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Abstract: The high performance of deep learning networks relies mainly on massive data. However,
collecting enough samples of crop disease is impractical, which significantly limits the intelligent
diagnosis of diseases. In this study, we propose Heterogeneous Metric Fusion Network-based Few-
Shot Learning (HMFN-FSL), which aims to recognize crop diseases with unseen categories using
only a small number of labeled samples. Specifically, CBAM (Convolutional Block Attention Module)
was embedded in the feature encoders to improve the feature representation capability. Second, an
improved few-shot learning network, namely HMFN-FSL, was built by fusing three metric networks
(Prototypical Network, Matching Network, and DeepEMD (Differentiable Earth Mover’s Distance))
under the framework of meta-learning, which solves the problem of the insufficient accuracy of a
single metric model. Finally, pre-training and meta-training strategies were optimized to improve
the ability to generalize to new tasks in meta-testing. In this study, two datasets named Plantvillage
and Field-PV (covering 38 categories of 14 crops and containing 50,403 and 665 images, respectively)
are used for extensive comparison and ablation experiments. The results show that the HMFN-
FSL proposed in this study outperforms the original metric networks and other state-of-the-art
FSL methods. HMFN-FSL achieves 91.21% and 98.29% accuracy for crop disease recognition on
5way-1shot, 5way-5shot tasks on the Plantvillage dataset. The accuracy is improved by 14.86% and
3.96%, respectively, compared to the state-of-the-art method (DeepEMD) in past work. Furthermore,
HMFN-FSL was still robust on the field scenes dataset (Field-PV), with average recognition accuracies
of 73.80% and 85.86% on 5way-1shot, 5way-5shot tasks, respectively. In addition, domain variation
and fine granularity directly affect the performance of the model. In conclusion, the few-shot method
proposed in this study for crop disease recognition not only has superior performance in laboratory
scenes but is also still effective in field scenes. Our results outperform the existing related works.
This study provided technical references for subsequent few-shot disease recognition in complex
environments in field environments.

Keywords: few-shot learning; metric learning; multi-model fusion; attention; plant protection; crop
disease recognition

1. Introduction

In agricultural production, timely diagnosis of crop diseases is critical to improving
crop yields [1,2]. The diagnosis of crop leaf diseases is a crucial part of precision agriculture.
Currently, disease diagnosis largely depends on experienced farmers or pest experts using
manual observation. This method is inefficient and difficult to implement on a large scale,
especially for smallholders in remote areas. With the rapid development of deep learning in
the field of automatic crop leaf disease recognition, intelligent diagnosis has become feasible
and has been successfully applied to various crops such as oil tea camellia, rice, tomato,
cucumber, maize, citrus, and sunflowers [3–9]. However, there are still some pressing issues
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to be addressed in such methods. First, the long-tail distribution of disease samples may
result in better performance of the model for common categories and worse performance
for rare categories. Second, collecting sufficient samples of crop diseases is challenging.
In addition, the annotation of the dataset requires the participation of a large number
of experts in the field of agricultural diseases, which also increases the difficulty of the
dataset construction. Therefore, research into a deep convolutional model that is suitable
for learning diseases with small samples is crucial to solving the problem of insufficient
disease data.

