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Abstract: Lychee is an economically important crop with widespread popularity. However, lychee
diseases significantly impact both the yield and fruit quality of lychee. Existing lychee disease detec-
tion models face challenges such as large parameter sizes, slow processing speeds, and deployment
complexities. To address these challenges, this paper proposes an improved lightweight network,
named YOLOv7-MGPC (YOLOv7-Mosaic-GhostNet-Pruning-CBAM), that enables real-time lychee
disease detection. In this study, we collected datasets of lychee diseases, covering four types of
leaf diseases, and employed Mosaic data augmentation for data preprocessing. Building upon the
YOLOv7 framework, we replaced the original backbone network with the lightweight GhostNetV1
and applied channel pruning to effectively reduce the parameter overhead. Subsequently, an atten-
tion mechanism called CBAM was incorporated to enhance the detection accuracy. The resultant
model was then deployed to edge devices (Nvidia Jetson Nano) for real-world applications. Our
experiments showed that our enhanced YOLOv7 variant outperforms the original model by a large
margin, achieving a speed increase from 120 frames/s to 217 frames/s while maintaining an accuracy
of 88.6%. Furthermore, the parameter size was substantially reduced from 36.5 M to 7.8 M, which
firmly demonstrates the effectiveness of our methods in enabling model deployment on edge devices
for lychee disease detection.

Keywords: YOLOv7; GhostNetV1; channel pruning; disease identification; edge computing

1. Introduction

Lychee (Litchi chinensis) is a tropical fruit tree belonging to the Sapindaceae family,
known for its sweet and fragrant flavor [1]. China is the homeland of lychee and ranks first
globally in terms of lychee cultivation area, production, and value, with 475,700 hectares of
lychee cultivated area present in the country [2]. The development of lychee cultivation is
crucial for improving economic benefits and meeting the market’s demand for high-quality
lychee, as it is one of China’s most important economic crops. However, diseases on lychee
leaves during the growth stage can significantly reduce both yield and quality, hindering
the stable development of the lychee industry [3]. Therefore, the timely detection and early
feedback of diseases on lychee leaves are key to resolving these issues and ensuring optimal
lychee yields.

Traditional methods for the detection of diseases mainly rely on manual inspection,
which is laborious, time-consuming, subjective, and highly damaging. Moreover, many
growers lack sufficient scientific knowledge of these diseases, leading to the excessive and
indiscriminate use of pesticides that delay optimal disease prevention and greatly reduce
lychee quality.
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Advances in computer technology have led researchers to employ machine learn-
ing and image processing methods for crop pest and disease detection. Deep learning
techniques, in particular, have significantly contributed to the cultivation and increased
yields of agricultural products [4]. Object detection algorithms based on deep learning [5]
can rapidly and accurately recognize the target category and locate its position in input
images, providing an effective method for the non-destructive identification of crop pests
and diseases [6–8].

Recent research has been focused on improving existing deep learning models to
enhance the accuracy and efficiency of crop pests and disease detection. For example,
researchers have modified the YOLOV4 model for tomato pest detection [9], combined
the YOLOV5 model with dual Feature Pyramid Networks (FPN) to improve feature repre-
sentations [10], and incorporated GhostNetV1 into the SSD model to accelerate detection
speed [11]. The integration of modern computer vision technology with cloud computing
and edge computing has also provided increased flexibility for efficiently managing agri-
cultural tasks [12]. Yang et al. combined autonomous scouting and lodged rice detection
with edge computing [13]. Ajayi et al. introduced a sophisticated automated crop and
weed classification system based on the YOLOv5 and UAV imagery [14]. These innovative
approaches demonstrate the remarkable progress in this field and pave the way for more
effective and efficient agricultural operations.

Despite the progress in this field, current detection algorithms still face challenges such
as large network parameters and memory consumption, resulting in slow execution speeds
and reduced efficiency. These limitations make them unsuitable for edge deployment and
hinder their practical applications. Additionally, the large model parameter size makes it
difficult to meet the lightweight requirements of mobile devices.

