Different Response of Carbon and P-Related Soil Properties toward Microbial Fertilizer Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Location and Soil Sampling
2.2. Determination of Enzymatic Activity and the Content of Microbial Biomass Carbon (MBC)
2.3. Determination of Soil Physico-Chemical Properties
2.4. Statistical Analysis
3. Results
3.1. Some Physicochemical Properties
3.2. Microbial Biomass Carbon (MBC) Content
3.3. Phosphorus Content and Phosphatase Activity
3.4. Relationships between the Studied Properties
4. Discussion
5. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [PubMed]
- Darcy, J.L.; Schmidt, S.K.; Knelman, J.E.; Cleveland, C.C.; Castele, S.C.; Nemergut, D.R. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Sci. Adv. 2018, 4, eaaq0942. [Google Scholar] [CrossRef] [PubMed]
- Doolette, A.L.; Smernik, R.J. Soil organic phosphorus speciation using spectroscopic techniques. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling; Bünemann, E.K., Oberson, A., Frossard, E., Eds.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 1–36. [Google Scholar]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K. Inorganic phosphate solubilization by fungi isolated from agriculture soil. J. Phytol. 2011, 3, 11–12. [Google Scholar]
- Vijayabharathi, R.; Sathya, A.; Gopalakrishnan, S. A renaissance in plant growth-promoting and biocontrol agents by endophytes. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D.P., Ed.; Springer: New Delhi, India, 2016; pp. 37–60. [Google Scholar]
- Fujita, K.; Kunito, T.; Moro, H.; Toda, H.; Otsuka, S.; Nagaoka, K. Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils. Biogeochemistry 2017, 136, 325–339. [Google Scholar] [CrossRef]
- Balota, E.L.; Dias Chaves, J.C. Enzymatic activity and mineralization of carbon and nitrogen in soil cultivated with coffee and green manures. Rev. Bras. Ciência Solo 2010, 34, 1573–1583. [Google Scholar] [CrossRef]
- Sherene, T. Role of soil enzymes in nutrient transformation: A review. Bio Bull. 2017, 3, 109–131. [Google Scholar]
- Benitez, E.; Nogales, R.; Campos, M.; Ruano, F. Biochemical variability of olive-orchard soils under different management systems. Appl. Soil Ecol. 2006, 32, 221–231. [Google Scholar] [CrossRef]
- Melero, S.; Madejón, E.; Ruiz, J.C.; Herencia, J.F. Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur. J. Agron. 2007, 26, 327–334. [Google Scholar] [CrossRef]
- Guilbeault-Mayers, X.; Turner, B.J.; Laliberté, E. Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species. Ecology 2020, 101, e03090. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of Phosphatase Enzymes in Soil. In Soil Biology, 26. Phosphorus in Action; Bünemann, E., Oberson, A., Frossard, A.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 230–243. [Google Scholar]
- Orczewska, A.; Piotrowska, A.; Lemanowicz, J. Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder [Alnus glutinosa (L.) Gaertn.] woodlands. Acta Soc. Bot. Pol. 2012, 81, 81–86. [Google Scholar] [CrossRef]
- Rejšek, K.; Vranová, V.; Pavelka, M.; Formánek, P. Acid phosphomonoesterase (E.C.3.1.3.2) location in soil. J. Plant Nutr. Soil Sci. 2012, 175, 196–211. [Google Scholar] [CrossRef]
- Acuña, J.J.; Durán, P.; Lagos, L.; Ogram, A.; Luz Mora, M. Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biol. Fertil. Soils 2016, 52, 763–773. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Fernández-Martínez, M.; Molowny-Horas, R.; Janssens, I.A.; Ciais, P.; Goll, D.; Richter, A.; Obersteiner, M.; Asensio, D.; et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 2017, 7, 1337. [Google Scholar] [CrossRef]
- Sharon, J.A.; Hathwaik, L.T.; Glenn, G.M.; Imam, S.H.; Lee, C.C. Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. J. Soil Sci. Plant Nutr. 2016, 16, 525–536. [Google Scholar] [CrossRef]
- Mehrvarz, S.; Chaichi, M.R. Effect of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L.). Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 855–860. [Google Scholar]
- Ranjan, A.; Mahalakshmi, M.R.; Sridevi, M. Isolation and characterization of phosphate-solubilizing bacterial species from different crop fields of Salem, Tamil Nadu, India. Int. J. Nutr. Pharmacol. Neurol. Dis. 2013, 3, 29–33. [Google Scholar]
- Kang, J.; Amoozegar, A.; Hesterberg, D.; Osmond, D.L. Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma 2011, 161, 194–201. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G.; Kudela, R. Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environ. Sci. Technol. 2018, 52, 5519–5529. [Google Scholar] [CrossRef]
- Ali, F.; Sadiq, A.; Ali, I.; Amin, M.; Amir, A. Effect of applied phosphorus on the availability of micronutrients in alkaline-calcareous soil. J. Environ. Earth Sci. 2014, 4, 143–147. [Google Scholar]
- GlobeNewswire. Available online: https://www.globenewswire.com/en/news-release/2023/06/06/2683012/0/en/Biofertilizers-Market-Size-to-Worth-Around-USD-9-14-BN-by-2032.html (accessed on 12 June 2023).
