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Abstract: Constructing optical image time series for cropland monitoring requires a cloud removal
method that accurately restores cloud regions and eliminates discontinuity around cloud boundaries.
This paper describes a two-stage hybrid machine learning-based cloud removal method that combines
Gaussian process regression (GPR)-based predictions with image blending for seamless optical image
reconstruction. GPR is employed in the first stage to generate initial prediction results by quantifying
temporal relationships between multi-temporal images. GPR predictive uncertainty is particularly
combined with prediction values to utilize uncertainty-weighted predictions as the input for the
next stage. In the second stage, Poisson blending is applied to eliminate discontinuity in GPR-based
predictions. The benefits of this method are illustrated through cloud removal experiments using
Sentinel-2 images with synthetic cloud masks over two cropland sites. The proposed method was
able to maintain the structural features and quality of the underlying reflectance in cloud regions
and outperformed two existing hybrid cloud removal methods for all spectral bands. Furthermore, it
demonstrated the best performance in predicting several vegetation indices in cloud regions. These
experimental results indicate the benefits of the proposed cloud removal method for reconstructing
cloud-contaminated optical imagery.

Keywords: cloud removal; machine learning; image blending; image time series; crop monitoring

1. Introduction

The growing population and climate change present significant challenges to food
security [1]. The increasing climate variability has a significant impact on food production,
emphasizing growing needs for sustainable agricultural management to meet food security
needs [2]. Consistent cropland monitoring and thematic information extraction are essential
for sustainable agricultural management [3]. In this context, remote sensing imagery is
regarded as an important source of information owing to its ability to provide periodic
thematic information in croplands. The representative thematic information derived from
remote sensing imagery includes crop type maps [4,5] and crop yield prediction infor-
mation [6–8]. Remote sensing-based crop monitoring often requires image time series to
extract information on the growth cycles of crops of interest. However, the acquisition of
optical remote sensing imagery is greatly affected by atmospheric conditions, making it
challenging to collect multi-temporal cloud-free optical images. The presence of clouds and
cloud shadows in optical imagery greatly reduces the usability of data for multi-temporal
cropland monitoring. When optical imagery contains clouds and cloud shadows, cloud-
contaminated regions are first detected and then masked out in the imagery. Representative
cloud detection tools include Sen2Cor [9], MACCS-ATCOR Joint Algorithm (MAJA) [10],
and AgroShadow [11]. Even though cloud regions are accurately detected, these regions
are excluded from further analysis. Thus, image reconstruction or gap-filling in cloud
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regions [12,13] is required in order to increase the number of available optical images for
cropland monitoring.

This study defines cloud removal as the reconstruction of missing information in
clouds and cloud shadows. From a methodological standpoint, cloud removal can be
grouped into spatial, spectral, temporal, and hybrid approaches depending on the types of
available auxiliary information [12–16]. The spatial approach predicts missing information
using information from cloud-free regions within the same image [17–19]. The spectral
approach utilizes complementary information from other spectral bands unaffected by
clouds for image reconstruction [20–22]. The temporal approach utilizes images acquired
at different times in the same geographical region as auxiliary information to reconstruct
cloud regions. Regression-based methods [23–27] have mainly been applied due to their
ability to quantify complex temporal relationships between the reference date (the date
on which an auxiliary image is acquired) and the prediction date (the date on which the
cloud-contaminated image is acquired). As the three approaches mentioned above utilize
correlation information in only one domain, their predictive performance depends heavily
on the correlation strength of the considered domain [12]. The hybrid approach combines
the advantages of individual methods for cloud removal. As a representative hybrid
method, the neighborhood similar pixel interpolator (NSPI) [28] was developed to fill gaps
due to the scan-line corrector failure of the Landsat ETM+ sensor [29] and has been further
modified for cloud removal.

Even though any hybrid method may be applied to cloud removal, prediction results
usually contain spectral discontinuity between cloud-free and reconstructed regions [27].
Thus, a specific procedure to remove seams around cloud boundaries is required to gen-
erate continuous spectral patterns in prediction results. To this end, Lin et al. [30] and
Hue et al. [31] first replaced cloud masks in a target image with reference image patches.
Poisson blending was then applied to remove seams around reconstructed regions. How-
ever, prediction errors may increase when the spectral differences between the reference
and prediction dates are substantial. A critical factor in image blending-based seam re-
moval is the error propagation problem. Since seam removal is primarily based on initial
prediction results, errors in initial predictions affect the quality of seam removal accordingly.
Thus, for seam removal, it is essential to generate initial predictions with high accuracy
within cloud regions.

