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Abstract: Visible and near-infrared spectroscopy (Vis–NIR, 350–1100 nm) has great potential for
predicting soil properties. However, current research on the hyperspectral prediction of soil pa-
rameters in agricultural areas of alpine regions and the types of parameters included is limited,
and optimal spectral treatments and predictive models applicable to different parameters have not
been sufficiently investigated. Therefore, we evaluated the accuracy of predicting total nitrogen
(TN), phosphorus pentoxide (TP2O5), total potassium oxide (TK2O), alkali-hydrolyzable nitrogen
(AHN), effective phosphorus (AP), effective potassium (AK), soil organic matter (SOM), and pH in
the Qinghai–Tibet Plateau using the Vis–NIR technique in combination with spectral transforma-
tions, correlation analysis, feature selection, and machine learning. The results show that spectral
transformations improve the correlation between spectra and parameters but are dependent on the
parameter type and the method used. Continuum removal (CR), logarithmic first-order differential
(FDL), and inverse first-order differential (FDR) had the most significant effects. The feature bands
were extracted using the SPA and modeled using partial least squares (PLSR), random forest (RF),
support vector machine (SVM), extreme gradient boosting (XGBoost), and backpropagation neural
networks (BPNNs). The accuracy was evaluated based on R2, RMSE, RPD, and RPIQ. We found that
the PLSR model only enables the prediction of SOM and pH with lower accuracy than the remaining
models. XGBoost can predict all of the parameters but only for AHN; the prediction performance
is better than other methods (R2 = 0.776, RMSE = 0.043 g/kg, and RPIQ = 2.88). The RF, SVM, and
BPNN models cannot predict AK, AP, and AHN, respectively. In addition, TP2O5, AP, and pH are
best suited for modeling using RF (RPIQ = 2.776, 3.011, and 3.198); TN, AK, and SOM are best suited
for modeling using BPNN (RPIQ = 2.851, 2.394, and 3.085); and AHN and TK2O are best suited for
XGBoost and SVM, respectively (RPIQ = 2.880 and 3.217). Therefore, this study can provide technical
and data support for the accurate and efficient acquisition of soil parameters in alpine agriculture.

Keywords: visible and near-infrared spectroscopy; chemometrics; soil parameters; alpine agricultural
area; proximal soil sensing; feature selection

1. Introduction

Soil is an important part of terrestrial ecosystems, and the cycles of its internal mate-
rials play an essential role in connecting the biosphere, atmosphere, and hydrosphere [1].
Changes in soil parameters have considerable impacts on soil quality [2] and directly affect
the living environment of animals and plants, as well as the surrounding ecological condi-
tions. This impact is more pronounced in ecologically fragile regions and areas sensitive
to climate changes [3]. The Qinghai–Tibet Plateau, known as the “Roof of the World”,
is an essential ecological security barrier and a vital water conservation area for China
and even Asia [4]. It is also one of the major pastoral and forage-growing areas. The soil
types on the Qinghai–Tibet Plateau are mainly alpine meadow soil and alpine steppe soil.
The extensive alpine grasslands play a prominent role in mitigating global warming and
are highly sensitive to global environmental changes [5–7]. In recent decades, the region
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has experienced a growing influence from climate change, human activities, engineering
construction, and an escalation in rodent populations, resulting in significant issues such
as alpine meadow degradation, land desertification, and soil erosion [8–12]. Research has
indicated that a significant reduction in vegetation is the primary direct factor contributing
to the degradation of the ecological environment on the Qinghai–Tibet Plateau. It also
indirectly leads to reduced yields in agricultural production. The decline in vegetation
results in soil degradation and animal migration [9,12]. Additionally, the soil environment
is crucial for agriculture and animal husbandry. The physical and chemical properties of the
soil, as well as the activity of microorganisms and enzymes, directly influence crop growth
and animal survival. Diverse soil properties can directly indicate the soil’s fertility and
quality, thereby serving as indicators for monitoring degradation. Therefore, the accurate,
rapid, and nondestructive acquisition of soil properties is essential for precision agricultural
and pastoral production, ecological monitoring, and management [13].

Total nitrogen (TN), total phosphorus pentoxide (TP2O5), total potassium oxide
(TK2O), alkali-hydrolysable nitrogen (AHN), available phosphorus (AP), available kalium
(AK), soil organic matter (SOM), and pH value are essential parameters that reflect soil
quality, and they are vital for the growth of crops [14–16]. For example, Sardans et al. [17]
and Wu et al. [11] showed that C, N, and P are the major building blocks of soil nutrients
and are essential for all biological processes and that vegetation growth and composition
depend on the concentration of available nutrients in the soil. These parameters can be
determined through laboratory chemical experiments. Although this method offers the
advantage of high precision, it is burdened by the disadvantages of being time-consuming,
potentially causing detrimental pollution, and leading to delayed outcomes [18]. Recently,
continuously evolving visible and near-infrared technology (Vis–NIR) has gained extensive
usage in classification and quantitative analyses owing to its advantages of high spec-
tral resolution, strong wavelength continuity, and nondestructive nature [19]. Vis–NIR
can reflect the overtones and combinations of basic molecular vibrations, such as clear
responses to functional groups like C=O, N=H, and O=H. Many scholars have explored the
prediction of soil parameters using Vis–NIR technology and achieved good results [20–22],
for instance, the physical and chemical properties of soil and the composition of minerals,
including TN [23], SOM [14], soil moisture [24], organic carbon [25], soil exchangeable
cations [26], and the soil adsorption coefficient of glyphosate [27]. However, there are
differences in Vis–NIR prediction models in different regions due to regional differences
in soil types and physicochemical properties, surface cover, and climate. Prediction of the
same soil parameter may involve different treatments and models, leading to differences
in prediction accuracy [28]. For example, Conforti et al. found that soil grain size, sand
content, and phyllosilicates can significantly change the soil spectral shape and greatly
impact the estimation of soil properties. EI-Sayed et al. [29] used Vis–NIR to estimate the
pH and salinity in arid agricultural areas of Egypt and found PLSR’s to be the optimal
model, while Wang [30] et al. found that the limit learning machine performed the best in
the study of lime-cured black soil. Similarly, there are often differences in preprocessing and
modeling methods for the hyperspectral prediction of the same parameters (SOM [31,32],
TN [33,34], and quick nutrients [34,35]) due to differences in soil properties, environments,
etc. In addition, because of the extremely high spectral resolution of hyperspectral data, the
acquired data often suffer from covariance, spectral band overlap, and interactions [36,37].
Full-band modeling typically includes a lot of data that do not contain critical information,
which increases the model complexity while degrading the model performance [36,38]. It is
therefore necessary to perform dimensionality reduction or feature selection on hyperspec-
tral data in order to remove uninformative variables and reduce the model complexity. In
chemometric analysis studies of NIR spectra, the commonly used feature selection methods
are the successive projection algorithm (SPA), uninformative variable elimination (UVE),
competitive adaptive reweighted sampling (CARS), and recursive feature elimination
(RFE). Among them, SPA can extract the variables with the least amount of redundant
information from the spectral data, maximize the covariance reduction problem, and is one
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of the most commonly used feature extraction methods in the chemometric analysis of soil
spectra [36–39].

