Delayed Sowing under the Same Transplanting Date Shortened the Growth Period of Machine-Transplanted Early-Season Rice with No Significant Yield Reduction Caused
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Cultivar Description
2.2. Experimental Design and Cultivation Management
2.3. Plant Sampling and Determination
2.4. Data Collection and Measurements
2.5. Statistical Analyses
3. Results
3.1. Meteorological Changes during the Growing Season
3.2. Growth Duration
3.3. Crop Development
3.4. Grain Yield and Yield Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, S.B.; Tang, Q.Y.; Zou, Y.B. Current Status and Challenges of Rice Production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Chen, H.P. Rice consumption in China: Can China change rice consumption from quantity to quality? In Rice Is Life: Scientific Perspectives for the 21st Century; Toriyama, K., Heong, K.L., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2005; pp. 497–499. [Google Scholar]
- Deng, N.Y.; Grassini, P.; Yang, H.S.; Huang, J.L.; Cassman, K.G.; Peng, S.B. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef]
- Deng, H.F.; Xiang, X.C.; Zhang, W.H.; Li, H.P.; Tian, Y.J.; Shu, F.; He, Q. Research Progresses of Early Super Hybrid Rice in the Double-Cropping System in the Middle Reaches of the Yangtze River Valley. Hybrid Rice 2009, 24, 1–4. [Google Scholar]
- Chen, M.J.; Liu, G.F.; Xiao, Y.Q.; Yu, H.; Li, J.Y. Breeding of ZhongKeFaZaoGeng1 by molecular design. Hereditas 2023, 45, 1–9. [Google Scholar]
- Zhu, D.F.; Chen, H.Z.; Xu, Y.C.; Zhang, Y.P. Restriction factors and development countermeasures of mechanization of double cropping rice production in China. China Rice 2013, 19, 1–4. [Google Scholar]
- Xiao, L.P.; Cai, J.P.; Liu, M.H.; Zhang, Q. The Measures and the Reasons of the Slow Development of Rice Planting Mechanism in Double Cropping Rice Area in South China. In Proceedings of the Chinese Society of Agricultural Machinery International Academic Conference, Hangzhou, China, 27 October 2012. [Google Scholar]
- Zhu, H.J.; Zhang, T.; Zhang, C.L.; He, X.E.; Shi, A.L.; Tan, W.J.; Yi, Z.X.; Wang, X.H. Optimizing Irrigation and Nitrogen Management to Increase Yield and Nitrogen Recovery Efficiency in Double-Cropping Rice. Agronomy 2022, 12, 1190. [Google Scholar] [CrossRef]
- Jiang, M.; Li, X.B.; Xin, L.J.; Tan, M.H. Paddy rice multiple cropping index changes in Southern China: Impacts on national grain production capacity and policy implications. J. Geogr. Sci. 2019, 29, 1773–1787. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Wang, X.Y.; Chen, Z.F.; Li, X.X.; Cao, J.; Wang, F.; Huang, J.L.; Peng, S.B. Comparison of yield performance between direct-seeded and transplanted double-season rice using ultrashort-duration varieties in central China. Crop J. 2022, 10, 515–523. [Google Scholar] [CrossRef]
- Huang, M.; Fang, S.L.; Cao, F.B.; Chen, J.N.; Shan, S.L.; Liu, Y.; Lei, T.; Tian, A.L.; Tao, Z.; Zou, Y.B. Early sowing increases grain yield of machine-transplanted late-season rice under single-seed sowing. Field Crop Res. 2020, 253, 107832. [Google Scholar] [CrossRef]
- Huang, M.; Zou, Y.B. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crop Res. 2018, 224, 22–27. [Google Scholar] [CrossRef]
- Huang, M.; Ibrahim, M.; Xia, B.; Zou, Y. Significance, progress and prospects for research in simplified cultivation technologies for rice in China. J. Agric. Sci. 2011, 149, 487–496. [Google Scholar] [CrossRef]
- Zheng, H.B.; Li, B.; Chen, Y.W.; Tang, Q.Y. Elastic sowing dates with low seeding rate for grain yield maintenance in mechanized large-scale double-cropped rice production. Sci. Rep. 2020, 10, 9185. [Google Scholar] [CrossRef]