- Itelima, J.U.; Bang, W.J.; Onyimba, I.A.; Sila, M.D.; Egbere, O.J. Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A Review. Direct Res. J. Agric. Food Sci. 2018, 6, 73–83. [Google Scholar]
- Suhag, M. Potential of biofertilizers to replace chemical fertilizers. Int. Adv. Res. J. Sci. Eng. Technol. 2016, 3, 163–167. [Google Scholar]
- Chaudhary, P.; Singh, S.; Chaudhary, A.; Sharma, A.; Kumar, G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front. Plant Sci. 2022, 13, 930340. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi-Zecchin, V.J.; Mógor, Á.F.; Figueiredo, G.G.O. Strategies for characterization of agriculturally important bacteria. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D.P., Singh, H.B., Prabha, R., Eds.; Springer: New Delhi, India, 2016; pp. 1–21. [Google Scholar]
- Laxman, T.; Ramprakash, A.; Kumar, K.; Srinivas, A. Biofertilizer consortia and foliar nutrition effect on rainfed Bt cotton soils enzyme activity. Int. J. Pure Appl. Biosci. 2017, 5, 4582–4585. [Google Scholar]
- Rahmansyah, M.; Antonius, S. Effect of compost and biofertilizer to soil phosphatase and urease activities in Broccoli (Brassica oleracea L.) cultivation. J. Biol. Indones. 2015, 11, 131–140. [Google Scholar]
- Barea, J.M. Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J. Soil Sci. Plant Nutr. 2015, 15, 261–282. [Google Scholar] [CrossRef]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. Int. 2017, 24, 3315–3335. [Google Scholar] [CrossRef]
- Riaz, U.; Mehdi, S.M.; Iqbal, S.; Khalid, H.I.; Qadir, A.A.; Anum, W.; Ahmad, M.; Murtaza, G. Bio-fertilizers: Eco-friendly approach for plant and soil environment. In Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation; Hakeem, K.R., Bhat, R.A., Qadri, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 188–214. [Google Scholar]
- Kaczmarek, Z.; Jakubus, M.; Grzelak, M.; Mrugalska, L. Impact of the addition of various doses of effective microorganisms to arable humus horizons of mineral soils on their physical and water properties. J. Res. Appl. Agric. Eng. 2008, 5, 118–121. [Google Scholar]
- Mayer, J.; Scheid, S.; Widmer, F.; Fließbach, A.; Oberholzer, H.R. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 2010, 46, 230–239. [Google Scholar] [CrossRef]
- Tejada, M.; Benitez, C.; Gomez, I.; Parrado, J. Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Appl. Soil Ecol. 2011, 49, 11–17. [Google Scholar] [CrossRef]
- Piotrowska, A.; Długosz, J.; Zamorski, R.; Bogdanowicz, P. Changes in some biological and chemical properties of an arable soil treated with the microbial biofertilizer UGmax. Pol. J. Environ. Stud. 2012, 21, 455–463. [Google Scholar]
- Dębska, B.; Długosz, J.; Piotrowska-Długosz, A.; Banach-Szott, M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration–results from a field-scale study. J. Soils Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef]
- Yadav, K.K.; Sarkar, S. Biofertilizers, Impact on soil fertility and crop productivity under sustainable agriculture. Environ. Ecol. 2019, 37, 89–93. [Google Scholar]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef] [PubMed]