Currently, research on predicting soil parameters using Vis–NIR technology is mainly
focused on plains agricultural areas, forested areas [35], black soil regions [40,41], mining ar-
eas [42], and wetlands [43]. For instance, Kawamura et al. [35,44] used Vis–NIR technology,
machine learning, and deep learning methods to predict the total carbon and phosphorus
content in the soils of rice paddies and forested areas in Madagascar. Pudełko et al. [42]
used hyperspectral imaging technology and Fourier-transform near-infrared spectroscopy
combined with machine learning techniques to predict soil nitrogen and organic carbon
content in mining areas. They found that hyperspectral imaging could predict organic
carbon content more accurately, but its accuracy in predicting nitrogen content was similar
to other methods. Similarly, Peng et al. [45] employed Vis–NIR combined with PLSR,
BPNN, and GA-BPNN methods to predict TP, TN, and TK in cultivated soils, and they
found that GA-BPNN and BPNN performed better than PLSR in predicting soil nutrients,
and GA-BPNN was the best. Meanwhile, predictive studies have been carried out for the
organic matter, TS, TK, and heavy metal content of soils in these areas, and the R2 values
of the predictive models ranged from 0.6 to 0.95 [46,47]. However, different modeling
methods and parameters have different accuracies. In general, the modeling accuracy is
deep learning models > machine learning models > linear models but may vary depending
on the parameters or region [27,48,49]. Deep learning often requires a large amount of
training data to improve the accuracy and robustness of the model, and a small amount
of data suffers from many problems, such as difficulty in convergence and overfitting.
Therefore, machine learning is the main method used in prediction studies and performs
well with small samples [50,51]. Kawamura et al. [35,44] found that the machine learning
model showed higher accuracy than the traditional linear model (e.g., multiple linear
stepwise regression and partial least squares) when predicting soil parameters (e.g., N and
P) using Vis–NIR. Previous research in their study on predicting soil TN using Vis–NIR
technology combined with support vector machines, random forests, extreme gradient
boosting (XGBoost), and backpropagation neural networks discovered that all machine
learning methods could achieve accurate TN predictions, with the model accuracy ranking
as follows: RF > BPNN > SVM [37,45,52,53]. XGBoost’s performance may be higher or
somewhere in between. Therefore, it can be observed that machine learning methods
are better at utilizing spectral information to predict soil properties. Most of the above
research did not involve studies in alpine agricultural areas and involved a few types of
soil parameters. In addition, in terms of modeling methods, most of them used only one or
a few spectral transforms and machine learning methods without a general comparative
analysis and the optimal treatment and modeling methods for different soil parameters in
alpine agricultural areas are not given.

Therefore, this paper aimed to conduct a prediction study of TN, TP2O5, TK2O, AHN,
AP, AK, SOM, and pH contents in agricultural soils (pasture-growing areas) on the Tibetan
Plateau using visible-near-infrared (Vis–NIR) technology to establish the optimal spectral
prediction model for eight parameters. Meanwhile, the optimal spectral processing and
modeling methods for the prediction of eight soil parameters in alpine agricultural areas are
further clarified. Finally, an optimal hyperspectral prediction model for eight parameters
of alpine agricultural soils is developed, and the optimal spectral treatments for different
parameters is determined.

2. Materials and Methods
2.1. Study Area and Soil Sample Collection

The source area of the Yellow River is located in the northeast of the Tibetan Plateau
(32◦12′ N–36◦36′ N, 95◦54′ E–103◦24′ E), which involves Qinghai, Gansu, and Sichuan
provinces, with a total area of 13.2 × 104 km2, and accounts for approximately 16% of
the total area of Yellow River Basin [5,54,55]. The elevation of the study area ranges from
2457 m to 6254 m and experiences sub-cold semi-arid and semi-humid climate, with no
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clearly defined seasons. The annual average temperature is approximately 0.0 ◦C, with
the average temperature of the coldest month reaching –10.6 ◦C and the annual average
precipitation ranges between 300 mm and 700 mm [56]. The vegetation types are rich
and widely distributed. Alpine meadows, alpine grassland, and alpine shrubs account for
about 75% of the total area, with alpine meadows taking up the largest proportion [57]. The
sampling area was located in the pasture-growing area of Dawu town, Maqin county, in the
middle of the source region of the Yellow River. This region is characterized by shallow soil
thickness, coarse soil texture, and limited water retention [58]. Figure 1 shows the location
of the six sampling plots and the elevation of the study area.
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Soil samples were obtained from the Yellow River source area in July 2023 and August
2023, with the sampling points covering the original alpine meadow, restoration area, and
degradation area (Figure 1). A 200 × 200 m sample plot was set up in the central area of
the Yellow River source, and then a 20 × 20 m sample square was set up at each of the four
corners and the center of the sample plot. Subsequently, the sample square was evenly
divided into 5 × 5 squares, and soil samples were collected in the center of each square.
We established the soil sampling depth at 5–10 cm, considering that the root system of
alpine meadow vegetation is primarily concentrated in the surface layer of 0–20 cm, thereby
minimizing the damage to the alpine meadow [59–61]. Soil samples were collected using a
cutting ring at a depth of 5–10 cm in the surface soil, and interference objects such as weeds
were removed. One hundred and fifty soil samples were collected.