- Liu, Q.H.; Wu, X.; Ma, J.Q.; Chen, B.C.; Xin, C.Y. Effects of Delaying Transplanting on Agronomic Traits and Grain Yield of Rice under Mechanical Transplantation Pattern. PLoS ONE 2015, 10, 1371. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Fang, S.L.; Cao, F.B.; Chen, J.N.; Shan, S.L.; Liu, Y.; Lei, T.; Tian, A.L.; Tao, Z.; Zou, Y.B. Prolonging seedling age does not reduce grain yields in machine-transplanted early-season rice under precision sowing. Ann. Appl. Biol. 2020, 176, 308–313. [Google Scholar] [CrossRef]
- Ai, Z.Y.; Guo, X.Y.; Liu, W.X.; Ma, G.H.; Qing, X.G. Changes of Safe Production Dates of Double-season Rice in the Middle Reaches of the Yangtze River. Acta Agron. Sin. 2014, 40, 1320–1329. [Google Scholar] [CrossRef]
- Huang, L.Y.; Wang, F.; Tian, X.H.; Zhang, Y.B. Can optimizing seeding rate and planting density alleviate the yield loss of double-season rice caused by prolonged seedling age? Crop Sci. 2021, 61, 2759–2774. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Huang, L.Y.; Peng, S.B.; Nie, L.X.; Cui, K.H.; Huang, J.L.; Wang, F. Premature heading and yield losses caused by prolonged seedling age in double cropping rice. Field Crop Res. 2015, 183, 147–155. [Google Scholar] [CrossRef]
- Shan, S.L.; Jiang, P.; Fang, S.L.; Cao, F.B.; Zhang, H.D.; Chen, J.N.; Yin, X.H.; Tao, Z.; Lei, T.; Huang, M.; et al. Printed sowing improves grain yield with reduced seed rate in machine-transplanted hybrid rice. Field Crop Res. 2020, 245, 107676. [Google Scholar] [CrossRef]
- Cheng, Y.X.; Huang, J.F.; Han, Z.L.; Guo, J.P.; Zhao, Y.X.; Wang, X.Z.; Guo, R.F. Cold Damage Risk Assessment of Double Cropping Rice in Hunan, China. J. Integr. Agric. 2013, 12, 352–363. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Li, Y.; Chen, X.G.; Wang, Y.Z.; Niu, B.; Liu, D.L.; He, J.Q.; Pulatov, B.; Hassan, I.; Meng, Q.T. Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future. Agric. Syst. 2023, 205, 103581. [Google Scholar] [CrossRef]
- Feng, X.Q.; Yin, M.; Wang, M.J.; Ma, H.Y.; Liu, Y.H.; Chu, G.; Xu, C.M.; Zhang, X.F.; Wang, D.Y.; Zhang, Y.B. Effects of sowing date on the yield of different late rice variety types and its relationship with the allocation of temperature and light resources during the whole growth period of rice in the lower reaches of the Yangtze River. Acta Agron. Sin. 2022, 48, 17. [Google Scholar]
- Cao, J.; Li, X.X.; Wang, F.; Huang, J.L.; Peng, S.B. The Responses of Yield Performance to Seedling Ages with Varied Seeding or Transplanting Dates of Middle-Season Rice in Central China. J. Plant Growth Regul. 2022, 41, 3153–3168. [Google Scholar] [CrossRef]
- Li, Y.X.; Liu, Y.; Wang, Y.H.; Ding, Y.F.; Wang, S.H.; Liu, Z.H.; Li, G.H. Effects of seedling age on the growth stage and yield formation of hydroponically grown long-mat rice seedlings. J. Integr. Agric. 2020, 19, 1755–1767. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, W.; Jeong, J.; Yang, S.; Jeong, N.; Lee, C.; Choi, M. Physiological causes of transplantation shock on rice growth inhibition and delayed heading. Sci. Rep. 2021, 11, 16818. [Google Scholar] [CrossRef] [PubMed]
- Virk, A.L.; Farooq, M.S.; Ahmad, A.; Khaliq, T.; Rehmani, M.I.A.; Haider, F.U.; Ejaz, I. Effect of seedling age on growth and yield of fine rice cultivars under alternate wetting and drying system. J. Plant Nutr. 2020, 44, 1–15. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, X.; Li, J.; Xin, C. Effects of seedling age and cultivation density on agronomic characteristics and grain yield of mechanically transplanted rice. Sci. Rep. 2017, 7, 14072. [Google Scholar] [CrossRef]
- Aslam, M.M.; Zeeshan, M.; Irum, A.; Hassan, M.U.; Ali, S.; Hussain, R.; Ramzani, P.M.A.; Rashid, M.F. Influence of Seedling Age and Nitrogen Rates on Productivity of Rice (Oryza sativa L.): A Review. Am. J. Plant Sci. 2015, 6, 1361–1369. [Google Scholar]