- Trawczyński, C.; Bogdanowicz, P. Utilization of soil fertilizer in ecological aspect of potato cultivation. J. Res. Appl. Agric. Eng. 2008, 4, 94–97. [Google Scholar]
- Sulewska, H.; Szymańska, G.; Pecio, A. Evaluation of UGmax soil additive applied in maize grown for grain and silage. J. Res. Appl. Agric. Eng. 2009, 54, 120–125. [Google Scholar]
- Kotwica, K.; Jaskulski, D.; Piekarczyk, M.; Wasilewski, P.; Gałęzewski, L.; Kulpa, D. Effect of soil conditioning and the application of biostimulants on the productivity of winter wheat in crop rotation and short-term monoculture. Fragm. Agron. 2013, 30, 55–64. [Google Scholar]
- Górski, D.; Gaj, R.; Piszczek, J.; Ulatowska, A. Impact of soil fertilizer UGmax on leaf infection degree by leaf spot disease (Cercospora beticola Sacc.) and yield and root quality of sugar beet. Prog. Plant Prot. 2015, 55, 195–201. [Google Scholar]
- Zarzecka, K.; Gugała, M.; Mystkowska, I.; Sikorska, A. Influence of the soil conditioner UGmax on nitrogen, phosphorus and magnesium content in potato tubers. Acta Sci. Pol. 2014, 13, 93–101. [Google Scholar]
- Wichrowska, D.; Szczepanek, M. Possibility of limiting mineral fertilization in potato cultivation by using bio-fertilizer and its influence on protein content in potato tubers. Agriculture 2020, 10, 442. [Google Scholar] [CrossRef]
- Kowalska, J. Effect of fertilization and microbiological bio-stimulators on healthiness and yield of organic potato. Prog. Plant Prot. 2016, 56, 230–235. [Google Scholar]
- Zarzecka, K.; Gugała, M.; Milewska, A. The effects of soil fertilizer UGmax on yield of potato tubers and its structure. Prog. Plant Prot. 2011, 51, 153–157. [Google Scholar]
- Baranowska, A.; Zarzecka, K.; Gugała, M.; Mystkowska, I. The impact of the UGmax soil fertilizer on the presence of Streptomyces Scabies on edible potato tubers. J. Ecol. Eng. 2018, 19, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Długosz, J.; Zamorski, R.; Bogdanowicz, P. Changes of enzymatic activity in soil supplemented with microbiological preparation UGmax. In Proceedings of the World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 5–8. [Google Scholar]
- Orzechowski, M.; Długosz, J.; Smólczyński, S.; Kalisz, B.; Sowiński, P.; Ubranowicz, P. Effect of microbial UGmax enricher on soil physical and water retention properties. Soil Sci. Annu. 2018, 69, 243–250. [Google Scholar] [CrossRef]
- Frąckowiak, K. How to increase the profitability of corn cultivation? Agric. Sci. 2007, 1, 5. [Google Scholar]
- Kowalska, J.; Niewiadomska, A.; Głuchowska, K.; Kaczmarek, D. Impact of fertilizers on soil properties in the case of Solanum tuberosum L. during conservation to organic farming. Appl. Ecol. Environ. Res. 2017, 15, 369–383. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. International soil classification system for naming soils and creating legends for soil maps. In World Reference Base for Soil Resources, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Poland nr G-9/09; Decision of the Minister of Agriculture and Rural Development. Ministry of Agriculture and Rural Development: Warsaw, Poland, 2009.