2.2. Data Collection and Processing

The soil samples collected were placed in an aluminum box and subjected to baking in a
constant temperature oven at 105± 2 ◦C for 12 h. After baking, they were removed, covered,
and transferred to a desiccator to cool to room temperature (for 30 min). The dried soil
samples were ground (through a 2 mm sieve) using a grinder. Each soil sample was divided
into two equal parts: one measurement of its AHN, AK, AP, SOM, TN, TK2O, TP2O5, and pH
values, and the other was used for soil spectral reflectance measurements. The PSR-1100F
(AZUP Scientific Co., Limited, Beijing, China) portable ground-object spectrometer with
a range of 320–1100 nm and a spectral interval of 1 nm (resolution = 3 nm) was used to
measure the spectral reflectance; the light source was a 50 W halogen lamp, the light source
zenith angle was 45◦, and the optical fiber probe was about 5 cm away from the sample. The
instrument was preheated for 30 min before measurement, and then the whiteboard was
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measured for instrument calibration. The soil samples were loaded into glass Petri dishes
and flattened on the surface, followed by data collection using a PSR-1100F spectrometer.
The spectral data were collected at six different locations on the surface of each soil sample.
Each sample was repeated three times, and the average value was taken as the final result.
The instrument must be calibrated with a whiteboard before measuring each sample. The
collected spectral data require preprocessing because the measured data have some noise
from the instrument’s factors and external environment interference. Firstly, the spectral data
were smoothed with Savitzky–Golay (S–G) filtering (first derivative filter: bandwidth = 5;
polynomial fitting order = 2). In addition, because of the instrument itself, the edge band of
the low signal-to-noise ratio (320–399 nm) was removed before filtering. The contents of TN,
SOM, TP2O5, AHN, AP, and TK2O of the soil samples were measured using the semi-micro
Kjeldahl method; the external heating with potassium dichromate method; the molybdate
colorimetric method after the perchloric acid digestion; and the alkalotic-diffusion method,
sodium hydrogen carbonate solution-Mo-Sb anti spectrophotometric method, and the flame
photometry method after melting with sodium hydroxide [62]. The content of AK was
obtained by leaching the soil with NH4OAc, and the soil leaching solution was obtained
and then measured directly with the flame photometer. The pH values of the soil samples
were measured using the potentiometry method.

2.3. Research Methodology and Development of Models

Soil samples and hyperspectral data from the sample plot were collected during
fieldwork. The spectral reflectance (R) was subjected to Savitzky–Golay (S–G) smoothing
and reciprocal (RC), logarithmic (LG), continuum removal (CR), first derivative (FD), first
derivative of reciprocal (FDR), and first derivative of logarithmic (FDL) transformations.
The correlation coefficient between the transformed spectral data and soil parameters
was calculated. The level of correlation between the spectral data and soil parameters
can reflect the response characteristics of each band to soil parameters. It can be used
to extract the feature bands of the spectrum. Therefore, we removed the transformed
spectra whose maximum absolute value was less than 0.6 to construct a high-performance
model more effectively and reduce unnecessary data processing. Then, the feature bands
of the remaining spectra were screened using the successive projection algorithm (SPA).
Modeling was performed using partial least squares (PLS), random forests (RFs), support
vector machines (SVMs), Extreme gradient boosting (XGBoost), and back propagation
neural networks (BPNNs). The model hyperparameters were searched using random
grid optimization, and the mean values of R2, RMSE, RPIQ, and RPD of the model were
calculated with 5-fold cross-validation. The validation sample verified the established
model’s accuracy. Figure 2 shows the technical roadmap for the present work.

2.3.1. Pearson Correlation

The effect of the transformation methods was analyzed by calculating the Pearson
correlation coefficients between different transformation spectra and soil parameters, and
the threshold value of the correlation coefficient was set to decide whether a certain
transformation method could be used in the subsequent prediction model. The Pearson
correlation coefficient was calculated using Equation (1) [28].

ri =

N
∑

n=1
(Xni − Xi)(Yn −Y)√

N
∑

n=1
(Xni − Xi)

2 N
∑

n=1
(Yn −Y)2

(1)

where ri is the correlation coefficient between the soil parameter Y and spectral reflectance
X, i is the band number, Xn is the spectral reflectance of the n-th soil sample in the i band,
Xi is the mean value of the N spectral reflectance in the i band, Yn is the soil parameters
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of the n-th soil sample, Y is the mean value of the N soil sample parameters, and N is the
number of samples.
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2.3.2. Feature Selection Algorithm

Hyperspectral data have a very high spectral resolution, enabling them to capture
abundant information about the target object. However, an excessive spectral resolution can
lead to strong correlations between adjacent bands, resulting in information redundancy
and, consequently, unstable convergence of multivariate prediction models. Therefore,
using fewer bands can build more stable models and make it easier to carry out subsequent
analysis and processing [63].