To address these issues, we introduce an improved lightweight lychee disease real-time
detection model based on YOLOv7. Our model is deployed on lightweight edge devices
for real-time detection, meeting the requirements of lightweight and easy deployment for
crop disease detection. The main contributions of this study are as follows:

(1) We enhance the diversity of data through the mosaic augmentation technique, im-
proving the generalization capability of the detection model;

(2) We replace the backbone network with GhostNetV1 and prune the redundant feature
layers using channel pruning techniques to reduce computational overhead;

(3) We introduce the CBAM (Convolutional Block Attention Module) mechanism to
make the model focus on crucial features, enhancing the model’s feature extraction
capabilities;

(4) We deploy the enhanced lightweight model on edge devices and verify that the model
meets the deployment requirements within a computationally limited environment.

2. Related Works
2.1. Lychee Disease Detection with Deep Learning

In recent years, significant progress has been made in the intelligent detection of
lychee diseases based on deep learning. Islam et al. utilized pre-trained Convolutional
Neural Networks (CNNs) and a transfer learning-based approach to classify three major
categories, namely “leaf necrosis”, “leaf spot”, and “stem canker diseases”, from lychee-
diseased leaf and stem images [15]. Xie et al. proposed an enhanced Fully Convolutional
One-Stage Object Detection (FCOS) network, successfully identifying five common lychee
leaf diseases in different orchards [16]. These diseases included lychee leaf mites, lychee
downy mildew, lychee anthracnose, lychee leaf blotch, and lychee algal spot diseases. The
detection network achieved a detection accuracy of 91.3% (IoU = 0.5), detection speed
of 62.0 frames/s, and model parameter size of 17.65 million. Mahmud et al. conducted
a comparative analysis of the VGG16, Inception-V3, and Xception algorithms for lychee
disease detection and applied the Inception-V3 algorithm, which achieved an impressive
accuracy of 92.67% [17]. Wang et al. investigated three deep Convolutional Neural Network
(DCNN) models, namely SSD-MobileNetV2, Faster RCNN-ResNet50, and Faster RCNN-
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Inception-ResNetV2, to explore the feasibility of the automated detection of defective
surfaces in lychees [18].

While previous studies have achieved satisfactory results from employing deep learn-
ing models for lychee disease detection, the deployment of edge devices for lightweight
lychee disease detection has not been extensively explored.

2.2. Lightweight Network Research

Currently, object detection algorithms for lychee diseases require significant com-
putational resources and time due to their large model parameters and memory usage.
This affects the detection speed and hinders the real-time monitoring of diseases, leaving
room for improvement in terms of real-time monitoring. Model pruning and employing
lightweight feature extraction networks are common methods for model slimming, and
extensive research has been conducted in this area.

Some classic models of lightweight Convolutional Neural Networks include Mo-
bileNet [19], GhostNet [20], and ShuffleNet [21]. The GhostNet model is specifically
designed for hardware deployment and mobile devices. Han et al. conducted further
validation by assessing the actual performance of GhostNet on an ARM-based mobile
phone. The experiments demonstrate that GhostNet achieves about 0.5% higher accuracy
than MobileNetV3 at the same latency, and it requires less runtime to achieve comparable
performance [20]. Our research will further investigate and compare the strengths and
weaknesses of these networks in our experiments.

Model pruning is another method for network lightweighting. It involves removing
redundant parameters in deep learning network layers to reduce the spatial footprint of the
network model and eliminate redundant computations. Shi et al. employed a layer-wise
pruning approach in the channel dimension, selectively removing irrelevant convolutional
kernels before performing fine-tuning [22]. Notably, this pruning technique resulted in
a 68.7% reduction in network computational load, accompanied by a 0.4% improvement
in accuracy.

Previous experiments have shown that replacing networks with lightweight counter-
parts can effectively reduce the model parameter count and enhance speed. These model
pruning techniques contribute to the advancement in lightweight networks, making them
more suitable for real-time applications.