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinsen, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Anderson, T.H.; Domsch, K.H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 1989, 21, 471–479. [Google Scholar] [CrossRef]
- Egner, H.; Riehm, H.; Domingo, W.R. Studies concerning the chemical analysis of soils as background for soil nutrient assessment. II. Chemical extracting methods to determinate the phosphorous and potassium content of soil. K. Lantubrukshögskolans Ann. 1960, 26, 199–215. (In Germany) [Google Scholar]
- Michalski, R.; Muntean, E.; Pecyna-Utylska, P.; Kernert, J. Ion chromatography—An advantageous technique in soil analysis. ProEnvironment 2019, 12, 82–88. [Google Scholar]
- Mehta, N.C.; Legg, J.O.; Goring, C.A.; Black, C.A. Determination of organic phosphorus in soils. Soil Sci. Soc. Am. Proc. 1954, 44, 443–449. [Google Scholar] [CrossRef]
- Polish Norm PN-ISO 11277; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. Polish Committee for Standardization: Warsaw, Poland, 2005.
- Polish Norm PN-ISO 10390; Soil Quality—Determination of Soil pH. Polish Committee for Standardization: Warsaw, Poland, 1997.
- Wilding, L.P. Spatial variability: Its documentation, accommodation, and implication to soil surveys. In Soil Spatial Variability; Nielsen, D.R., Bouma, J., Eds.; Pudoc: Wageningen, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- TIBCO Statistica Inc. Statistica for Windows; (Statistica v 13.3.); TIBCO Statistica Inc.: Tulsa, OK, USA, 1984–2017. [Google Scholar]
- Polish Norm PN-ISO 04023; Chemical and Agricultural Analysis. Polish Committee for Standardization: Warsaw, Poland, 1996.
- Jakubus, M.; Kaczmarek, Z.; Gajewski, P. Influence of increasing doses of EM-A preparation on properties of arable soils. Part II. Chemical properties. J. Res. Appl. Agric. Eng. 2010, 55, 128–132. [Google Scholar]
- Tołoczko, W.; Trawczyńska, A.; Niewiadomski, A. Content of organic compounds in soil fertilized with EM preparation. Soil Sci. Ann. 2009, 60, 97–101. [Google Scholar]
- Jakubus, M.; Gajewski, P.; Kaczmarek, Z.; Mocek, A. Impact of addition of organic additives and EM-A preparation on physical, chemical and structural stage of the arable-humus soil horizon. Part II. Chemical properties. J. Res. Appl. Agric. Eng. 2013, 58, 220–225. [Google Scholar]
- Valarini, P.J.; Díaz, M.C.; Gascó, J.M.; Guerrero, F.; Tokeshi, H. Assessment of soil properties by organic matter and EM-microorganisms incorporation. Rev. Bras. Ciência Solo 2003, 27, 519–525. [Google Scholar] [CrossRef]
- Nisha, R.; Kaushik, A.; Kaushik, C.P. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 2007, 138, 49–56. [Google Scholar] [CrossRef]
- Pardo, T.; Almendros, G.; Zancada, M.C.; López-Fando, C. Biofertilization of degraded Southern African soils with cyanobacteria affects organic matter content and quality. Arid. Land Res. Manag. 2010, 24, 328–343. [Google Scholar] [CrossRef]
- Schenck zu Schweinsberg-Mickan, M.; Müller, T. Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic matter decomposition, and plant growth. J. Plant Nutr. Soil Sci. 2009, 172, 704–712. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef]
- Pal, S.; Singh, H.B.; Farooqui, A.; Rakshit, A. Fungal biofertilizers in Indian agriculture: Perception, demand and promotion. J. Eco-Friendly Agric. 2015, 10, 101–113. [Google Scholar]