The successive projection algorithm (SPA) is a technique for reducing dimensionality
based on variable information. It employs vector projection analysis to identify variable
combinations that carry minimal redundant information. The SPA can efficiently alleviate
collinearity, singularity, and spectral band instability, leading to the reduction of collinearity
among vectors and a decrease in the number of variables used in modeling. This reduction
in variables contributes to the reduction of model complexity [64]. Its fundamental principle
is as follows [65]:

First, define the spectral matrix as Xn×m (n is the number of samples, and m is the
number of spectral variables); then, set the number of variables to be selected, H, and
perform the following steps:

1. Let t0 = 1, choose any column vector in Xn×m as xk(0), k(0) is the initial position of the
selected variable x (j = k(0), 1 ≤ j ≤ m), the set of other remaining variable positions is
defined as s:

s = {j, 1 ≤ j ≤ m, j /∈ {k(0), · · · , k(H − 1)}} (2)

2. Compute the projection of the remaining column vector xj(j ∈ s) onto the orthogonal
vector space formed by the selected vector xk(t−1):

P = I −
xk(t−1)(xk(t−1))

T

(xk(t−1))
Txk(t−1)

(3)
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xj = Pxj (4)

where I is the unit matrix, and P is the projection operator;
3. Select the maximum projection value variable arg[max(‖Pxi‖)], j ∈ s to add to the set

of selected variables;
4. Let t = t + 1, if t < H, then return to step (2) for circular calculation.

When the loop ends, the set
{

xk(0), xk(1), · · · , xk(H)

}
of selection variables is obtained.

Because xk(0) is randomly selected, each column in the spectral matrix needs to be iterated
as xk(0) to obtain n candidate vector sets X = {X1, X2, · · · , Xn}T containing H variables.
Then PLS is used to cross-validate each variable set in X. The corresponding variable
combination with the smallest root mean square error of cross-validation (RMSECV) is
selected, and the final selection of feature bands is obtained

2.3.3. Regression Model

All samples were randomly divided into training and validation sets in the ratio of
8:2, 120 training samples 30 independent validation samples (split using train_test_split in
Sklearn 1.3.0 library). In addition, to improve the performance of the PLSR, RF, SVM, and
BPNN models, as well as to assess the accuracy of the model predictions, we performed
nested 5-fold cross-validation in the training set to optimize the hyperparameters and to
assess the performance of the models. The outer loop of the cross-validation was used
for testing the model performance, while the inner loop was utilized to optimize the
hyperparameters of PLSR, SVM, RF, and BPNN. For the BPNN, we employed one of the
internal folds to determine when to halt the training process.

1. PLSR model

PLSR is a linear regression model constructed by projecting predictor and observable
variables onto a new space. It is well suited for analyzing high-dimensional datasets (e.g.,
hyperspectral data and Vis–NIR data) and is a widely used linear regression method. PLSR
combines information from all available bands without the problem of multicollinearity.
PLSR treats each band as an independent explanatory variable that is used to estimate
the response variable for the target component (soil parameter in this study). Here, a
randomized grid search (5-fold cross-validation) was used to determine the optimal number
of PLS factors to include in the model.

2. RF model

Random forest (RF), proposed by Breiman et al. [66], is an integrated learning algo-
rithm that uses multiple decision trees to solve classification and regression problems and
is part of an integrated learning algorithm in which there is no dependency between weak
learners. Its advantage is reflected in parallelized operation, so there is little correlation
between randomly selected decision trees, improving the model’s accuracy [67]. It also has
obvious advantages in terms of parameter optimization, variable ranking, and subsequent
variable analysis and interpretation and is able to make full use of sample data [68].

For the random forest (RF) model, three hyperparameters were optimized: number
of decision trees (n_estimators), maximum depth (max_depth), and minimum number of
samples per leaf (min_samples_leaf). The parameter n_estimators was explored across
50 evenly spaced values between 50 and 500; max_depth was examined with 50 values
ranging from 10 to 500; min_samples_leaf was searched among the values 1, 2, 3, and 8.

3. SVM model

Support vector machine (SVM) is a machine learning algorithm based on statistical
learning theory, which takes statistical learning theory as its system and pursues optimal
results under the condition of limited information by seeking to minimize structural risk
and has the advantage of applying to high-dimensional feature spaces, small sample
statistical learning, and strong resistance to noise influence in data processing [69–71]. It
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has the advantages of being suitable for high-dimensional feature space, small sample
statistical learning, and resistance to noise. Soil spectra are affected by many factors such
as organic matter and moisture, which is a complex process, and the number of samples is
limited, so the study chose a more suitable support vector machine model for prediction.
The key to SVM modeling is the selection of the parameters (penalty cost and radius of
kernel function gamma) and the kernel function. Cost and gamma are obtained by cross-
validation, and the widely used radial basis (RBF) function is selected as the kernel function
based on the obtained cost and gamma.

The support vector machine (SVM) model employed the radial basis function (RBF)
as its kernel, and the penalty parameters C, gamma, and epsilon were searched across 50
increasing values from 1 × 10−5 to 100.

4. BPNN model

The BPNN consists of input, hidden, and output layers and is learned using an error
back propagation algorithm. The BPNN model error is back propagated to the hidden layer
each time and, subsequently, back propagated to the input layer at each iteration. Then,
the weights connecting the input neurons (processing elements in the neural network)
and the hidden neurons are randomly varied to establish a better correlation between the
input neurons and the actual outputs, which is suitable for analyzing a variety of nonlinear
relationships. In this study, the input layer is the spectral data of the soil, and the output
layer is the data of each soil parameter [47].

For the backpropagation neural network (BPNN), optimization was carried out using
the stochastic gradient descent (SGD) optimizer. Activation functions were explored among
“logistic”, “tanh”, and “relu”. Learning rates were searched within the values of 0.0001,
0.0005, 0.001, 0.005, 0.01, and 0.1. The number of hidden layers was 3, and the number of
neurons in each layer was searched among 16, 32, 64, 128, and 256.