Regarding the generation of initial predictions with high accuracy, machine learning-
based regression has great potential for cloud removal from optical remote sensing images
because auxiliary information from pixels with the same land-cover type and spatial
structures is utilized to capture complex relationships. Among a plethora of machine
learning-based regression methods, Gaussian process regression (GPR) has achieved supe-
rior predictive performance in regression tasks involving remote sensing images [32–34].
In addition, it has been successfully applied to cloud removal [27,35–37]. Recently, Park
et al. [38] also reported that GPR was robust to variations in land-cover types and spectral
changes in training samples, achieving better prediction accuracy compared to the random
forest and support vector regression models. However, GPR has not yet been applied as an
initial prediction generator within the hybrid cloud removal approach.

Furthermore, image blending has been applied directly to a postprocessor for seam
elimination in existing cloud removal studies, without further modification of the initial
prediction results. To the best of our knowledge, regression-based initial predictions have
not been logically interconnected to image blending within an integrated framework.
Instead, the two procedures have been separately applied to cloud removal.

This study presents a two-stage hybrid approach to thick cloud removal from optical
remote sensing images. The proposed cloud removal method combines a GPR-based
temporal method with a Poisson blending-based spatial method. The former is applied
to generate initial prediction with higher accuracy, and the latter is employed to eliminate
discontinuity around cloud boundaries. The final prediction results containing reflectance
values continuously corrected from the cloud boundary to the interior are finally obtained



Agronomy 2023, 13, 2789 3 of 16

by applying Poisson blending. The main contribution of this approach is to provide a
novel pipeline for cloud removal that includes a modification procedure for GPR-based
initial predictions that is specific to Poisson blending-based discontinuity elimination. As
initial prediction results are directly fed into the Poisson blending procedure, uncertainty
in GPR-based prediction affects the gradient computation for discontinuity elimination. In
this work, uncertainty-weighted predictions are used as input for the gradient computation
to alleviate the impact of the prediction uncertainty on Poisson blending. The uncertainty-
weighted scheme in particular is proposed because GPR provides the prediction uncertainty,
and the gradient information (not the original image values) is considered within Poisson
blending. The potential of the proposed approach was demonstrated via cloud removal
experiments using Sentinel-2 images of two agricultural sites.

2. Methods

In this study, cloud removal is undertaken to reconstruct cloud-contaminated remote
sensing imagery from the prediction date (TP) using the cloud-free imagery from the reference
date (TR). The two-stage hybrid cloud removal method proposed in this study combines
GPR-based predictions with Poisson blending-based discontinuity elimination (Figure 1).
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in this study (TR: reference date; TP: prediction date).

2.1. Initial Prediction Using Gaussian Process Regression

GPR first quantifies the relationships between TR and TP using training samples
extracted from non-cloud regions both in reference and prediction images. The reflectance
values in the cloud masks of the target imagery at TP for each spectral band are then
predicted using the quantified relationships and reflectance values from the cloud masks
in the reference imagery. The initial prediction result based on GPR at TP is an image
in which cloud masks are replaced with GPR-based prediction results, while non-cloud
regions are retained.

GPR learns a probability distribution over functions via a stochastic Gaussian process
(GP) [39,40]. In GPR, given a set of training samples, D = {(xn, yn), n = 1, · · · , N}, the
output yn is formulated as the sum of some unknown latent function g at an input xn, and
the Gaussian noise with zero mean and variance σ2

n :

yn = g(xn) + εn, εn ∼ N
(

0, σ2
n

)
(1)
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Unlike conventional parametric regression models, the latent function g is regarded
as a random variable following a particular distribution. In GPR, g(x) is assumed to be
distributed as a GP, which is defined as a collection of random variables, any finite number
of which have a joint Gaussian distribution [39] (p. 13). A GP is completely specified by its
mean function µ(x) and covariance function k(x, x′):

g(x) ∼ GP
(
µ(x), k

(
x, x′

))
(2)

By combining the zero mean GP prior and the Gaussian likelihood computed from
training samples, the posterior distribution over the unknown output for the new obser-
vation x∗ can be analytically computed within a Bayesian framework. After computing
K =

[
k
(
xi, xj

)]
and k∗ =

[
k(x1, x∗), · · · , k(xN , x∗)]> , the predictive mean (µ(x∗)) and the

predictive variance (σ2(x∗)) at the new observation x∗ are finally obtained, as follows:

y∗(x∗) = µ(x∗) = k>∗
[
σ2

nI + K]−1y, (3)

σ2(x∗) =
√

k(x∗, x∗)− k>∗ [σ2
nI + K]−1k∗ , (4)

where y =
[
y1, · · · , yN ]

> is an N × 1 vector.
The attractive advantage of GPR over other regression models is its ability to provide

prediction uncertainty estimates (i.e., the predictive variance in Equation (4)) together with
prediction values.

