Semantic Segmentation of Portuguese Agri-Forestry Using High-Resolution Orthophotos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Used Data and Pre-Processing
2.3. Semantic Segmentation Model
2.4. Training, Validation, and Test Approach
2.5. Accuracy Assessment
3. Results
3.1. Analysis of the Dataset
3.2. Performance of Orthophoto Map Segmentation
3.3. Application of the Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pinto-Correia, T.; Ribeiro, N.; Sá-Sousa, P. Introducing the Montado, the Cork and Holm Oak Agroforestry System of Southern Portugal. Agrofor. Syst. 2011, 82, 99–104. [Google Scholar] [CrossRef]
- Allen, H.; Simonson, W.; Parham, E.; Santos, E.d.B.e.; Hotham, P. Satellite Remote Sensing of Land Cover Change in a Mixed Agro-Silvo-Pastoral Landscape in the Alentejo, Portugal. Int. J. Remote Sens. 2018, 39, 1–21. [Google Scholar] [CrossRef]
- Aronson, J.; Pereira, J.S.; Pausas, J.G. Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Pereira, H.M.; Domingos, T.; Marta-Pedroso, C.; Proença, V.; Rodrigues, P.; Ferreira, M.; Teixeira, R.; Mota, R.; Nogal, A. Uma Avaliação Dos Serviços Dos Ecossistemas Em Portugal. In Ecossistemas e Bem-Estar Humano Avaliação para Portugal do Millennium Ecosystem Assessment; Escolar Editora: Lisboa, Portugal, 2009; pp. 687–716. [Google Scholar]
- von Essen, M.; do Rosário, I.T.; Santos-Reis, M.; Nicholas, K.A. Valuing and Mapping Cork and Carbon across Land Use Scenarios in a Portuguese Montado Landscape. PLoS ONE 2019, 14, e0212174. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Rodrigues, N.R.; Domingos, T. Characterizing Livestock Production in Portuguese Sown Rainfed Grasslands: Applying the Inverse Approach to a Process-Based Model. Sustainability 2018, 10, 4437. [Google Scholar] [CrossRef]
- Jepsen, M.R.; Kuemmerle, T.; Müller, D.; Erb, K.; Verburg, P.H.; Haberl, H.; Vesterager, J.P.; Andric, M.; Antrop, M.; Austrheim, G.; et al. Transitions in European Land Management Regimes between 1800 and 2010. Land Use Policy 2015, 49, 53–64. [Google Scholar]
- Pinto-Correia, T.; Mascarenhas, J. Contribution to the Extensification/Intensification Debate: New Trends in the Portuguese Montado. Landsc. Urban Plan. 1999, 46, 125–131. [Google Scholar] [CrossRef]
- de Santos Loureiro, N.; Fernandes, M.J. Long-Term Changes in Cork Oak and Holm Oak Patches Connectivity. The Algarve, Portugal, a Mediterranean Landscape Case Study. Environments 2021, 8, 131. [Google Scholar] [CrossRef]
- Costa, A.; Pereira, H.; Madeira, M. Landscape Dynamics in Endangered Cork Oak Woodlands in Southwestern Portugal (1958–2005). Agrofor. Syst. 2009, 77, 83–96. [Google Scholar]
- Costa, A.; Madeira, M.; Santos, J.L.; Oliveira, Â. Change and Dynamics in Mediterranean Evergreen Oak Woodlands Landscapes of Southwestern Iberian Peninsula. Landsc. Urban Plan. 2011, 102, 164–176. [Google Scholar]
- Godinho, S.; Gil, A.; Guiomar, N.; Neves, N.; Pinto-Correia, T. A Remote Sensing-Based Approach to Estimating Montado Canopy Density Using the FCD Model: A Contribution to Identifying HNV Farmlands in Southern Portugal. Agrofor. Syst. 2016, 90, 23–34. [Google Scholar] [CrossRef]