5. XGBoost model

Extreme gradient boosting (XGBoost) is a scalable end-to-end tree enhancement algo-
rithm [72]. XGBoost not only utilizes the first-order derivatives of the loss function but also
performs a second-order Taylor expansion of the loss function by taking into account the
second-order derivative information. This study uses the root mean square error (RMSE) as
the loss function to evaluate the optimal objective function [37]. The model’s generalization
ability, as well as the prevention of overfitting, is improved by incorporating regularization.

The hyperparameters of the XGBoost model were tuned as follows: the maximum
depth of the tree was searched in 3, 5, 7, and 9; the learning rate was searched in 0.01, 0.015,
0.025, 0.05, 0.1, and 0.2; and the gamma was searched in 0, 0.05, 0.1, 0.3, and 0.5.

All models and optimization algorithms were implemented using the “sklearn 1.3.0”
and “keras 2.8.0” libraries [73,74].

2.3.4. Evaluation of Model Accuracy

The model was applied to the validation sets, and the accuracy of the hyperspectral
inversion models of the soil parameters was measured using the determination coefficient
(R2), root mean square error (RMSE), residual prediction deviation (RPD), and performance
to interquartile distance (RPIQ) (5-fold cross-validation). The calculation method was as
follows [35,75]:

R2 = 1−

n
∑

i=1
(yi −Yi)

2

n
∑

i=1
(yi − yi)

2
(5)

RMSE =

√
1
n

n

∑
i=1

(Yi − yi)
2 (6)
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RPD =
SD

RMSE
=

√√√√√√√
1
/

n − 1
n
∑

i=1
(yi − y)2

1
/

n
n
∑

i=1
(Yi − yi)

2
(7)

RPIQ =
Q3 −Q1

RMSE
(8)

where Yi is the predicted value, yi is the observed value, y is the average value of yi, and n
is the sample number; Q1 and Q3 are the values below which we can find 25% and 75% of
the samples (in ascending order). A larger R2 and a smaller RMSE indicates a better fitting
effect of the model; an RPD greater than 1.4 indicates good prediction capacity, and a value
larger than 2 suggests excellent prediction performance [46]; RPIQ is unitless and based on
quartiles, and the bigger the value, the better.

3. Results and Analysis
3.1. Soil Parameters and Spectrum Feature Analysis

The statistical results of the measurements for various soil parameters are shown in
Table 1. Table 1 shows that the soil SOM and TK2O contents in the alpine agricultural
area where the sample was located were more than the other parameters, with maximum
values of 92.190 and 22.480, respectively. The content of efficient nutrients was the lowest.
The coefficient of variation shows that the fluctuation of the AP content was the largest,
followed by TP2O5, SOM, and AK, indicating that the AP content varied the most among
different sampling sites.

Table 1. Statistical results of the parameters of the soil samples.

Soil
Parameters

Minimum
Value (g/kg)

Maximum
Value (g/kg)

Mean
Value (g/kg)

Standard
Deviation (g/kg)

Coefficient
of Variation

TN 0.450 4.510 2.372 0.942 0.397
TP2O5 1.020 5.920 1.539 0.815 0.529
TK2O 13.790 22.480 19.225 1.956 0.101
AHN 0.045 0.317 0.183 0.076 0.415

AP 0.003 0.050 0.008 0.007 0.918
AK 0.040 0.360 0.162 0.071 0.441

SOM 4.070 92.190 41.660 20.443 0.490
pH 6.300 9.060 7.794 0.714 0.091

Note that pH has no units in the table.

After S–G filtering of the original soil spectral reflectance data, RC, CR, LG, FD,
FDR, and FDL transformations were performed, as shown in Figure 3. It was found
that the reflectance of each soil sample ranged from 0 to 100%, the spectral curve of
each sample was similar to each other after S–G filtering, the overall trend was gentle,
and the reflectivity decreased first (400–420 nm) and then increased (420–1100 nm); the
various spectral transformations, especially the CR and FDL transformations, considerably
amplified the original spectral characteristics.

3.2. Correlation Analysis

The correlation coefficients were calculated for each of the eight soil parameters with
seven forms of spectra (Equation (1)), and a total of 150 correlation coefficient vectors of size
(701 × 1) were obtained ri (i = 1, 2, . . ., 150). The maximum absolute correlation coefficients
of each parameter with the corresponding spectrum are presented in Table 2. From Table 2, it
is evident that the correlation coefficients for AP and TP2O5, utilizing the FDR-transformed
spectral data, and that of TK2O with the FD-transformed spectral data, witnessed the most
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significant improvements, which increased by 168.4%, 207.7%, and 230.0%, respectively. TN,
AK, and SOM had the highest correlation coefficients, with FDL-transformed spectra being
0.68, 0.61, and −0.74, respectively. AHN demonstrated the highest correlation coefficient,
notably −0.83 after CR transformation. pH had the highest correlation coefficient, with FD-
transformed spectra being 0.78. However, some transformations reduced the correlation
of spectra with soil parameters, such as TN with RC and LG, TK2O with RC, LG, CR,
and FDR. Therefore, although the mathematical transformation of soil spectral data can
effectively improve its correlation with soil parameters, the transformation methods need to
be selected, and the best transformation methods are different for different soil parameters.
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Table 2. Maximum absolute values of correlation coefficients between soil parameters and spectra.