2.3. Research into the Attention Mechanism

Generally, model pruning can lead to improved speed but decreased accuracy. Hence,
the incorporation of attention mechanisms becomes pivotal to restoring high model perfor-
mance. In typical situations, we perceive our surroundings by focusing on the key parts of
a scene rather than its secondary components. Similarly, attention plays a similar role in
deep learning architectures and has been widely applied to various tasks, including image
classification [23], object detection [24], and scene segmentation [25]. The attention mech-
anism emphasizes the critical regions in the input feature layers, enhancing the model’s
feature extraction capability.

Xie et al. proposed a lightweight YOLOv4 model that integrated the ECA attention
mechanism with the Mobilenetv2 backbone for defect detection on metal surfaces [26].
Experimental results showed that the algorithm’s accuracy significantly surpassed algo-
rithms incorporating the SE attention mechanism. In addition to channel-specific SE-NET
and ECA attention mechanisms, there is a combined channel and spatial CBAM attention
mechanism. Li et al. introduced an improved YOLOv5 algorithm for wheat spike detec-
tion and incorporated the CBAM attention mechanism into the network to address the
problem of gradient vanishing during training and enhance the model’s feature extraction
capability [27]. In lightweight models, pruning operations may result in a decline in model
detection accuracy. Therefore, introducing attention mechanisms can partially improve
feature extraction capability and compensate for the decline in accuracy.
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3. Materials and Methods

This paper proposes a method for detecting lychee leaf diseases that consists of three
main steps: data collection and augmentation, model pruning and optimization, and
deployment, as illustrated in Figure 1.

1 
 

 
  
Figure 1. Pipeline of the lychee detection system.

The research methodology began with the collection and preprocessing of lychee
orchard image data. The introduction of the Mosaic data augmentation technique aided
the construction of a comprehensive dataset for lychee leaf diseases. Subsequently, a
lightweight model based on YOLOv7 was developed. This entailed substituting the orig-
inal backbone network with the lightweight GhostNetV1 for efficient feature extraction.
Further parameter reduction was achieved by applying a sparse scaling factor γ and L1
regularization in Batch Normalization (BN) layers to prune the redundant model parame-
ters. Additionally, the model’s feature extraction capabilities were enhanced through the
integration of the attention mechanism CBAM, resulting in improved accuracy. Finally, the
refined model was deployed to edge devices for practical applications.

3.1. Data Acquisition

The lychee disease data were collected from the tree orchard of the College of Hor-
ticulture, South China Agricultural University, Guangzhou, China. The data collection
took place from 2 March to 28 May 2023 during the time intervals of 8:30 AM to 11:30 AM
and 2:30 PM to 5:30 PM. The data were captured using a high-resolution camera, and the
distance between the image capturing device and the diseased leaves ranged from 0.25 m
to 0.55 m. The camera used in the experiment and the test site are shown in Figure 2a,b.
Figure 2c shows our method of capturing lychee disease images.
 

2 

 
  

(a) Canon EOS M6 (b) Lychee orchard (c) Image capturing 
 
  Figure 2. Data collection.
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This research focuses on four types of lychee diseases, including felt disease, leaf gall,
bituminous, and anthrax, which are characterized by physiological features exhibited on
the leaves under the influence of pest damage. The image resolution for each capture was
set at 3024 pixels × 4032 pixels. In total, 1273 high-resolution images of lychee diseases
were collected for this study, as illustrated in Figure 3. 

3 

 
(a) Anthrax (b) Felt diseases (c) Bituminous (d) Leaf gall 

 
  Figure 3. Image of lychee diseases.

3.2. Data Preprocessing

To improve the robustness and accuracy of the disease detection model, a dataset of
1273 lychee disease images was utilized in this study. The dataset was then divided into a
training set, testing set, and validation set with a ratio of 3:1:1. To augment the training
set, the mosaic technique was applied. After augmentation, the dataset was expanded to
6295 images, as shown in Table 1. The mosaic method randomly combined four images
and performed operations such as horizontal and vertical flipping, random scaling, and
adjustments to brightness and contrast, as illustrated in Figure 4.