- Carreiras, J.M.B.; Pereira, J.M.C.; Pereira, J.S. Estimation of Tree Canopy Cover in Evergreen Oak Woodlands Using Remote Sensing. For. Ecol. Manage. 2006, 223, 45–53. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Xiao, W.; Wu, Q.; Li, X.; Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Yang, Z.; Niu, H.; Huang, L.; Wang, X.; Fan, L.; Xiao, D. Automatic Segmentation Algorithm for High-Spatial-Resolution Remote Sensing Images Based on Self-Learning Super-Pixel Convolutional Network. Int. J. Digit. Earth 2022, 15, 1101–1124. [Google Scholar] [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel-vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park. Remote Sens. 2021, 13, 2299. [Google Scholar] [CrossRef]
- Navarro, A.; Catalao, J.; Calvao, J. Assessing the Use of Sentinel-2 Time Series Data for Monitoring Cork Oak Decline in Portugal. Remote Sens. 2019, 11, 2515. [Google Scholar] [CrossRef]
- Catalão, J.; Navarro, A.; Calvão, J. Mapping Cork Oak Mortality Using Multitemporal High-Resolution Satellite Imagery. Remote Sens. 2022, 14, 2750. [Google Scholar] [CrossRef]
- Costa, H.; Benevides, P.; Marcelino, F.; Caetano, M. Introducing Automatic Satellite Image Processing into Land Cover Mapping by Photo-Interpretation of Airborne Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 29–34. [Google Scholar] [CrossRef]
- Costa, H.; Benevides, P.; Moreira, F.D.; Moraes, D.; Caetano, M. Spatially Stratified and Multi-Stage Approach for National Land Cover Mapping Based on Sentinel-2 Data and Expert Knowledge. Remote Sens. 2022, 14, 1865. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning (Adaptive Computation and Machine Learning Series); MIT Press: Cambridge, UK, 2016. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar]
- Castelo-Cabay, M.; Piedra-Fernandez, J.A.; Ayala, R. Deep Learning for Land Use and Land Cover Classification from the Ecuadorian Paramo. Int. J. Digit. Earth 2022, 15, 1001–1017. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Figueiredo, M.; Domingos, T. The Use of Machine Learning Methods to Estimate Aboveground Biomass of Grasslands: A Review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Trenčanová, B.; Proença, V.; Bernardino, A. Development of Semantic Maps of Vegetation Cover from UAV Images to Support Planning and Management in Fine-Grained Fire-Prone Landscapes. Remote Sens. 2022, 14, 1262. [Google Scholar] [CrossRef]
- Giang, T.L.; Dang, K.B.; Le, Q.T.; Nguyen, V.G.; Tong, S.S.; Pham, V.M. U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery. IEEE Access 2020, 8, 186257–186273. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The Use of Remote Sensing in Soil and Terrain Mapping—A Review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: {A} Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation. arXiv 2017, arXiv:1709.00201. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Volume 9351. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [Google Scholar]
- Wylie, B.; Howard, D.; Dahal, D.; Gilmanov, T.; Ji, L.; Zhang, L.; Smith, K. Grassland and Cropland Net Ecosystem Production of the U.S. Great Plains: Regression Tree Model Development and Comparative Analysis. Remote Sens. 2016, 8, 944. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Jamil, A.; Bayram, B. Tree Species Extraction and Land Use/Cover Classification from High-Resolution Digital Orthophoto Maps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 89–94. [Google Scholar] [CrossRef]