Soil Parameters
Spectral Transformation Type

S–G RC LG CR FD FDR FDL

TN −0.58 ** 0.51 ** −0.56 ** −0.64 ** −0.65 ** −0.62 ** 0.68 **
TP2O5 −0.42 ** 0.62 * −0.52 * −0.48 −0.57 −0.86 * −0.77
TK2O −0.37 0.24 −0.30 −0.25 −0.620 * 0.35 −0.46
AHN −0.68 ** 0.66 ** −0.69 ** −0.83 ** −0.76 ** −0.75 ** 0.74 **

AP −0.37 ** 0.60 * −0.48 * −0.47 −0.50 −0.84 * −0.75 *
AK −0.45 ** 0.45 ** −0.45 * −0.42 ** −0.57 ** −0.60 ** 0.61 **

SOM −0.58 ** 0.56 ** −0.58 ** −0.68 ** −0.69 ** −0.68 ** 0.72 **
pH 0.62 ** −0.61 ** 0.63 ** 0.77 ** 0.78 ** 0.67 ** −0.74 **

*, ** Significantly correlated at the 0.05 and 0.01 levels (bilateral), respectively.

In addition, the one-dimensional correlation coefficients were visualized in two di-
mensions to facilitate the analysis of the correlation between the spectral reflectance and
soil parameters at different wavelengths. That is, r′i = ri × rT

i , where r′i is the matrix of the
correlation coefficients after two-dimensionalization with a size of 701 × 701. The results
are shown in Figure 4.
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Figure 4. Heat map of the correlation coefficients between the soil parameters and spectra of different
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pH with the corresponding spectra (from left to right, S–G, LG, RC, FD, CR, FDR, FDL) are shown
from top to bottom.
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Figure 4 shows that the LG and RC transformations did not change the sensitive bands
of the soil spectrum, and the high values of the correlation coefficients were relatively
concentrated. The high values of the correlation coefficients of TN, AHN, SOM, and pH
with the S–G, LG, and RC spectra were concentrated in the range of 400–800 nm; the high
values of the correlation coefficients of TP2O5 and AP with the S–G, LG, and RC spectra
were concentrated in the range of 600–1000 nm, while AK was in the range of 400–900 nm.
In addition, the high-value region of the correlation coefficients of TK2O with the S–G,
LG, and RC spectra was concentrated between 800 and 1100 nm; the high-value region
of the correlation coefficients of the CR spectra with TN, TP2O5, AHN, AK, SOM, and
pH shifted backward compared with the original spectra and was concentrated between
500 and 900 nm. On the other hand, the FD, FDR, and FDL transformations significantly
improved the correlation coefficients of spectral and soil parameters and were different
from the LG, RC, and CR transformations. The high correlation bands of FD, FDR, and
FDL are more dispersed, showing the characteristics of spaced linear distribution, but the
distribution range was the same as that of the others.

3.3. Feature Band Extraction

It can be seen from Section 3.2 that the enhancement of the correlation coefficients
varies among different spectral transformation methods, and there is a negative enhance-
ment. Therefore, combined with Table 1, the transformation methods with the maximum
value of the absolute value of the correlation coefficient less than 0.6 were removed, and
then the SPA was used to select the feature bands of the remaining spectra for modeling.
The results of the SPA are shown in Figures 5 and 6. Figure 5 shows the variation of the
RMSECV with the increase in the number of variables during the screening of the feature
bands, the number of variables finally selected, and the corresponding RMSECV. Figure 6
shows the location of the final screened feature bands. As seen from Figure 5, the RMSECV
first decreased rapidly with the number of variables and then increased and stabilized
during the SPA’s selection of the feature bands. The number of feature bands of the final
different spectra ranged from 8 to 21, accounting for 1.14–3.0% of the full-band spectral
data. From Figures 4 and 6, it can be seen that the feature bands screened using the SPA are
mainly concentrated in the region with high correlation, and the feature bands at this time
have a good correlation with soil parameters and are suitable for subsequent modeling.
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3.4. Model Performance Comparison

To enhance the model accuracy and compare the performance of the different models,
this study used a random grid optimization search (5-fold cross-validation) to determine
the optimal parameters within specified ranges for PLSR, RF, SVM, XGBoost, and BPNN.
Subsequently, a total of 90 models were constructed using these optimal parameters. De-
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tailed model hyperparameters are provided in the Supplementary Materials (Tables S1–S5).
The evaluation of the model performance encompassed the calculation of R2, RMSE, RPIQ,
and RPD using 5-fold cross-validation on both the training and validation datasets. The
results of the independent validation set are shown in Figures 7–10.
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As can be seen in Figures 7–10, the PLSR model had the worst performance and could
only achieve the prediction of SOM and pH (RPD and RPIQ > 1.4). Among the PLSR
models predicting SOM and pH, the PLSR model built with SOM and FDL spectra had
the highest accuracy (RPD = 1.458, RPIQ = 1.488), and the PLSR model built with pH
and CR spectra had the best accuracy (RPD = 1.425, RPIQ = 1.570). The RF model can
predict TN, AHN, SOM, pH, TP2O5, AP, and TK2O. The SVM model has the ability to
predict TN, AHN, SOM, pH, TP2O5, TK2O, and AK. The XGBoost model can predict all
parameters. Additionally, the BPNN model can predict TN, SOM, pH, TP2O5, AP, TK2O,
and AK (RPD > 1.4, RPIQ > 1.4). Among the soil TN prediction models, the order of the
model accuracy is BPNN > XGBoost > RF > SVM, with the BPNN model utilizing the FDL
transformation method. The validation set R2 is 0.826, RMSE is 0.453 g/kg, RPD is 1.912,
and RPIQ is 2.851. For AHN predictions, the order is XGBoost > RF > SVM > BPNN, with
the XGBoost model utilizing the CR spectral transformation method. The validation set R2