- Ibarra-Galeana, J.A.; Castro-Martínez, C.; Fierro-Coronado, R.A.; Armenta-Bojórquez, A.D.; Maldonado-Mendoza, I.E. Characterization of phosphate-solubilizing bacteria exhibiting the potential for growth promotion and phosphorus nutrition improvement in maize (Zea mays L.) in calcareous soils of Sinaloa, Mexico. Ann. Microbiol. 2017, 67, 801–811. [Google Scholar] [CrossRef]
- Shrivastava, M.; Srivastava, P.C.; D’Souza, S.F. Phosphate-solubilizing microbes: Diversity and phosphates solubilization mechanism. In Role of Rhizospheric Microbes 2: Nutrient Management and Crop Improvement; Meena, V.S., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 137–165. [Google Scholar]
- Ahmed, N.; Shahab, S. Phosphate solubilization: Their mechanism genetics and application. Internet J. Microbiol. 2009, 9, 1–19. [Google Scholar]
- Zaidi, A.; Khan, M.S.; Ahemad, M.; Oves, M.; Wani, P.A. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In Microbial Strategies for Crop Improvement; Khan, M.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–50. [Google Scholar]
- Jorquera, M.A.; Hernandez, M.T.; Rengel, Z.; Marschner, P.; Mora, M.D. Isolation of culturable phosphor bacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol. Fertil. Soils 2008, 44, 1025–1034. [Google Scholar] [CrossRef]
- Criquet, S.; Ferre, E.; Farner, E.M.; Le Petit, J. Annual dynamics of phosphatase activities in an evergreen oak litter—Influence of biotic and abiotic factors. Soil Biol. Biochem. 2004, 36, 1111–1118. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar]
- Tarafdar, J.C.; Yadav, R.S.; Meena, S.C. Comparative efficiency of acid phosphatase originated from plant and fungal sources. J. Plant Nutr. Soil Sci. 2001, 164, 279–282. [Google Scholar] [CrossRef]
- Olander, L.P.; Vitousek, P.M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 2000, 49, 175–191. [Google Scholar] [CrossRef]
- Miller, S.S.; Liu, J.; Allan, D.L.; Menzhuber, C.J.; Fedorova, M.; Vance, C.P. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol. 2001, 127, 594–606. [Google Scholar] [CrossRef]
- Długosz, J.; Piotrowska-Długosz, A.; Siwik-Ziomek, A.; Figas, A. Depth-related changes in soil P-acquiring enzyme activities and microbial biomass—The effect of agricultural land use/plant cover and pedogenic processes. Agriculture 2022, 12, 2079. [Google Scholar] [CrossRef]
- Długosz, J.; Piotrowska-Długosz, A.; Kalisz, B. Vertical changes in P-acquiring enzyme activities and microbial biomass in Luvisols—The effect of different types of agricultural land use and soil-forming processes. Geoderma 2023, 432, 116406. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Antibus, R.K.; Linkins, A.E.; McClaugherty, C.A.; Rayburn, L.; Repert, D.; Weiland, T. Wood decompo-sition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 1993, 74, 1586. [Google Scholar] [CrossRef]
- Juma, N.G.; Tabatabai, M.A. Distribution of phosphomonoesterases in soils. Soil Sci. 1978, 126, 101–108. [Google Scholar] [CrossRef]
- Maliha, R.; Samina, K.; Najma, A.; Sadia, A.; Farooq, L. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak. J. Biol. Sci. 2004, 7, 187–196. [Google Scholar]