- Vilar, P.; Morais, T.G.; Rodrigues, N.R.; Gama, I.; Monteiro, M.L.; Domingos, T.; Teixeira, R.F.M. Object-Based Classification Approaches for Multitemporal Identification and Monitoring of Pastures in Agroforestry Regions Using Multispectral Unmanned Aerial Vehicle Products. Remote Sens. 2020, 12, 814. [Google Scholar] [CrossRef]
- Perez, M.I.; Karelovic, B.; Molina, R.; Saavedra, R.; Cerulo, P.; Cabrera, G. Precision Silviculture: Use of UAVs and Comparison of Deep Learning Models for the Identification and Segmentation of Tree Crowns in Pine Crops. Int. J. Digit. Earth 2023, 15, 2223–2238. [Google Scholar] [CrossRef]
- Al-Jarrah, O.Y.; Yoo, P.D.; Muhaidat, S.; Karagiannidis, G.K.; Taha, K. Efficient Machine Learning for Big Data: A Review. Big Data Res. 2015, 2, 87–93. [Google Scholar] [CrossRef]
- Jan, B.; Farman, H.; Khan, M.; Imran, M.; Islam, I.U.; Ahmad, A.; Ali, S.; Jeon, G. Deep Learning in Big Data Analytics: A Comparative Study. Comput. Electr. Eng. 2019, 75, 275–287. [Google Scholar] [CrossRef]
- Morais, T.G.; Jongen, M.; Tufik, C.; Rodrigues, N.R.; Gama, I.; Fangueiro, D.; Serrano, J.; Vieira, S.; Domingos, T.; Teixeira, R.F.M. Characterization of Portuguese Sown Rainfed Grasslands Using Remote Sensing and Machine Learning. Precis. Agric. 2022, 24, 161–186. [Google Scholar] [CrossRef]
- Rice, L.; Wong, E.; Kolter, Z. Overfitting in Adversarially Robust Deep Learning. In Proceedings of the International Conference on Machine Learning, Virtual Event, 13–18 July 2020; pp. 8093–8104. [Google Scholar]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using Deep Learning for Digital Soil Mapping. Soil 2019, 5, 79–89. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Zhang, L.; Pu, Y.; Yang, C.; Cai, Y.; Zhou, C. A Review on Digital Mapping of Soil Carbon in Cropland: Progress, Challenge, and Prospect. Environ. Res. Lett. 2022, 17, 123004. [Google Scholar] [CrossRef]
- Razavi, S. Deep Learning, Explained: Fundamentals, Explainability, and Bridgeability to Process-Based Modelling. Environ. Model. Softw. 2021, 144, 105159. [Google Scholar] [CrossRef]
- Montavon, G.; Samek, W.; Müller, K.-R. Methods for Interpreting and Understanding Deep Neural Networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- McGovern, A.; Lagerquist, R.; John Gagne, D.; Jergensen, G.E.; Elmore, K.L.; Homeyer, C.R.; Smith, T. Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning. Bull. Am. Meteorol. Soc. 2019, 100, 2175–2199. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Karimov, A.; Razumov, A.; Manbatchurina, R.; Simonova, K.; Donets, I.; Vlasova, A.; Khramtsova, Y.; Ushenin, K. Comparison of Unet, Enet, and Boxenet for Segmentation of Mast Cells in Scans of Histological Slices. In Proceedings of the 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, Russia, 21–27 October 2019; pp. 544–547. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.; et al. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for Land Cover Mapping via a Multi-Source Deep Learning Architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef]
- Latte, N.; Lejeune, P. PlanetScope Radiometric Normalization and Sentinel-2 Super-Resolution (2.5 m): A Straightforward Spectral-Spatial Fusion of Multi-Satellite Multi-Sensor Images Using Residual Convolutional Neural Networks. Remote Sens. 2020, 12, 2366. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image Super-Resolution: The Techniques, Applications, and Future. Signal Process. 2016, 128, 389–408. [Google Scholar] [CrossRef]