The covariance function in Equation (2) is specified by the kernel function measuring
the similarity between inputs of a function. The commonly used kernel function is the
square exponential kernel, also called the radial basis function (RBF) kernel:

k
(
x, x′

)
= σ2

gexp
{
− 1

2l2 ‖ x− x′ ‖2
}
+ σ2

nδxx′ , (5)

where σ2
g is the signal variance or the vertical length scale, l is the horizontal length scale,

and σ2
n is the noise variance. δxx′ is 1 if x = x′ and is 0 otherwise. The optimal values of the

three hyperparameters are usually determined through marginal likelihood maximization.
In this study, an uncertainty-weighted scheme based on the following two strategies is

presented to reduce the impact of the prediction uncertainty on discontinuity elimination.

(1) The first strategy is inverse uncertainty weighting. Larger weights are assigned
predictions with smaller prediction variances, while smaller weights are given to
predictions with larger prediction variances.

(2) The second strategy is mean bias correction. When inverse uncertainty weights are
normalized, the resulting weighted predictions will likely have much smaller values
than the original GPR predictions. Consequently, gradient computation in Poisson
blending tends to return smaller gradient values, yielding smoothed blending results.
To avoid smoothing effects, the ratio of the mean values from the initial and weighted
predictions was empirically considered another weighting factor to preserve the
first momentum of the predictions. By considering the empirical mean ratio-based
correction term as another weighting factor, the final prediction has the same mean
value as the initial predictions but different variations.

Based on the above two strategies, for initial predictions based on GPR {(xk, y∗(xk)),
k = 1, · · · , K}within a specific cloud mask, the final weighted predictions (y∗ω) for a specific
cloud region are formulated as follows:

y∗ω(xk) = σ(xk)
−py∗(xk)

y0
y1

, (6)
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where σ is the predictive standard deviation of GPR. y0 = 1/K∑K
k=1 y∗(xk) and y1 =

1/K∑K
k=1 σ(xk)

−py∗(xk) are the mean values of initial predictions and inverse uncertainty
weighted predictions, respectively. These two values are computed for each cloud region.

Within Equation (6), a weighting power value (p) that controls how proportional the
weights are to the inverse of the uncertainty needs to be determined. The larger weight
power is likely to generate weighted values that are quite different from the original
values. Based on our preliminary tests using different power values, a power value of
0.5 was empirically selected in this work. Thus, the weight assigned to each prediction is
proportional to the inverse of the square root of the standard deviation. Hereafter, the final
weighted predictions in Equation (6) are referred to as the GPR prediction and are used as
input for Poisson blending.

2.2. Discontinuity Elimination Using Poisson Blending

Poisson blending is a guided interpolation framework [41] and has been applied to the
seamless cloning of different images. The key principle of Poisson blending is to seamlessly
compose some parts of a target image with a source image through image editing in the
gradient domain, not in the original value domain.

Within the process of cloud removal, the GPR prediction image and the cloud-
contaminated image correspond to the source and target images, respectively. Given
the cloud mask in the target image (Ω) and its boundary (∂Ω), let fΩ be an unknown image
reflectance function, defined over the interior of Ω (i.e., target reflectance values within the
cloud mask) and let fNC be a known image reflectance function defined outside of Ω in
the target image (i.e., reflectance values in non-cloud regions). Poisson blending aims to
find the unknown function fΩ, which reconstructs reflectance values within Ω without any
discontinuity around ∂Ω (Figure 2). To this end, image editing proceeds such that (1) the
source image has the same reflectance value on ∂Ω as the target image and (2) the gradient
for each pixel over the interior Ω of the source image should preserve the original gradient
of the source image. By imposing these constraints, the reconstructed cloud region features
a variation in reflectance corresponding to the GPR prediction results and is also consistent
with the reflectance of the non-cloud region in the target image around the cloud boundary.
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Under the guidance of vector field v defined over the interior of Ω in the source image,
Poisson blending is formulated using the following the minimization problem [41]:

min
f

x

Ω

∣∣∣∇ fΩ − v|2 with fΩ|∂Ω = fNC|∂Ω, (7)

where ∇ is the gradient operator.
Solving Equation (7) is equivalent to finding the solution of the following Poisson

equation with Dirichlet boundary conditions [41]:

∆ fΩ = div v over Ω, with fΩ|∂Ω = fNC|∂Ω, (8)

where ∆ and div are the Laplacian operator and the divergence of a vector field, respectively.
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A set of four connected neighbors for the pixel in the target image is usually considered
to approximate the differential operators in the discrete image domain. Based on this finite
difference approach, a numerical solution of Equation (8) is then obtained by solving a
sparse linear system [42].

