [Google Scholar] [CrossRef]
- Sitch, S.B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; Thonicke, K.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2010, 9, 161–185. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, T.; Cai, C.; Bao, Y. County-level patterns of cropland and their relationships with socio-economic factors in northwestern China. Agric. Ecosyst. Environ. 2015, 203, 11–18. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.J.; Chuai, X.W.; Yang, H.; Lai, L.; Tan, J.Z. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef]
- Wang, Y.J.; Qin, D.H. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Chang. Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Wang, T. Review and prospect of research on oasification and desertification in arid regions. J. Desert. Res. 2014, 29, 1–9. (In Chinese) [Google Scholar]
- Pan, X.; Zhang, L.; Huang, C. Future climate projection in northwest china with regcm4.6. Earth Space Sci. 2020, 7, e2019EA000819. [Google Scholar]
- Yang, P.; Xia, J.; Zhang, Y.; Hong, S. Temporal and spatial variations of precipitation in Northwest China during 1960–2013. Atmos. Res. 2017, 183, 283–295. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Y.; Liu, Z. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of Northwest China. Acta Ecol. Sin. 2017, 37, 2994–3008. (In Chinese) [Google Scholar]
- Chen, Y.; Luo, G.; Maisupova, B.; Chen, X.; Mukanov, B.M.; Wu, M.; Mambetov, B.T.; Huang, J.; Li, C. Carbon budget from forest land use and management in Central Asia during 1961–2010. Agric. For. Meteorol. 2016, 221, 131–141. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry. In IPCC Guidelines for National Greenhouse Gas Inventories (Prepared by the National Greenhouse Gas Inventories Programme); IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance for Land Use, Land Use Change and Forestry; Institute for Global Environmental Strategies: Hayama, Japan, 2003; p. 617. [Google Scholar]
- Ye, X.; Chuai, X. Carbon sinks/sources’ spatiotemporal evolution in China and its response to built-up land expansion. J. Environ. Manag. 2022, 321, 115863. [Google Scholar] [CrossRef]
- Wang, X.F.; Hao, L.; Qin, H.B.; Su, L.Y.; Liu, Z. Textual quantitative analysis of cultivated land ecological management and protection policies in China from the perspective of policy tools. China Land Sci. 2018, 32, 15–23. [Google Scholar]
- Lichtenberg, E.; Ding, C. Chapter 5: Assessing Farmland Protection Policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wu, P. Impacts of urban expansion on terrestrial carbon storage in China. Environ. Sci. Technol. 2019, 53, 6834–6844. [Google Scholar] [CrossRef]
- EIU. Global Food Security Index 2018: Building Resilience in the Face of Rising Food-Security Risks. Economist Intelligence Unit, Ed. 2018. Available online: https://nonews.co/wp-content/uploads/2018/10/GFSI2018.pdf (accessed on 1 May 2022).
- Ke, S.; Wu, Y.; Cui, H.; Lu, X. The mechanisms and spatial-temporal effects of farmland spatial transition on agricultural carbon emission: Based on 2018 counties in China. Environ. Sci. Pollut. Res. 2023, 30, 107716–107732. [Google Scholar] [CrossRef]
- Mogollón, J.M.; Beusen, A.H.; Van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Chang. 2018, 50, 149–163. [Google Scholar] [CrossRef]
- Yang, F.; He, F.; Li, S.; Li, M.; Wu, P. A new estimation of carbon emissions from land use and land cover change in China over the past 300 years. Sci. Total Environ. 2023, 863, 160963. [Google Scholar] [CrossRef]
- Tang, L.; Ke, X.; Zhou, T.; Zheng, W.; Wang, L. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Crop. Improv. 2020, 265, 110515. [Google Scholar] [CrossRef]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop. Improv. 2014, 23, 332–350. [Google Scholar] [CrossRef]
- Li, Y.; Brando, P.; Morton, D.; Lawrence, D.; Yang, H.; Randerson, J. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 2022, 13, 1964. [Google Scholar] [CrossRef]