is 0.776, RMSE is 0.043 g/kg, RPD is 1.591, and RPIQ is 2.880, although BPNN is unable
to predict AHN. In the case of SOM and AK prediction models, the model accuracy order
is BPNN > SVM > RF > XGBoost and BPNN > XGBoost > SVM > RF, respectively, with
validation RPD and RPIQ of 1.898, 3.085 and 1.806, 2.394, respectively. The RF model had
the highest accuracy among all of the pH, AP, and TP2O5 prediction models, corresponding
to RPDs of 1.58, 1.69, and 1.876 and RPIQs of 3.198, 3.011, and 2.776, respectively. In
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addition, SVM showed the best performance only in the prediction of TK2O, and the worst
was the BPNN model. Therefore, the above analysis reveals that in terms of the ability to
predict the eight parameters, XGBoost can predict all of the parameters using soil spectra
but only shows the best performance in the prediction of AHN. Therefore, XGBoost is
the most universally applicable model. However, in terms of performance, RF had the
highest accuracy in the prediction of three parameters—TP2O5, AP, and pH—and BPNN
had the highest accuracy in the prediction of three parameters—TN, AK, and SOM—and
they were the best models for these parameters. XGBoost and SVM performed best in
predicting AHN and TK2O, respectively. Finally, we statistically analyzed the prediction
results of the best model for each parameter, which contains the maximum, minimum,
mean, standard deviation, and coefficient of variation of the prediction set (Table S6). It also
contains a boxplot of the prediction results (Figure S1). Therefore, when using soil spectral
data to estimate soil parameters, the prediction performance of the same model for different
parameters often has large differences, and it is necessary to choose the appropriate method
according to the type of soil parameters [45].

Further analysis of the spectral transformation methods reveals that FDL and FDR
transformations exhibited significant advantages over several other methods. These trans-
formations improved the modeling and validation accuracy of the model effectively, while
the FD and CR transformations also showed the potential to improve the model accuracy
to some extent. However, the applicability of the different transformation methods varies
because of the different soil parameters and models. For instance, while an RF model
established using FDR spectral data can achieve TN prediction, the BPNN model cannot.
As a result, the choice of spectral transformation methods needs to be tailored to different
soil parameters and modeling approaches.

4. Discussion

Currently, despite some research progress in hyperspectral inversion of soil parameters in
typical agricultural areas, forests, and industrial mining areas, there is a scarcity of studies on
soil parameters in alpine meadows in ecologically fragile areas of the Qinghai–Tibet Plateau,
and only a limited range of soil parameters have been involved [28,40,41,46,47,76–78]. The
inversion models are mainly divided into linear and intelligent algorithm-based models,
which apply to different regions. For example, Gao et al. [79] used MLSR, PLSR, and BPNN
models to perform hyperspectral inversion of soil parameters in the Sanjiangyuan area in
Qinghai province, China, but only a limited range of soil properties were involved (SOM and
TN). Zhang et al. [80] studied the feasibility of Vis–NIR for predicting seven soil properties
(SOM, TN, pH, CEC, clay, silt, and sand) with different variable screening methods. The
results indicated that the model predicted these seven soil properties successfully, with SOM
(R2 = 0.81), TN (R2 = 0.84), and pH (R2 = 0.76) demonstrating the best prediction effect.
The precision of SOM and pH is lower than our results (R2 = 0.858, R2 = 0.805) and the
precision of TN is higher than ours (R2 = 0.826). The results of Yang et al. [81], which are
similar to those of Zhang et al.’s [80] studies conducted in small regions in other countries
(e.g., the United States [82], Germany [25], and Thailand [83], have also found that the
accuracy of SOM estimation is usually better than other parameters. In a large-scale survey
(involving 23 EU member states) utilizing land use/land cover area frame survey (LUCAS)
data, it was found that the pH estimation accuracy was generally higher than for organic
carbon and cation exchange capacity [33]. In addition, studies on predictive models have
found that more complex and intelligent algorithms have better results, e.g., utilizing deep
learning algorithms is more effective than machine learning methods when there are sufficient
samples [23,33,35,48,62]. On the other hand, deep learning algorithms often achieve the
desired results without excessive data preprocessing steps.

SOM is the soil parameter with the highest prediction accuracy of Vis–NIR, and its
overtones and combination bands in the Vis–NIR region are determined by the stretching
and bending of N=H, C=H, and C=O groups [84]. Since TN is highly correlated with SOM
and has a direct spectral response, it can be predicted by Vis–NIR. In addition, although
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AHN, TP2O5, and pH do not have apparent spectral response characteristics, they can still
be predicted by Vis–NIR due to their correlation with SOM, TN, and some predictable prop-
erties, which is also confirmed in this study (Figures 7–10). In addition, although the model
can predict TK2O, AP, and AK, the accuracy is poor. At the same time, the correct model and
processing method need to be used, making prediction difficult. For the modeling methods,
the overall ranking of model performance is as follows: RF > BPNN > SVM > PLSR, which
is consistent with the findings of previous studies, but the order of XGBoost is usually
not fixed [37,45,52,53]. The prediction of different soil parameters is different for different
data preprocessing methods and modeling approaches. For example, the BPNN model
constructed with FDL spectra predicts TN best, while the RF model constructed with FDR
spectra predicts TP2O5 best. The difference between the same soil parameter and the
different models built with the corresponding spectrum is usually not very large. For the
same soil parameter, the difference in the prediction ability of different modeling methods
may be due to the limitations of the model’s structure, parameter content, and data vol-
ume [23,81,85]. Further research and discussion are needed to understand the reasons for
the difference in performance of different algorithms on the same soil parameter. This is
also one of our future research goals.