- Trolove, S.N.; Hedley, M.; Kirk, G.J.D.; Bolan, N.S.; Loganathan, P. Progress in selected areas of rhizosphere research on P acquisition. Aust. J. Soil Res. 2003, 41, 471–499. [Google Scholar] [CrossRef]
- Kocoń, T.; Jadczyszyn, T. The effect of microbiological preparations, method of their application and doses of nitrogen fertilization on the content of available phosphorus in the soil, and other selected chemical indicators of soil fertility. Pol. J. Agron. 2015, 21, 11–18. [Google Scholar]
- Fitriatin, B.N.; Suryatmana, P.; Yuniarti, A.; Istifadah, N. The application of phosphate solubilizing microbes biofertilizer to increase soil P and yield of maize on Ultisols Jatinangor. In 2nd International Conference on Sustainable Agriculture and Food Security: A Comprehensive Approach; KnE Life Sciences, KNE Publishing: Sumedang, Indonesia, 2017; pp. 179–184. [Google Scholar]
- Fitriatin, B.N.; Amanda, A.P.; Kamaluddin, N.N.; Khumairah, F.H.; Sofyan, E.T.; Yuniarti, A.; Turmuktini, T. Some soil biological and chemical properties as affected by biofertilizers and organic ameliorants application on paddy rice. Eurasian J. Soil Sci. 2021, 10, 105–110. [Google Scholar] [CrossRef]
- Wu, S.C.; Cao, Z.H.; Li, Z.G.; Cheung, K.C.; Wong, M.H. Effects of biofertilizer containing N-fixer, P and K solublizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Pereira, S.I.; Castro, P. Phosphate-solubilizing rhizobacteria enhance Zeamays growth in agricultural P-deficient soils. Ecol. Eng. 2014, 73, 526–535. [Google Scholar] [CrossRef]
- Mishra, P.; Dash, D. Rejuvenation of biofertilizer’s for sustainable agriculture and economic development. Consilience Int. J. Sustain. Dev. 2014, 11, 41–61. [Google Scholar]
- Mahanta, D.; Rai, R.K.; Dhar, S.; Varghese, E.; Raja, A.; Purakayastha, T.J. Modification of root properties with phosphate solubilizing bacteria and arbuscular mycorrhiza to reduce rock phosphate application in soybean-wheat cropping system. Ecol. Eng. 2018, 111, 31–43. [Google Scholar] [CrossRef]
- Dobbelaere, S.; Vanderleyden, J.; Okon, Y. Plant growth-promoting effects of diazotrops in the rhizosphere. Crit. Rev. Plant Sci. 2003, 22, 107–149. [Google Scholar] [CrossRef]
- Brar, S.K.; Sarma, S.J.; Chaabouni, E. Shelf-life of biofertilizers and accord between formulation and genetics. J. Fertil. Pestic. 2012, 3, 1000e109. [Google Scholar]
- Gyaneshwar, P.; Naresh Kumar, G.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2002, 245, 89–93. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019, 9, 205. [Google Scholar] [CrossRef]
- Da Silva, L.I.; Pereira, M.C.; de Carvalho, A.M.X.; Buttrós, V.H.; Pasqual, M.; Dórian, J. Phosphorus-solubilizing microorganisms: A key to sustainable agriculture. Agriculture 2023, 13, 462. [Google Scholar] [CrossRef]
- Valetti, L.; Angelini, J.G.; Taurian, T.; Ibáñez, F.J.; Muñoz, V.L.; Anzuay, M.S.; Ludueña, L.M.; Fabra, A. Development and field evaluation of liquid inoculants with native Bradyrhizobial strains for peanut production. Afr. Crop Sci. J. 2016, 24, 1–13. [Google Scholar] [CrossRef]
- Raimi, A.; Roopnarain, A.; Adeleke, R. Biofertilizer production in Africa: Current status, factors impeding adoption and strategies for success. Sci. Afr. 2021, 11, e00694. [Google Scholar] [CrossRef]
Mineral Elements (Total Forms) | Content | Microorganisms | Content |
---|---|---|---|
[mg L−1] | [CFU mL−1] | ||