3. Experiments
3.1. Study Area and Data

Cloud removal experiments were conducted on images of two agricultural sites in
Korea, Gimje (Site 1) and Hapcheon (Site 2), as shown in Figure 3. The two sites are major
rice and garlic/onion production regions in Korea, respectively. Thus, cloud-free image
time series are required for crop monitoring. The transplanting and harvesting periods for
rice grown at Site 1 are in May and October, respectively. Garlic and onions at Site 2 have
the highest vegetative vitality from late April to early May. Harvesting begins in late May.
The total areas of the two sites are 2500 ha and 676 ha, respectively.
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Figure 3. False color composites of Sentinel-2 images in two sites (near infrared-red-green bands as
R-G-B): (a) Sentinel-2 imagery on 20 August 2021 at the Gimje site (Site 1); (b) Sentinel-2 imagery on
14 April 2021 at the Hapcheon site (Site 2). White polygons shown in the Sentinel-2 imagery represent
synthetic cloud masks.

In this study, Sentinel-2 images were used as input for cloud removal experiments
(Figure 3). The Sentinel-2 images have often been utilized for crop monitoring because
the combined constellation of Sentinel-2A and -2B satellites provides images every five
days. Out of the twelve spectral bands of the level-2A bottom-of-atmosphere (BOA)
products [43], the reflectance values of four spectral bands, including green, red, red-edge,
and near infrared (NIR) bands, were considered for cloud removal experiments because
they have frequently been used to calculate several vegetation indices for crop monitoring
(Table 1). The red-edge 1 band with a spatial resolution of 20 m was resampled to 10 m
using bilinear resampling to match the spatial resolution of all the spectral bands to 10 m.
Among the cloud-free Sentinel-2 images acquired in 2021 for each site, 20 August and 14
April were experimentally selected as the prediction dates for Site 1 and Site 2, respectively,
because vegetative vitality was high at both sites on those dates. Based on preliminary
tests, reference dates showing a high correlation with the prediction dates were selected for
the two sites (26 July and 10 March, respectively).
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Table 1. Summary of Sentinel-2 images used for the experiments (NIR: near infrared).

Specification Site 1 Site 2

Spectral bands
(central wavelength)

Green (560 nm)
Red (665 nm)

Red-edge (705 nm)
NIR (842 nm)

Reference date 26 July 2021 10 March 2021
Prediction date 20 August 2021 14 April 2021

3.2. Experimental Design

The synthetic cloud masks shown in Figure 3 were first generated in cloud-free
Sentinel-2 imagery at TP to evaluate quantitative prediction performance within the cloud
removal experiment. The cloud masks in this study included a large amount of clouds
composed of various types of land cover. The cloud type was assumed to be thick clouds
that block signals from the land surface, and the cloud masks include both thick clouds and
shadows. When clouds are widely distributed over the study area, they may be located
at the edge of the image. In this case, fNC is not available when interpolating reflectance
values around edge pixels. To solve this limitation, the GPR prediction values of the edge
pixels were assumed to be fNC when clouds are located at the edge of the image. Based on
this assumption, GPR prediction values were first assigned to the edge of the cloud masks
that actually belonged to clouds. Poisson blending was then applied by regarding GPR
prediction values as non-cloud values at TP. In considering this case, some cloud masks
were particularly placed at the edges of the image, as shown in Figure 3. Finally, the cloud
masks, consisting of 1 for the cloud region and 0 for the non-cloud region, were prepared
and utilized as input for the cloud removal experiment. The actual reflectance values
for each spectral band of the cloud region were used to compute quantitative evaluation
metrics. The cloud masks occupy approximately 26% of the study area at both sites.

Based on our previous studies [27,38] and computational efficiency, 1% of the non-
cloud pixels in the study area, 2500 and 676 for Site 1 and Site 2, respectively, were randomly
extracted and then used as training samples for GPR model training.