- Su, Y.Z.; Yang, R.; Liu, W.J.; Wang, X.F. Evolution of soil structure and fertility after conversion of native sandy desert soil to irrigated cropland in arid region, China. Soil. Sci. 2010, 175, 246–254. [Google Scholar] [CrossRef]
- Yang, H.; Huang, X. Enforcement key to China’s environment. Science 2015, 347, 834–835. [Google Scholar] [CrossRef] [PubMed]
- Molotoks, A.; Henry, R.; Stehfest, E.; Doelman, J.; Smith, P. Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Philos. Trans. R. Soc. B 2020, 375, 20190189. [Google Scholar] [CrossRef] [PubMed]
- Xie, E.; Zhang, X.; Lu, F.; Peng, Y.; Zhao, Y. Spatiotemporal changes in cropland soil organic carbon in a rapidly urbanizing area of southeastern china from 1980 to 2015. Land Degrad. Dev. 2022, 9, 33. [Google Scholar] [CrossRef]
- Bai, X.; Shi, P.; Liu, Y. Society: Realizing China’s urban dream. Nature 2014, 509, 158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, L.; Shi, Y.; Ma, Q.; Wu, Y.; Lu, Z.; Mao, L.; Pang, E.; Zhang, Q. Impact of Land Use Change on Vegetation Carbon Storage during Rapid Urbanization: A Case Study of Hangzhou, China. Chin. Geogr. Sci. 2021, 31, 209–222. [Google Scholar] [CrossRef]
- Yuan, J.; Ouyang, Z.; Zheng, H.; Su, Y. Ecosystem carbon storage following different approaches to grassland restoration in south-eastern Horqin Sandy Land, northern China. Glob. Ecol. Conserv. 2021, 26, e01438. [Google Scholar] [CrossRef]
- Lei, L.; Li, Y.; Zhou, Z.; Li, N.; Zhao, C.; Li, Q. Cropland abandonment alleviates soil carbon emissions in the North China Plain. Environ. Monit. Assess. 2023, 34, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
Land-Use Type | Forest | Grassland | Cropland | Water | Built-Up Land | Other Land |
---|---|---|---|---|---|---|
vegetation carbon density (t C ha−1) | 79.22 | 3.46 | 5.70 | 0 | 0 | 0.55 |
Items | Forest | Grassland | Other Land | Cropland |
---|---|---|---|---|
Forest | - | - | −27% | |
Grassland | - | - | −20% | |
Other land | 80% | |||
Cropland | 90% | 100% | −20% | - |
Type | 2000–2005 | Proportion (%) | 2005–2020 | Proportion (%) | 2000–2020 | Proportion (%) |
---|---|---|---|---|---|---|
Forest to cropland | 656.15 | 3.13 | 408.85 | 2.76 | 1065.00 | 2.97 |
Grassland to cropland | 8527.23 | 40.63 | 5757.72 | 38.82 | 14,284.95 | 39.88 |
Water to cropland | 64.20 | 0.31 | 39.12 | 0.26 | 103.32 | 0.29 |
Built-up land to cropland | 12.51 | 0.06 | 50.35 | 0.34 | 62.86 | 0.18 |
Other land to cropland | 11,725.91 | 55.87 | 8575.27 | 57.82 | 20,301.18 | 56.68 |
Cropland expansion | 20,986.00 | 100.00 | 14,831.31 | 100.00 | 35,817.31 | 100.00 |
Cropland to forest | 1125.01 | 7.97 | 291.65 | 4.20 | 1416.66 | 6.73 |
Cropland to grassland | 10,144.49 | 71.88 | 4056.76 | 58.42 | 14,201.25 | 67.44 |
Cropland to water | 47.83 | 0.34 | 33.78 | 0.49 | 81.61 | 0.39 |
Cropland to built-up land | 1064.67 | 7.54 | 2064.12 | 29.72 | 3128.79 | 14.86 |
Cropland to other land | 1730.52 | 12.26 | 498.38 | 7.18 | 2228.90 | 10.58 |
Cropland abandonment | 14,112.53 | 100.00 | 6944.70 | 100.00 | 21,057.23 | 100.00 |
Net increase | 6873.48 | 7886.61 | 14,760.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, J.; Chen, L. The Changes in Cropland Pattern Enhanced Carbon Storage in Northwest China. Agronomy 2023, 13, 2736. https://doi.org/10.3390/agronomy13112736
Kong J, Chen L. The Changes in Cropland Pattern Enhanced Carbon Storage in Northwest China. Agronomy. 2023; 13(11):2736. https://doi.org/10.3390/agronomy13112736
Chicago/Turabian StyleKong, Junqia, and Longfei Chen. 2023. "The Changes in Cropland Pattern Enhanced Carbon Storage in Northwest China" Agronomy 13, no. 11: 2736. https://doi.org/10.3390/agronomy13112736
APA StyleKong, J., & Chen, L. (2023). The Changes in Cropland Pattern Enhanced Carbon Storage in Northwest China. Agronomy, 13(11), 2736. https://doi.org/10.3390/agronomy13112736