Table 1. Image number of the lychee disease dataset.

Diseases Original Data Training Set Validation Set Test Set

Bituminous 318 1570 79 79
Anthrax 326 1576 81 81

Felt diseases 314 1581 78 78
Leaf gall 315 1568 78 78

This data preprocessing approach ensured that the lychee disease image dataset was
enriched and diverse, allowing more effective training of the model and enabling it to
handle various scenarios during testing. The balanced distribution between the training
and testing sets further guaranteed the reliable evaluation and validation of the proposed
YOLOv7-MGPC network architecture.
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4 

 
  Figure 4. Data enhancement.

3.3. Model Architecture and Deployment
3.3.1. YOLOv7 Algorithm

YOLOv7 is the seventh-generation algorithm based on the YOLO series, which builds
upon the optimization of YOLOv5. It showcases advantages in both accuracy and speed
compared to its predecessors. Despite the improved accuracy, YOLOv7 still has a complex
network structure and a large number of parameters. This demands the use of high-
performance devices and makes it unsuitable for deployment on edge terminal devices.
Therefore, a series of lightweight model techniques is required to make it more feasible for
deployment on resource-constrained edge devices.

3.3.2. GhostNetV1 Lightweight Network

Conventional convolution operations in network structures like ResNet-50 typically
generate a substantial number of redundant or similar feature maps. While this helps
in achieving a comprehensive understanding of the input data, it also leads to increased
computational demands for the model. To address this issue, an alternative approach that
does not rely on traditional convolutions to generate redundant feature maps is adopted.
The GhostNetV1 network utilizes a limited number of traditional convolutions to create a
subset of feature maps. By applying simple linear transformations to this subset, high-level
semantic information can be captured with limited computations

As shown in Figure 5, Φi represents a linear transformation. Assuming that there
are n output feature maps, the Ghost module will obtain m feature maps through identity
mapping, as well as m × (s−1) linear operations (where s represents the number of feature
maps after linear operations). Here, n = m × s. We define the kernel size for each linear
operation and the traditional convolution as k × k. When s is much smaller than c, it can
be deduced that the acceleration ratio (r_s) and parameter compression ratio (r_c) for the
Ghost module, compared to standard convolution, can be calculated as follows:

r_s = (c × k × k × n × h × w′)/(m × k × k × n × h′ × w′ + m × (s − 1) × k × k × h′ × w′) ≈ (s × cf )/(s + c − 1) ≈ s, (1)

r_c = (n × c × k × k)/(m × c × k × k + m × (s − 1) × k × k) ≈ (s × c)/(s + c − 1) ≈ s (2)

The Ghost module is employed to reduce the model parameters and accelerate the
inference speed by s times. This approach enhances the redundancy of feature maps and
reduces computational overhead, aligning with the lightweight network requirements of
this experiment.
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5 

 
  Figure 5. The principle of the Ghost module.

3.3.3. BN Layer-Channel Pruning

Among structured pruning methods, channel pruning is the most commonly used
approach. In the BN layer, the scaling factor γ is inter-related to each channel in the
convolutional layer, as shown in the Figure 6. During the training process, these scaling
factors γ undergo sparse regularization, automatically filtering out unimportant channels.
Channels with smaller scaling factors will be pruned, resulting in a compact model. This
compact model is then fine-tuned to achieve comparable (or even higher) accuracy than
that of the fully trained network. 

6 

 
  

Figure 6. Channel pruning principle.