The prediction performance of the proposed cloud removal method was compared
with that of two existing cloud removal methods, including modified NSPI (MNSPI) [29]
and geostatistical NSPI (GNSPI) [44]. The two methods were selected because they are
hybrid methods, like the proposed method, and their source code is publicly available [45].
MNSPI reconstructs persistent missing regions through the weighted combination of simi-
lar pixels based on spectral and spatial distances from auxiliary spatial information [29].
In GNSPI, missing information is predicted by combining regression-based temporal in-
formation with kriging of residuals [44]. GNSPI utilizes multi-temporal images to extract
spectrally similar neighboring pixels. For a fair comparison with MNSPI and the proposed
method using a single reference image, this study utilized a single reference image to imple-
ment GNSPI. The common parameters for MNSPI and GNSPI are the number of land cover
types and the size of the moving window for extracting neighboring pixels, which were
set to 7 and 5, respectively. In addition, the GPR prediction was compared with the final
prediction to investigate the effect of Poisson blending-based discontinuity elimination.

All cloud removal methods were applied to each of the four spectral bands of the
Sentinel-2 image, and prediction results for each spectral band were compared quantita-
tively and qualitatively. The four spectral bands are often used to calculated the vegetation
index, which is the essential information source for crop monitoring. Thus, to highlight
the importance of cloud removal for crop monitoring, the reflectance values of the four
spectral bands were utilized to calculate the vegetation index. The predictive performance
of different cloud removal methods was then evaluated by comparing the accuracy of
the calculated vegetation index. This study considered three vegetation indices that can
be calculated from the four spectral bands: (1) normalized difference vegetation index
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(NDVI), (2) normalized difference red-edge (NDRE), and (3) normalized difference water
index (NDWI):

NDVI =
ρNIR − ρRed
ρNIR + ρRed

, (9)

NDRE =
ρNIR − ρRed−edge

ρNIR + ρRed−edge
, (10)

NDWI =
ρGreen − ρNIR

ρGreen + ρNIR
, (11)

where ρ denotes the reflectance of a specific spectral band.
Two evaluation metrics, the relative root mean square error (rRMSE) and structural

similarity index measure (SSIM), were used to measure predictive performance. Since
each spectral band has different ranges of spectral reflectance, rRMSE was considered for a
relative comparison. SSIMs measure spatial similarity by comparing structural information
between actual and predicted reflectance values in cloud regions [46]. Smaller rRMSE
values indicate higher prediction accuracy. On the other hand, the closer the SSIM value is
to one, the better the structural similarity.

Given actual reflectance values (y(xm)) and predicted values (ŷ(xm)) for a specific
spectral band in cloud regions consisting of M pixels (xm, m = 1, · · · , M), rRMSE and SSIM
are calculated as follows:

rRMSE =

√
1
M ∑M

m=1(ŷ(xm)− y(xm))2

µy
, (12)

SSIM =

(
2µyµŷ + C1

)
(2COV + C2)(

µ2
y + µ2

ŷ + C1

)(
σ2

y + σ2
ŷ + C2

) , (13)

where µy and σ2
y are the mean and variance values for the actual reflectance values, re-

spectively. µŷ are σ2
ŷ are the mean and variance values for the predicted reflectance values,

respectively. COV denotes the covariance between actual and predicted reflectance values.
C1 and C2 are two constraint constants.

The Scikit-learn library [47] and the Python code of Poisson image editing [48] were
utilized to implement GPR and Poisson blending, respectively. All data processing, includ-
ing weighted predictions and evaluation metrics computation, was implemented using
Python programming.

4. Results
4.1. Reflectance Prediction

Table 2 lists the quantitative evaluation results for each spectral band. The proposed
method achieved the best predictive performance at both sites. MNSPI showed a worse
predictive performance for all spectral bands at both sites, except GNSPI which was worse
for the red band at Site 1. Significant improvements in rRMSE compared with the worst
method were found in the red-edge and NIR bands at both sites. The improvements in the
rRMSE of the proposed method over that of MNSPI were 19.27% and 13.34%, respectively,
for the red-edge and NIR bands at Site 1. The proposed method also increased the rRMSE
by 11.19% and 12.54% for the red-edge and NIR bands, respectively, at Site 2, compared
to MNSPI. The superiority of the proposed method was also shown in the SSIM, except
for the green band at Site 2. The maximum relative improvement in SSIM was obtained
for the red-edge and NIR bands. These quantitative comparison results indicate that the
proposed method can effectively capture the structural characteristics and overall quality
of the actual reflectance values in cloud regions. The predictive performance of GPR was
slightly worse than that of GNSPI, except for the green band at Site 1 and the NIR band at
Site 2. However, GPR outperformed MNSPI for all spectral bands.
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Table 2. Band-wise accuracy statistics of different cloud removal methods at the two study sites
(rRMSE: relative root mean square error; SSIM: structural similarity index measure; MNSPI: modified
neighborhood similar pixel interpolator; GNSPI: geostatistical neighborhood similar pixel interpola-
tor; GPR: Gaussian process regression; NIR: near infrared). The best metric is shown in bold.