- Huang, M.; Shan, S.L.; Zhou, X.F.; Chen, J.N.; Cao, F.B.; Jiang, L.G.; Zou, Y.B. Leaf photosynthetic performance related to higher radiation use efficiency and grain yield in hybrid rice. Field Crop Res. 2016, 193, 87–93. [Google Scholar] [CrossRef]
- Saito, K. Plant Characteristics of High-Yielding Upland Rice Cultivars in West Africa. Crop Sci. 2016, 56, 276–286. [Google Scholar] [CrossRef]
Year | Variety | Sowing Dates | Initial Heading Dates | Full Heading Dates | Days from SW to IH | Days from SW to FH | Days from TP to IH | Days from TP to FH | Days from SW to MA |
---|---|---|---|---|---|---|---|---|---|
2021 | LLY211 | 3–17 | 6–9 | 6–18 | 84 | 93 | 52 | 61 | 113 |
3–31 | 6–11 | 6–18 | 72 | 79 | 54 | 61 | 101 | ||
ZZ39 | 3–17 | 6–10 | 6–17 | 85 | 92 | 53 | 60 | 115 | |
3–31 | 6–13 | 6–20 | 74 | 81 | 56 | 63 | 103 | ||
2022 | LLY211 | 3–17 | 6–11 | 6–18 | 86 | 93 | 54 | 61 | 113 |
3–31 | 6–13 | 6–18 | 74 | 79 | 56 | 61 | 101 | ||
ZZ39 | 3–17 | 6–11 | 6–18 | 86 | 93 | 54 | 61 | 116 | |
3–31 | 6–15 | 6–21 | 76 | 82 | 58 | 64 | 105 |
Variable | Tillering Rate | LAI at FH | Single Stem Weight (g) | CGR (g m–2 d–1) | Biomass Production (g m–2) | ||||
---|---|---|---|---|---|---|---|---|---|
FH | MA | TP-TI | TI-JI | JI-FH | FH-MA | Total | |||
Seedling age (SA) | |||||||||
SA32 | 3.4 a | 5.24 a | 2.04 b | 3.36 b | 3.1 a | 12.8 a | 28.9 a | 20.9 a | 1372 a |
SA18 | 2.9 b | 5.36 a | 2.24 a | 3.76 a | 2.9 a | 13 a | 28.2 a | 18.9 a | 1305 a |
Cultivar (C) | |||||||||
LLY211 | 3.9 a | 5.54 a | 1.71 b | 2.96 b | 3.2 a | 13.4 a | 28.7 a | 20.6 a | 1343 a |
ZZ39 | 2.4 b | 5.06 b | 2.58 a | 4.16 a | 2.8 a | 12.5 a | 28.4 a | 19.1 a | 1334 a |
Year (Y) | |||||||||
2021 | 3.6 a | 5.84 a | 2.77 a | 3.51 a | 3.3 a | 14.8 a | 32.9 a | 16.9 b | 1357 a |
2022 | 2.7 b | 4.76 b | 1.52 b | 3.61 a | 2.7 b | 11.1 b | 24.2 b | 22.8 a | 1321 a |
Variable | Grain Yield (t ha−1) | Panicles per m2 | Spikelets per Panicle | Spikelet Filling (%) | Grain Weight (mg) | Harvest Index |
---|---|---|---|---|---|---|
Seedling age (SA) | ||||||
SA32 | 8.28 a | 417.4 a | 114.6 b | 70.5 a | 26.2 a | 0.56 a |
SA18 | 8 a | 357 b | 123.2 a | 70.2 a | 26 a | 0.54 b |
Cultivar (C) | ||||||
LLY211 | 8.44 a | 456.2 a | 103.3 b | 71.1 a | 25.9 a | 0.57 a |
ZZ39 | 7.84 b | 318.3 b | 134.5 a | 69.7 a | 26.2 a | 0.52 b |
Year (Y) | ||||||
2021 | 8.02 a | 400.9 a | 123.3 a | 66.1 b | 25.8 b | 0.54 b |
2022 | 8.26 a | 373.6 a | 114.5 b | 74.7 a | 26.3 a | 0.56 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Liu, P.; Wahab, A.; Wang, Y.; Chen, G. Delayed Sowing under the Same Transplanting Date Shortened the Growth Period of Machine-Transplanted Early-Season Rice with No Significant Yield Reduction Caused. Agronomy 2023, 13, 2748. https://doi.org/10.3390/agronomy13112748
Fang X, Liu P, Wahab A, Wang Y, Chen G. Delayed Sowing under the Same Transplanting Date Shortened the Growth Period of Machine-Transplanted Early-Season Rice with No Significant Yield Reduction Caused. Agronomy. 2023; 13(11):2748. https://doi.org/10.3390/agronomy13112748
Chicago/Turabian StyleFang, Xilin, Peng Liu, Abdul Wahab, Yue Wang, and Guanghui Chen. 2023. "Delayed Sowing under the Same Transplanting Date Shortened the Growth Period of Machine-Transplanted Early-Season Rice with No Significant Yield Reduction Caused" Agronomy 13, no. 11: 2748. https://doi.org/10.3390/agronomy13112748
APA StyleFang, X., Liu, P., Wahab, A., Wang, Y., & Chen, G. (2023). Delayed Sowing under the Same Transplanting Date Shortened the Growth Period of Machine-Transplanted Early-Season Rice with No Significant Yield Reduction Caused. Agronomy, 13(11), 2748. https://doi.org/10.3390/agronomy13112748