The specific operations of the BN layer pruning consist of three parts:

ẑ =
zin − µB√

σ2
B + ε

, (3)

zout = γẑ + β, (4)

L = ∑
(x,y)

l( f (x, W), y)+λ∑
γεΓ

g(γ) (5)

As shown in Equations (3) and (4), zin and zout represent the input and output of the
BN layer, respectively. µB and σB represent the mean and standard deviation of each batch.
The parameter ε is a small positive number used to avoid division by zero. Additionally,
the BN layer introduces scaling factors γ and biases β for each channel, which normalize
the channel data [28]. During the training process, when the scaling factor γ is small,
the corresponding activation zout will also be small. Output with γ approaching zero
contributes minimally to the model, allowing the pruning of the channel output in the BN
layer. Furthermore, when the scaling factor γ is relatively uniform, making it challenging
to prune, as shown in Equation (5), we introduce the L1 regularization constraint of γ in
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the loss function to induce sparsity. The regularization term g(γ) = |γ| is added to the
function, where λ is the regularization coefficient.

Based on the YOLOv7-GhostNetV1 structure used in this study, we set the sparsity
level of γ to 0.005 and pruned the model by 50% after inducing sparsity. The aim was to
reduce the number of parameters, improve speed, and meet the performance requirements
for edge deployment while causing minimal changes to accuracy.

3.3.4. CBAM Attention Mechanism

To ensure minimal loss in accuracy, this study introduced a lightweight attention
mechanism, namely the Convolutional Block Attention Module (CBAM). CBAM operates
on both spatial and channel dimensions. In our model, CBAM processing is applied to
the output of feature layers in the backbone. It redistributes weights for different channel
feature maps, thereby enhancing the extraction of deep-layer information in the network.
This enables the network to focus on relevant features and ignore less important ones.

3.3.5. TensorRT Deployment on Jetson Nano

In this study, Nvidia’s Jetson Nano development board was used to leverage Ten-
sorRT8.0 for accelerating inference on PyTorch’s Pth models. The Jetson Nano is a product
developed by NVIDIA, a technology company based in Santa Clara, CA, USA, which is a
small, affordable, and energy-efficient single-board computer designed for various AI and
machine learning applications at the edge. It is part of NVIDIA’s Jetson family of products,
known for their GPU acceleration and performance in AI tasks, as shown in Figure 7a.
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(a) Jetson Nano (b) Deployment process 

 
  Figure 7. Edge equipment deployment process.

TensorRT is a deep learning inference optimizer that brings reduced latency and high
throughput deployment to deep learning applications. Applications running TensorRT
on Nvidia GPUs during inference can achieve significantly improved execution speeds
compared to pure CPU platforms.

The specific deployment process involves using a pre-trained PyTorch model and
transferring it to the Jetson Nano. Subsequently, it undergoes conversion into the ONNX
model format, followed by importation into TensorRT for the generation of an accelerated
network inference engine. The resulting engine file can be permanently stored through
serialization, enabling its subsequent loading through deserialization to facilitate inference.
The overall structure is illustrated in Figure 7b.

3.3.6. Evaluation of the Model Performance

To conduct a comprehensive analysis of the lychee disease detection performance,
this study utilized various evaluation metrics, including detection accuracy (P), recall rate
(R), mean average precision (mAP), frames per second (FPS), and model parameter count
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(params/M). These metrics were used to compare and assess the effectiveness of different
models and their detection results.

P =
TP

TP + FP
, (6)

R =
TP

TP + FN
, (7)

mAP =

∫ 1
0 PRdR

n
(8)

In Equations (6)–(8), TP represents the number of targets correctly detected via the
algorithm, FP represents the number of targets incorrectly detected via the algorithm, FN
represents the number of targets missed via the algorithm, and ‘n’ represents the total
number of images in the dataset.

4. Result and Discussion
4.1. Ablation Experiments

To validate the effectiveness of the proposed methods in this paper, two sets of ex-
periments were designed for comparative analysis. To ensure the experiment’s accuracy,
the same parameters were used during the training process. The test equipment uses the
Windows 10 operating system, an Intel Core I9-10900K processor, Pytorch1.9.0, an Nvidia
GeForce RTX3090 graphics card, and Jetson Nano, as shown in Table 2.