Metric Band
Site 1 Site 2

MNSPI GNSPI GPR Proposed MNSPI GNSPI GPR Proposed

rRMSE

Green 0.2763 0.2627 0.2684 0.2499 0.2171 0.2044 0.2060 0.2004
Red 0.4449 0.4522 0.4506 0.4368 0.3092 0.2968 0.3013 0.2889

Red-edge 0.2329 0.2181 0.2220 0.1880 0.1600 0.1437 0.1479 0.1421
NIR 0.1496 0.1333 0.1402 0.1297 0.2240 0.2060 0.2044 0.1959

SSIM

Green 0.7119 0.7184 0.7073 0.7600 0.8530 0.8704 0.8606 0.8678
Red 0.7993 0.7746 0.7839 0.8014 0.8286 0.8444 0.8372 0.8512

Red-edge 0.4771 0.5073 0.4790 0.6784 0.7798 0.8212 0.8066 0.8225
NIR 0.6428 0.7104 0.6688 0.7326 0.6435 0.7038 0.7103 0.7439

When comparing the GPR prediction with the final prediction of the proposed method,
Poisson blending increased the rRMSE and SSIM for all spectral bands at both sites. Poisson
blending interpolates from the actual value of the non-cloud regions to the inside cloud
regions to maintain the spectral pattern. Thus, the proposed method yielded a decrease
in rRMSE and an increase in SSIM. Since the GPR predictions achieved better predictive
performance in a relative sense, the final prediction obtained after applying Poisson blend-
ing demonstrated the best prediction accuracy, confirming the potential of the proposed
hybrid method for use in cloud removal.

Figure 4 shows the zoomed subareas around the cloud masks. Compared to the GPR
predictions, the final prediction results clearly showed natural variations in reflectance
around the cloud outline upon visual inspection, demonstrating the necessity of disconti-
nuity elimination via Poisson blending after generating the GPR prediction.
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The effect of seam removal via Poisson blending is clearly revealed upon comparison
with MNSPI and GNSPI at both sites (Figures 5 and 6). The MNSPI prediction shows
noticeable differences in spectral patterns between cloud and non-cloud regions around
cloud outlines at Site 1 (Figure 5). Due to the low reflectance in the NIR band in most
cloud regions, the image appears relatively dark, and there are also outliers at some
cloud boundaries. Discontinuities near cloud outlines are somewhat less pronounced in
the GNSPI prediction than in the MNSPI prediction, but spectral distortions still exist
inside the cloud region. In addition, the spectral reflectance of some pixels near the cloud
boundary is low, resulting in irregular spectral patterns within the crop parcel. In contrast,
the proposed method restored the reflectance of the cloud region so that it was similar to
the actual reflectance. Spectral discontinuity around the cloud outline is alleviated, and the
reflectance inside the crop parcel is distributed evenly and continuously.
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imagery (NIR-red-green bands as R-G-B) in three subareas at Site 2. The white line marked in the
image represents the synthetic cloud mask, the yellow boxes represent the three subareas, and the
black dots indicate very low reflectance values.

Similar to Site 1, the reconstruction results of the proposed method were also visually
better than those of the two existing methods at Site 2 (Figure 6). As shown in subarea A,
MNSPI prediction showed, in relative terms, the most prominent discontinuity, and GNSPI
also showed blurred boundaries in some crop parcels. The two existing methods failed to
capture the structural characteristics of the relatively smaller crop parcels than at Site 1.

4.2. Vegetation Indices Prediction

The quantitative evaluation results of the vegetation index predictions are summarized
in Table 3. The mean of the actual NDWI values at both sites was negative, so the absolute
mean value was used to calculate the rRMSE of the NDWI predictions.
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Table 3. Accuracy statistics of different cloud removal methods for three vegetation indices prediction
at the two study sites (VI: vegetation index; NDVI: normalized difference vegetation index; NDRE:
normalized difference red-edge; NDWI: normalized difference water index). The best metric is shown
in bold.