The feature bands usually differ for different parameters, and different preprocessing
methods and feature selection methods have different results. The results of the feature
bands extracted in this study are shown in Figure 6. From the figure, we find that the
different spectral transformation methods do not drastically change the feature bands
of the soil parameters. Although the characteristic bands of the different transformed
spectra corresponding to the same soil parameter vary, they tend to occur in similar ranges.
This is because molecules and chemical bonds determine the spectral response to specific
properties [36]. For soil TN, the characteristic bands screened were mainly focused on
450–850 nm, especially at around 550 nm, and 700–800 nm, similar to other studies’ findings.
However, most of these studies used full-band spectra, and the final number of bands
selected was higher [86–88]. In addition, for AP and AK, it was found that the featured
bands of these parameters are mostly concentrated around 500 nm and 700–1000 nm, but
there are some differences among different studies. For instance, Yu et al. [31] extracted
the feature bands of AP and AK between 400–1100 nm using the SPA as 499, 516, 542,
745, and 770 nm and 556, 574, 595, 991, and 1013 nm, respectively, which are close to the
findings of this study. Ren et al. [34] used the SPA to extract the bands of AP concentrated
at 300–550 nm and AK near 250–600 nm, which was different from this and other studies.
This may be due to the fact that their study was conducted on wetland soils, which are
more different in nature from terrestrial soils. Studies using Vis–NIR to estimate SOM and
pH found [30,81] that in the 400–1100 nm range, the characteristic bands of SOM were
predominantly in the vicinity of 500–800 nm and 1000 nm, and pH in the vicinity of 700 nm
and 1000 nm, which is also extremely close to the findings of the present study. However,
there are few reports on selecting the feature bands of TP2O5 TK2O, and AHN, which may
be due to their similarities with TN, AK, and AP. Although they contain the same elements
as TN, AK, and AP, they end up with differences in their characteristic bands due to the
differences in some properties (e.g., content and chemical bonding).

The research area of this study was the alpine meadow in the source area of the Yellow
River, but the area involved was mainly six sample plots in this area, and the scope of
the study was limited. Therefore, because of constraints such as the limited number of
samples used in the present work and challenges like large-scale monitoring and high
altitude, the model’s applicability to other unsampled areas in the Yellow River source area
still need to be verified. The spectral preprocessing methods we used were mostly simple
mathematical transformations, which could not dig deeper into the deep information,
as well as remove the influence of the background in the spectra, and the performance
improvement of the model was limited. For the feature selection algorithm, we only
used SPA without further comparative analysis of other methods, such as optimization
algorithms, dimensionality reduction algorithms, and other screening algorithms. In future
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works, more advanced and sophisticated methods can be employed and compared, such
as the standard normal transform, multivariate scattering correction, wavelet transform,
and detrending, as well as their combined usage. An increased number of soil samples can
be collected from a wider area to enhance the model’s applicability, and the optimization
of feature band extraction and modeling methods can be pursued to heighten the model
accuracy. Meanwhile, more complex and multivariate models should be selected, for
example, one-dimensional convolutional neural networks, deep neural networks, and
recurrent neural networks in deep learning models [35,48,49,62]; extreme learning machine,
Gaussian process regression, etc., in machine learning. The parameters and structure of
these models can also be optimized for better results. Additionally, the inversion of multiple
parameters of alpine meadow soils can be investigated by combining hyperspectral imaging
and unmanned aerial vehicles (UAVs) to obtain the spatial distribution of soil nutrients
on a large scale. This approach can offer technical and data support for the monitoring
and restoration of degradation, as well as for agricultural and livestock production, within
alpine meadows in the Yellow River source area.

5. Conclusions

This study investigated the predictability and accuracy of Vis–NIR in predicting
AHN, AK, AP, SOM, TN, TK2O, TP2O5, and pH contents in alpine meadow soils. We
improved the correlation between the spectrum and different parameters by applying the
mathematical transformation to the spectrum and eliminating the transformation methods
whose correlation was lower than the threshold. Then, the SPA was employed to screen the
characteristic bands of the remaining spectra, and the PLSR, RF, SVM, XGBoost, and BPNN
algorithms were utilized to model. The results revealed that mathematical transformation
can enhance spectral characteristics and improve the correlation between spectral data
and soil parameters. However, the effect on different parameters varies. The effect of the
CR, DF, FDR, and FDL transforms is superior to that of other transformation methods.
The PLSR, RF, SVM, XGBoost, and BPNN methods were used to construct the prediction
model and optimize its hyperparameters. Finally, the model’s accuracy was evaluated
using 5-fold cross-validation. It was observed that the PLSR model only enables the
prediction of SOM and pH with lower accuracy than the remaining four models. XGBoost
has the ability to predict all parameters. The RF model could predict seven out of eight
parameters, excluding AK. The SVM model could predict parameters, excluding AP, and
the BPNN model could predict parameters, excluding AHN. However, the RF model
demonstrated a higher accuracy in predicting TP2O5, AP, and pH compared with the
other four methods. The BPNN model showed the highest accuracy in predicting TN,
AK, and SOM. SVM exhibited higher accuracy only in predicting TK2O and XGBoost in
AHN. Using the correlation coefficient threshold method to remove transformation modes
with low correlation is beneficial for efficient modeling. Additionally, the feature selection
algorithm can effectively select the information-rich spectral bands, diminish the spectral
data dimension, and establish a more comprehensive model.

In summary, this study showcased the feasibility and accuracy of employing Vis–NIR
to predict the contents of AHN, AK, AP, SOM, TN, TK2O, TP2O5, and pH within alpine
meadow soil. This outcome lays a foundation for the monitoring and management of
alpine meadow soil status.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy13112816/s1. Figure S1: Boxplot of the prediction results of
the best prediction model for each soil parameter; Table S1: Hyperparameter optimization results of
BPNN model, Table S2: Hyperparameter optimization results of SVM model, Table S3: Hyperparameter
optimization results of RF model, Table S4: Hyperparameter optimization results of XGBoost model,
Table S5: Hyperparameter optimization results of PLSR model, Table S6: Statistical analysis of the best
predicted results for all parameters.
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