Table 2. Test system configuration.

Computer Configuration Specific Parameters

Operating system Windows10
CPU Intel(R) Core I9-10900K

Training framework Pytorch1.9.0
GPU Nvidia GeForce RTX3090

Edge deployment devices Jetson Nano (Quad-core
ARMCortex-A57MPCore processor)

Edge device accelerator TensorRT8.0

Table 3 demonstrates the impact of different techniques on the accuracy of the YOLOv7
model. The techniques evaluated include Mosaic data augmentation (M), using GhostNetV1
as the feature extraction network (G), BN layer pruning (P), and the CBAM attention
mechanism (C). It is observed that applying data augmentation leads to a significant
improvement in accuracy. The YOLOv7 model achieved a mAP of 77.3% using the original
dataset, while it achieved a mAP of 92.8% after applying data augmentation, representing
an increase of 15.5%. This substantial increase in model accuracy illustrates that data
augmentation techniques, such as random flipping, rotation, and translation, enhance
the diversity of the data, thereby improving the model’s robustness and generalization
performance while mitigating overfitting.

Furthermore, reducing the parameter count while maintaining reasonable perfor-
mance is essential. The GhostNetV1 improved network (YOLOv7-MG) in Table 3, row 3,
exhibits a slight decrease in accuracy compared to the original model (YOLOv7-M), but
the parameter count reduces from 36.5M to 26M, validating the effectiveness of replacing
it with a lightweight GhostNetV1 network. To meet the computation requirements for
edge deployment, we prune the network (YOLOv7-M) to achieve a balance between per-
formance and parameter reduction. After channel pruning, the model parameters reduce
from 36.5 M to 9.5 M in row 4 (YOLOv7-MP), which is almost one-fourth of the original
count, and the speed increases by 136 frames/s, with only a slight decrease in accuracy.
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Table 3. Comparison of ablation results.

Model mAP@50 (%) Params/M FPS
(Frames/s) P R

YOLOv7 77.3 36 120 83.2 81.5
YOLOv7 + M 92.8 36.5 120 96.3 90.1

YOLOv7 + M + G 89.5 26 131 95.4 84.4
YOLOv7 + M + P 87 9.5 256 94.8 83.2

YOLOv7 + M + G + P 86.5 6.6 222 94.0 78.9
YOLOv7 + M + G + P + C 88.6 7.8 217 95.0 80.7

Combining the GhostNetV1 network with channel pruning, as shown in Table 3,
row 5 (YOLOv7-MGP), the improved network model achieves a nearly 30M reduction
in parameter count compared to the original model (YOLOv7-M), with a 6.3% decrease
in accuracy. Therefore, the combination of lightweight networks and pruning operations
results in a significant reduction in parameters but may lead to some information loss and
a decrease in accuracy. To restore the model performance, the CBAM attention mechanism
is introduced to enhance its detection capability. The model with CBAM (YOLOv7-MGPC)
shows a 2.1% increase in accuracy with only a slight increase in the parameter size and
inference speed. This performance improvement is practical for model deployment where
computational resources are limited.

Overall, the comprehensive use of lightweight networks, pruning operations, and
the CBAM attention mechanism allows the model’s accuracy to remain above 88%, while
the parameter count decreases significantly from 36.5 M to 7.8 M, and the speed increases
from 120 frames/s to 217 frames/s. These improvements make the modified model more
suitable for deployment on mobile devices, as it not only reduces the parameter size but
also accelerates inference speed.

4.2. Performance of the Attention Mechanism

Figure 8 compares the performance of YOLOv7-MGPC with that of YOLOv7-MGP. It
is observed that YOLOv7-MGPC learns a little slower due to the process of the adaptation
of the attention mechanism to the specific pattern of the lychee data and extraction of
informative features. After training convergence, the CBAM attention mechanism results
in a 2% increase in mAP with negligible computational costs.
 

8 

 

  Figure 8. Curve of network accuracy changes with number of epoch.