Metric VI
Site 1 Site 2

MNSPI GNSPI GPR Proposed MNSPI GNSPI GPR Proposed

rRMSE
NDVI 0.0982 0.1004 0.0984 0.0948 0.2614 0.2543 0.2563 0.2445
NDRE 0.1329 0.1303 0.1320 0.1153 0.2955 0.2852 0.2764 0.2639
NDWI 0.1037 0.1025 0.0995 0.0937 0.2110 0.2043 0.1969 0.1884

SSIM
NDVI 0.7949 0.7674 0.8023 0.8129 0.7573 0.7799 0.7881 0.8128
NDRE 0.6949 0.6842 0.7011 0.7433 0.7168 0.7494 0.7781 0.8077
NDWI 0.7452 0.7266 0.7719 0.8002 0.7350 0.7632 0.7918 0.8138

As expected, the proposed method yielded the best predictive performance for the
three vegetation indices with the lowest rRMSE and the largest SSIM. Like the reflectance
predictions, MNSPI showed the worst prediction accuracy and structural similarity at both
sites, except for the NDVI prediction of GNSPI at Site 1. The worst rRMSE of GNSPI in
NDVI prediction at Site 1 is attributed to its worse accuracy in red band prediction. The
predictive performance of the NDWI prediction regarding GPR was better than that of
MNSPI and GNSPI at both sites. The maximum increase in the rRMSE of the proposed
method, compared with the worst predictor, was observed in its NDRE prediction (13.25%
at Site 1 and 10.69% at Site 2) followed by the NDWI prediction. The reflectance values
predicted in cloud regions are directly fed into the calculation of the vegetation index.
Thus, the quality of the computed vegetation index is subject to errors in the reflectance
predictions. As two spectral bands are utilized to calculate the vegetation index, the errors
of each spectral band together affect predictive performance. Although the proposed
method yielded the smallest rRMSE in NIR band prediction, the relatively large errors
in red band prediction resulted in a smaller improvement in the rRMSE of the NDVI
prediction. Meanwhile, the smallest rRMSE in the prediction of the red-edge and NIR
bands of the proposed method led to the most significant improvement in the rRMSE of the
NDRE prediction. For SSIM, the proposed method showed the best structural similarity
for all three vegetation indices at both sites. In particular, the GPR prediction achieved the
second-largest structural similarity.

5. Discussion
5.1. Contribution of the Study

The superiority of our method in this study was attributed to both GPR-based predic-
tions with high quality and seam removal via Poisson blending. It should be noted that the
purpose of Poisson blending employed in the second stage is not to improve prediction
accuracy. Instead, Poisson blending is used to remove seams and enhance naturalness in
reflectance around cloud outlines. Thus, a substantial improvement in prediction accu-
racy cannot always be expected when applying Poisson blending alone. Therefore, initial
predictions with reasonably high accuracy should be used as input for Poisson blending.
Compared to random forest regression applied in previous studies [26,49], GPR showed a
better prediction performance in cloud removal [38]. In addition, the potential of GPR was
demonstrated in many existing gap-filling studies [35,36]. Based on previous studies, GPR
was selected in this study to generate initial predictions for cloud removal. Consequently,
although the temporal relationship between the reference and prediction dates was purely
modeled and used for prediction in GPR, the performance of the GPR prediction was
compatible with or better than that of MNSPI and GNSPI, which take a spatio-temporal
hybrid approach. One of the advantages of GPR over other machine learning-based regres-
sion models is the availability of the predictive uncertainty information (i.e., predictive
variance) along with predictions [39]. To date, however, few studies have applied predictive



Agronomy 2023, 13, 2789 12 of 16

uncertainty information for interpretation or value-added product generation. In this study,
predictive standard deviation was combined with predictive value to give less weight to
uncertain predictions. Since the gradient, rather than the reflectance value itself, is modeled
within the process of Poisson blending, weighted prediction based on two strategies was
utilized as the input for Poisson blending.

In their application of Poisson blending to cloud removal, existing hybrid approaches
first blend two images acquired on different dates by substituting the non-cloud pixels
in the reference image for the cloud region in the prediction image [30,31]. Taking such a
cut-and-paste approach, Poisson blending may fail to alleviate the discontinuity around
cloud outlines when significant changes occur between reference and prediction dates. To
mitigate this limitation, the proposed method replaced cloud regions with GPR predictions
based on quantitative relationships between reference and prediction dates and predictive
uncertainty. By enhancing naturalness through Poisson blending, prediction results could
exhibit more significant structural coherence and maintain the overall spectral patterns
in the cloud regions, as confirmed by the smallest rRMSE and the highest SSIM in the
comparisons at the two cropland sites. The benefits of our method can be further verified
through a comparison of the temporal differences in NDVI between reference and predic-
tion dates. The two sites exhibited different temporal relationships between the reference
and prediction dates. At Site 1, the average NDVI values for the reference and prediction
dates were similar, with values of 0.72 and 0.79, respectively. In contrast, at Site 2, the
average NDVI values for the reference and prediction dates were significantly different
(0.27 vs. 0.51), indicating a substantial variation in vegetation vitality between the two
dates. The predictive performance of the proposed method at Site 2 outperformed that
at Site 1, as shown in Table 2. This result confirms the superiority of our method over
conventional cut-and-paste approaches, particularly when there are spectral differences
between the two dates.