- Wang, X.; Yi, J.; Guo, J.; Song, Y.; Lyu, J.; Xu, J.; Yan, W.; Zhao, J.; Cai, Q.; Min, H. A Review of Image Super-Resolution Approaches Based on Deep Learning and Applications in Remote Sensing. Remote Sens. 2022, 14, 5423. [Google Scholar] [CrossRef]
Label | Number of Polygons | Percentage of Total (Polygons) | Number of Pixels | Percentage of Total (Pixels) |
---|---|---|---|---|
Tree | 274 | 38 | 490,899 | 13 |
Shrub | 178 | 25 | 1,170,122 | 32 |
Grass | 101 | 14 | 921,055 | 25 |
Bare | 86 | 12 | 405,207 | 11 |
Other | 81 | 11 | 653,954 | 18 |
Model | Hyperparameters | Performance | |||||
---|---|---|---|---|---|---|---|
Batch Size | Number Filters | Dropout Rate | Overall Accuracy | F1 | Cohen’s Kappa | Mean IoU | |
Model 1 | 16 | 8 | 0.05 | 0.84 | 0.82 | 0.77 | 0.84 |
Model 2 | 32 | 8 | 0.05 | 0.88 | 0.89 | 0.86 | 0.81 |
Model 3 | 16 | 16 | 0.05 | 0.82 | 0.81 | 0.76 | 0.76 |
Model 4 | 32 | 16 | 0.05 | 0.82 | 0.82 | 0.77 | 0.81 |
Model 5 | 16 | 8 | 0.10 | 0.86 | 0.86 | 0.82 | 0.80 |
Model 6 | 32 | 8 | 0.10 | 0.81 | 0.81 | 0.77 | 0.80 |
Model 7 | 16 | 16 | 0.10 | 0.85 | 0.85 | 0.80 | 0.81 |
Model 8 | 32 | 16 | 0.10 | 0.83 | 0.80 | 0.75 | 0.77 |
Model | Hyperparameters | Performance | |||||
---|---|---|---|---|---|---|---|
Batch Size | Number Filters | Dropout Rate | Overall Accuracy | F1 | Cohen’s Kappa | Mean IoU | |
Model 1 | 16 | 8 | 0.05 | 0.80 | 0.79 | 0.78 | 0.73 |
Model 2 | 32 | 8 | 0.05 | 0.74 | 0.73 | 0.71 | 0.65 |
Model 3 | 16 | 16 | 0.05 | 0.84 | 0.83 | 0.81 | 0.74 |
Model 4 | 32 | 16 | 0.05 | 0.82 | 0.81 | 0.79 | 0.72 |
Model 5 | 16 | 8 | 0.10 | 0.80 | 0.79 | 0.77 | 0.70 |
Model 6 | 32 | 8 | 0.10 | 0.78 | 0.77 | 0.75 | 0.69 |
Model 7 | 16 | 16 | 0.10 | 0.76 | 0.75 | 0.73 | 0.67 |
Model 8 | 32 | 16 | 0.10 | 0.86 | 0.85 | 0.83 | 0.76 |
Model | Tree | Shrub | Grass | Bare | Other |
---|---|---|---|---|---|
Model 1 | 0.74 | 0.70 | 0.47 | 0.39 | 0.98 |
Model 2 | 0.70 | 0.74 | 0.79 | 0.78 | 0.97 |
Model 3 | 0.69 | 0.69 | 0.51 | 0.61 | 0.94 |
Model 4 | 0.70 | 0.70 | 0.51 | 0.40 | 0.97 |
Model 5 | 0.72 | 0.66 | 0.64 | 0.78 | 0.97 |
Model 6 | 0.71 | 0.65 | 0.48 | 0.56 | 0.94 |
Model 7 | 0.72 | 0.64 | 0.60 | 0.76 | 0.94 |
Model 8 | 0.71 | 0.57 | 0.52 | 0.63 | 0.91 |
Class | Tree | Shrub | Grass | Bare | Other |
---|---|---|---|---|---|
Tree | 85% | 14% | 0% | 0% | 1% |
Shrub | 11% | 82% | 5% | 1% | 1% |
Grass | 0% | 4% | 92% | 4% | 0% |
Bare | 0% | 0% | 12% | 85% | 3% |
Other | 0% | 0% | 0% | 0% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, T.G.; Domingos, T.; Teixeira, R.F.M. Semantic Segmentation of Portuguese Agri-Forestry Using High-Resolution Orthophotos. Agronomy 2023, 13, 2741. https://doi.org/10.3390/agronomy13112741
Morais TG, Domingos T, Teixeira RFM. Semantic Segmentation of Portuguese Agri-Forestry Using High-Resolution Orthophotos. Agronomy. 2023; 13(11):2741. https://doi.org/10.3390/agronomy13112741
Chicago/Turabian StyleMorais, Tiago G., Tiago Domingos, and Ricardo F. M. Teixeira. 2023. "Semantic Segmentation of Portuguese Agri-Forestry Using High-Resolution Orthophotos" Agronomy 13, no. 11: 2741. https://doi.org/10.3390/agronomy13112741
APA StyleMorais, T. G., Domingos, T., & Teixeira, R. F. M. (2023). Semantic Segmentation of Portuguese Agri-Forestry Using High-Resolution Orthophotos. Agronomy, 13(11), 2741. https://doi.org/10.3390/agronomy13112741