To further demonstrate the effectiveness of the improved YOLOv7-MGPC model,
Class Activation Maps (CAM) [29] were used for the visual analysis of disease detection.
The heatmaps in Figure 9 depict the model’s weight and focus transfer during training,
demonstrating which part of the features contribute to the classification decision. It is
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evident that before the introduction of the attention mechanism, the network did not give
sufficient attention to less prominent disease features. However, after incorporating the
attention mechanism, the network becomes capable of detecting finer disease features and
accurately identifying the affected areas.

 

9 

 
  

Figure 9. Class activation feature heatmap visualization results.

4.3. Different Network Experiment Contrast

In order to further validate the effectiveness of the proposed model, comparative exper-
iments were conducted by replacing the original YOLOv7 backbone network with current
main-stream lightweight feature extraction models, including MobileNetV3, ShuffleNetV2,
and ResNet50. As shown in Figure 10 and Table 4, it is evident that the improved YOLOv7-
MGPC outperforms other lightweight networks in terms of accuracy. It achieves a higher
accuracy, ranging from 4.9% to 9.4%, compared to the other models. Regarding detection
speed, when compared to YOLOv7-ShuffleNetV2, YOLOv7-MGPC is only 16 frames/s
slower, but its accuracy is 5.5% higher. Compared to YOLOv7-MobileNetV3 and YOLOv7-
ResNet50, YOLOv7-MGPC has a speed advantage of 10 frames/s to 35 frames/s while
maintaining comparable parameter sizes. Figure 11 shows the confusion matrix for the
recognition results of different disease classes obtained via various network models.
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10 

 
  
Figure 10. The network accuracy of each models varies with the number of epochs.

Table 4. The comparative experimental results.

Model mAP@50 (%) Params/M FPS
(Frames/s) P R

YOLOv7-MobilenetV3 83.7 7.1 207 94.2 75.7
YOLOv7-ShufflenetV2 83.1 6.6 233 93.4 74.6

YOLOv7-Resnet50 79.2 10.2 182 89.8 71.2
YOLOv7-MGPC 88.6 7.8 217 95.0 80.7

 

11 

 
  

Figure 11. Confusion matrixes of different network models used to identify results.
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To comprehensively evaluate the performance of our model in lychee disease detec-
tion, we conducted a comparative analysis of the YOLOv7 model to compare it to other
prominent object detection algorithms, including RetinaNet [30], SSD [31], YOLOv5s [32],
and YOLOv8s [33]. Among them, RetinaNet uses the ResNet50 backbone network, and the
SSD model uses the VGG16 backbone network. As demonstrated in Table 5, it is evident
that the enhanced YOLOv7 + MGPC surpasses mainstream object detection networks like
RetinaNet and SSD in terms of both accuracy and speed while maintaining a minimal
number of parameters. Compared to its sibling YOLO models, YOLOv7-MGPC exhibits
similar accuracy and parameter efficiency as YOLOv5s but outperforms it in terms of FPS by
68 frames/s. Although YOLOv8s achieves higher accuracy compared to YOLOv7-MGPC,
it lags in terms of inference speed and parameter efficiency. When considering the balance
of accuracy, speed, model size, and practical applicability for deployment, we favor the
well-rounded improvement achieved via the YOLOv7-MGPC model.

Table 5. Comparison of mainstream object detection capabilities.

Model mAP@50 (%) Params/M FPS
(Frames/s) P R

RetinaNet 82.5 36.5 67 85.3 80.1
SSD 72.7 24.9 74 76.5 70.3

YOLOv5s 85.4 7.6 149 88.0 82.4
YOLOv8s 89.1 11.4 178 93.6 83.2

YOLOv7-MGPC 88.6 7.8 217 95.0 80.7

As demonstrated in Table 6, we have conducted a comparative analysis of our model
and contemporary deep learning models for crop disease detection. Evaluating the data
presented in Table 6, we can conclude that our model achieves a better balance in terms of
accuracy, parameter count, and speed, which makes it a more optimal choice for real-world
applications.