5.2. Future Research Directions

While our method has demonstrated superior predictive performance, additional
refinements and potential applications should be included in future work.

In this study, the relationship between the reflectance values of the reference and
prediction dates in GPR was modeled independently for each spectral band. The spectral
bands considered in this study have a reasonable correlation. Thus, it is worthwhile to
evaluate the potential of multi-output Gaussian process regression, which can capture
quantitative relationships between correlated multiple inputs [50].

Predictive uncertainty in GPR is epistemic uncertainty that indicates how confident
the model is with respect to its predictions [51]. Thus, predictive uncertainty may not
always be related directly to prediction errors. As shown in Equation (4), predictive
variance is dependent on covariance but independent of data values, like kriging variance
in geostatistics [52]. As the covariance depends solely on the location of data points, the
predictive variance of any data sets separated by the same distance is the same, regardless
of the data values. Prediction errors usually differ in the prediction of actual high and
low values. Thus, the predictive uncertainty in GPR provides only indirect information
on its measure of prediction accuracy, which is the limitation of the uncertainty-weighted
approach in this study. An alternative approach is to quantify the relationship between
the error and the predictive uncertainty in the non-cloud region and then convert the GPR
variance into error-related values since errors can be calculated in the non-cloud region.

Recently, several studies have applied cloud removal to high spatial resolution satellite
images, such as PlanetScope and WordView images, using deep learning and object-
based information [53,54]. Our cloud removal method can be applied to cloud removal
from high spatial resolution imagery without the need for further modification since
GPR-based regression modeling and Poisson blending are independent of the spatial
resolution of the input imagery. However, it is worth noting that high spatial resolution
imagery often exhibits more spectral variations and irregular shapes in surface objects
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compared to low spatial resolution imagery. These differences in spatial structures and
land-cover types between cloud and non-cloud regions may affect the prediction results
of our method. Therefore, future work should include extensive experiments using high
spatial resolution imagery.

The dense image time series generated via cloud removal can act as essential informa-
tion sources for environmental monitoring, as well as cropland monitoring. For example,
the characterization and classification of forest types often requires a series of multi-spectral
remote sensing images to capture phenological changes in the forest, like crop monitoring
and classification. However, the occurrence of cloud-contaminated images may degrade
predictive performance [55]. Thus, optical images reconstructed by cloud removal can be
effectively employed for the multi-temporal analysis of forests.

With regard to image time series construction, cloud removal can be combined with
other approaches. For example, cloud removal may be employed as a preprocessing
step in spatio-temporal image fusion for generating fine spatial and temporal resolution
imagery [56]. Spatio-temporal image fusion requires both fine temporal resolution but
coarse spatial resolution imagery and coarse temporal resolution but fine spatial resolution
imagery. Images contaminated by clouds cannot be used as input for spatio-temporal
image fusion. Recently, Tange et al. [57] utilized gap-filled images as input to generate
all-sky MODIS land surface temperature. Similarly, the cloud removal method proposed in
this work can be applied to reconstruct cloud images and combined with a spatio-temporal
image fusion method specifically designed for small-scale cropland monitoring [58]. The
benefits of our cloud removal method for the spatio-temporal fusion of vegetation indices
will be evaluated in future work.

6. Conclusions

The presence of cloud contamination in optical remote sensing imagery poses a signif-
icant challenge to cropland monitoring using remote sensing image time series. To address
limitations in the usability of cloud-free images, this study presented a two-stage hybrid
cloud removal method. Our cloud removal method is a hybrid approach leveraging the
advantages of temporal (GPR) and spatial (Poisson blending) methods. The method begins
with the generation of regression-based predictions, followed by discontinuity elimination
through Poisson blending. Since the quality of input imagery greatly affects the effective-
ness of Poisson blending, GPR was employed as the primary regression model due to its
superior predictive capability in cloud removal and the availability of predictive uncer-
tainty information. Cloud removal experiments using Sentinel-2 images at two cropland
sites demonstrated the effectiveness of our method. The results from our method exhib-
ited reduced spectral discontinuities around cloud outlines and fewer spectral distortions
within cloud regions. In comparative evaluations with two existing hybrid methods, our
method outperformed them both in terms of rRMSE and SSIM. Moreover, our method
was also able to reconstruct vegetation index values within cloud regions, achieving the
highest accuracy and structural similarity. These findings confirm that our method can
be effectively applied to the construction of cloud-free optical image time series for crop
monitoring and thematic mapping.
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