Nitrogen (N) | 1800 | Lactis acid bacteria | 7.5 × 102 |
Phosphorus (P) | 250 | Pseudomonas spp. | 1.6 × 105 |
Potassium (K) | 3000 | Penicilium | 1.8 × 104 |
Magnesium (Mg) | 120 | Actinomycetes spp. | 3.0 × 103 |
Sulfur (S) | 350 |
2005 | 2006 | 2007 | 2008 | |||||
---|---|---|---|---|---|---|---|---|
Control | UGmax | Control | UGmax | Control | UGmax | Control | UGmax | |
Plant | Winter Wheat | Winter Wheat | Winter Rapeseed | Winter Wheat | ||||
Fertilizer (kg ha−1) | Urea (150) | Urea (150) | Urea (50) | Urea (200) | ||||
Ammonium nitrate (200) | ||||||||
Ammonium nitrate (200) | ||||||||
Yield Mg ha−1 | 5.9 | 6.1 | 5.0 | 5.4 | 3.0 | 3.4 | 6.1 | 7.3 |
Month | 2005 | 2006 | 2007 | 2008 | ||||
---|---|---|---|---|---|---|---|---|
T# | R* | T | R | T | R | T | R | |
January | 0.9 | 46.1 | −8 | 17.6 | 2.8 | 107.1 | 0.9 | 59.3 |
February | −3.8 | 21.5 | −3.4 | 19 | −2.6 | 26.9 | 3 | 25.4 |
March | −1.8 | 50.5 | −2.8 | 13 | 5.7 | 29.6 | 3 | 72.9 |
April | 7.4 | 26.7 | 7.4 | 26 | 7.4 | 23.2 | 7.9 | 41.9 |
May | 12.5 | 32.9 | 12.6 | 70.9 | 14 | 59.2 | 12.1 | 19.7 |
June | 15.3 | 43.1 | 16.3 | 54.6 | 17.7 | 74.4 | 16.8 | 42.4 |
July | 19.3 | 39.1 | 21 | 22.8 | 17.4 | 141.5 | 18.1 | 60.1 |
August | 16.4 | 63.3 | 17.7 | 181.1 | 18.3 | 94.2 | 17.8 | 155.6 |
September | 14.7 | 39.2 | 15.2 | 82.7 | 12.8 | 48.6 | 11.7 | 18.7 |
October | 8.1 | 29.1 | 10.2 | 34.6 | 7.6 | 53 | 8.8 | 91.9 |
November | 3.2 | 37.1 | 5.5 | 76.1 | 1.3 | 62.8 | 4.1 | 55.6 |
December | −1.0 | 63.5 | 4.9 | 50.1 | 1.1 | 17.6 | 0.5 | 32.8 |
Plot | Corg | Ntot | C/N | pH in KCl | Clay | Silt |
---|---|---|---|---|---|---|
[g kg−1] | [%] | |||||
Control | 14.8 a (16.4 *) | 1.46 a (15.6) | 10.1 a (3.6) | 5.52 a (6.1) | 18.3 a (27.6) | 22.0 a (25.4) |
UGmax | 16.94 a (17.6) | 1.64 a (15.5) | 10.3 a (4.2) | 6.01 a (4.9) | 21.0 a (23.9) | 23.7 a (17.2) |
Plot | Pavail | Pwater | Pwater/Pavail | AcP | AlP |
---|---|---|---|---|---|
[mg kg−1] | [%] | [mM pNP kg−1 h−1] | |||
Control | 66.6 b (19.5 *) | 5.05 a (29.1) | 7.74 a (29.0) | 2.50 a (11.8) | 2.17 a (11.9) |
UGmax | 79.4 a (21.2) | 5.45 a (31.0) | 7.15 a (37.9) | 2.16 b (17.4) | 1.68 b (23.6) |
Plots | Ptot [mg kg−1] | Pavail/Ptot | ||
---|---|---|---|---|
2005 | 2008 | 2005 | 2008 | |
Control | 4082 a (±112 *) | 3756 a (±103) | 1.86 a (±0.15) | 1.78 b (±0.12) |
UGmax | 4027 a (±131) | 3915 a (±119) | 2.06 a (±0.12) | 2.26 a (±0.12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Długosz, J.; Piotrowska-Długosz, A. Different Response of Carbon and P-Related Soil Properties toward Microbial Fertilizer Application. Agronomy 2023, 13, 2751. https://doi.org/10.3390/agronomy13112751
Długosz J, Piotrowska-Długosz A. Different Response of Carbon and P-Related Soil Properties toward Microbial Fertilizer Application. Agronomy. 2023; 13(11):2751. https://doi.org/10.3390/agronomy13112751
Chicago/Turabian StyleDługosz, Jacek, and Anna Piotrowska-Długosz. 2023. "Different Response of Carbon and P-Related Soil Properties toward Microbial Fertilizer Application" Agronomy 13, no. 11: 2751. https://doi.org/10.3390/agronomy13112751
APA StyleDługosz, J., & Piotrowska-Długosz, A. (2023). Different Response of Carbon and P-Related Soil Properties toward Microbial Fertilizer Application. Agronomy, 13(11), 2751. https://doi.org/10.3390/agronomy13112751