Table 6. Findings of existing related studies.

Ref. Dataset Name Model Name Number
of Image Model Size Performance Inference Time

(ms)

Zhang et al. [34] Soybean leaf
Multi-feature
fusion Faster

RCNN
1000 - mAP = 83.34% 0.859

Su et al. [35] Wheat Mask + ResNet 101 3000 - mAP = 77.85% 0.68

Liu et al. [36] Tomato leaf YOLOX-
MobileNetV3 18,834 44.31 M mAP = 98.56% -

Shao et al. [37] Cotton Leaf ResNet 5903 21.55 M Accuracy = 96.61% -

Ours Litchi leaf YOLOv7 +
GhostNetV1 6295 18.37 M mAP = 88.6% 4.60

4.4. Platform Deployment and Verification

To further validate the effectiveness of the improved lightweight algorithm on mobile
devices, this study deployed the YOLOv7-MGPC model on edge computing devices. Real-
time testing was conducted within the South China Agricultural University’s arboretum.

As illustrated in Figure 12, the system configuration included a GUCEEHD98 camera
and a Nvidia Jetson Nano edge computing device, with the Jetson Nano running the
Linux operating system and utilizing TensorRT acceleration capabilities. This deployment
allowed for practical, on-site testing and demonstrated the practicality of the YOLOv7-
MGPC model in real-world agricultural scenarios thanks to its lightweight design and
optimized inference process using TensorRT on the Nvidia Jetson Nano.
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As illustrated in Figure 13, it is evident that our easily constructed Jetson Nano
detection platform excels in real-time scene detection, accurately identifying lychee diseases
at a remarkable speed range of 8–13 frames/s. The real-time detection demonstrated in
the field underscores the model’s efficiency, precise target recognition, and ability to meet
the accuracy and efficiency demands of practical applications. This achievement holds
promising implications for the advancement of agricultural intelligence and automation
projects, providing both the technical prowess and theoretical foundation necessary for
their success.



Agronomy 2023, 13, 2866 15 of 17

 

13 

 

Figure 13. Real-time inspection effect drawing.

5. Conclusions

In this study, we replaced the main feature extraction network of the YOLOv7 al-
gorithm with the lightweight neural network GhostNetV1, designed for mobile devices.
Furthermore, we employed BN layer network sparsification to conduct channel pruning
and applied the CBAM mechanism to enhance detection accuracy, resulting in an improved
version of the lychee disease detection model, namely YOLOv7-MGPC. The YOLOv7-
MGPC model was trained on a dataset containing four types of lychee disease images.

By conducting comparative experiments and evaluating the model’s performance on
metrics such as mean average accuracy (mAP), parameter count, and frames per second
(FPS), the enhanced YOLOV7-MGPC network demonstrates significant advancements.
Notably, the network achieves a mAP of 88.6% while reducing the parameter count from
36.5 million to 7.8 million and enhancing speed from 120 FPS to an impressive 217 FPS. By
deploying our model on the Jetson Nano platform, we have demonstrated its capability to
achieve real-time detection, offering immediate feedback to farmers and decision makers.
Our system, consisting of a camera mounted on a Jetson Nano platform, continuously
captures images of the lychee orchard. The images are then processed using our real-
time detection model, which instantly identifies disease symptoms. These symptoms
can be transmitted to the farmer’s mobile device or computer, enabling them to make
timely decisions regarding disease management. This real-time functionality enables early
intervention and targeted treatment, reducing the impacts of lychee diseases and increasing
crop yield.

The lightweight algorithm proposed in this study offers a new approach for the
accurate and real-time detection of lychee diseases, and we are committed to continuously
optimizing our model. Our goal is to create a robust and versatile system that can be widely
deployed in various agricultural settings to assist farmers in effectively identifying and
managing lychee diseases. We hope our research findings can provide technical support
for future into on lychee disease detection.
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