Currently, there are usually two ways to alleviate the problem caused by data shortage.
Data augmentation increases the amount of data through operations such as scaling and
rotating images or synthesizing sample data using Generative Adversarial Networks
(GANs). For example, Hu et al. [10] augmented disease spot images using the C-DCGAN
method and achieved an average accuracy of 90.00% for the recognition of tea diseases.
Chen et al. [11] also solved the problem of insufficient samples and achieved an accuracy
of 97.78% in apple disease classification tasks by using the CycleGAN network to generate
synthetic samples. Cap et al. [12] proposed an image transformation system with its
own mechanism (LeafGAN) for crop leaf disease features, which achieved better image
generation than CycleGAN. Data augmentation can improve the learning of rare classes
by generating more samples to balance the training data. However, for small datasets,
such methods may result in the information learnt by the model being too similar, thus
limiting its ability to generalize. Transfer-learning-based methods are first pre-trained on a
source dataset to obtain a generic feature representation, and then the network is fine-tuned
using a small amount of target data. For example, Gulazer et al. [13] used a migration
learning strategy trained on a CNN network to classify seeds and achieved 99% accuracy
on a test set containing only 234 images. Mamat et al. [14] used the YOLO model developed
based on migration learning and successfully achieved high performance recognition of
oleaginous palm trees. Zhang et al. [15] developed a lotus leaf pest and disease recognition
model using transfer learning after improving DenseNet based on the Plantvillage dataset
for transfer learning to recognize lotus-leaf-related diseases and achieved an accuracy of
91.34%. Li et al. [16] used DenseNet on Plantvillage for pre-training and the tea dataset for
fine-tuning. This resulted in 92.66% accuracy for tea disease recognition with insufficient
samples. Yang et al.’s study [17] achieved 97.23% accuracy in corn disease recognition based
on MobileNetV2 for transfer learning. In addition, Gulazer [18] improved MobileNetV2
by obtaining TL-MobileNetV2 and training it using a migration strategy for MobileNetV2,
obtaining extremely high performance on a fruit classification task. Although transfer
learning has alleviated the sample shortage problem in crop leaf disease recognition to
some extent, these methods still have some limitations. First, the model only predicts well
for disease categories in the training samples but cannot generalize to untrained disease
categories. Second, it is also difficult to achieve reliable performance with transfer learning
when the number of available samples is minimal (e.g., one sample) because too-sparse
samples do not provide enough information to support model training. Therefore, the core
challenge for small-sample disease recognition is to rely on only a few samples to learn
and make the model achieve the generalization ability. However, solving these challenges
requires innovations in the models and algorithms themselves, not just operating at the
data level.

In recent years, few-shot learning (FSL) based on meta-learning has provided new
ideas for the recognition of foliar diseases in crops with small sample sizes. Metric learning-
based methods are an effective classification method in FSL. These methods utilize human-
summarized metric functions [19], such as Euclidean distance, cosine distance, and other
non-parametric or less parametric modules, for classification instead of traditional linear
layers. This model fine-tunes the feature encoder to ensure that samples from the same class
are positioned close together in the measurement space. In contrast, samples from different
classes are kept well apart. The metric learning method avoids parameter learning within
the linear layer, while allowing the model to generalize to novel categories. At present, FSL
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based on metric learning has a promising application in crop leaf disease recognition. Pan
et al. [20] proposed a Siamese network-based FSL learning method for recognition of crop
leaf diseases. For Monocotyledonous crops, 68.57% and 76.95% accuracies were achieved
on 5way-5shot and 10way-10shot, respectively. Xiao et al. [21] conducted experiments
on the Plantvillage dataset, utilizing different feature encoders within the Prototypical
Network, Matching Network, and Relational Network. They obtained average accura-
cies of 77.60%, 73.01%, and 73.13%, respectively, for 5way-1shot. The results referred to
assessing the feasibility of FSL in crop leaf disease recognition. Li et al. [22] conducted a
cross-domain FSL study by mixing pest data and achieved high performance in crop leaf
disease recognition. Lin et al. [18] proposed a network based on combining multi-scale
features and channel attention to enrich feature representation. The method achieved high
performance on 5way-1shot and 5way-5shot on the Plantvillage dataset. In summary, these
studies have demonstrated the potential viability of FSL for crop leaf disease recognition,
but challenges remain in crop leaf disease recognition with the aforementioned FSL-based
methods [23]. Currently, three specific issues persist in the research on FSL-based recogni-
tion of foliar disease in crops. First, there is a significant distribution shift between the field
and laboratory samples. The large amount of visual interference and irrelevant information
in the field images increases the complexity of the intrinsic dimension of the feature space.
However, the feature extraction networks of the above FSL methods generally have the
ability to adaptively filter and process the distribution of the input samples, and it is diffi-
cult to maintain good generalization in the complex field feature space. On the other hand,
crop leaf disease recognition belongs to fine-grained image recognition tasks. Different
disease categories of the same crop exhibit similar features, which requires the model to
have stronger feature spatial representation capability. However, current studies have paid
less attention to how to obtain a feature extractor with stronger generalization from the
perspective of training strategy. Nonetheless, when the sample size is extremely limited,
such as with just one sample, the classification performance of a single FSL model tends
to be subpar. Therefore, improving classification reliability under very few samples is a
difficult challenge for FSL.

To address the above issues, this study proposes a HMFN-FSL framework that incor-
porates CBAM [24] attention mechanism. Firstly, considering the characteristics of crop
leaf spots, this study introduces the CBAM attention module into the feature encoder to
focus on the key regions; secondly, this study optimizes a pre-training strategy for meta-
learning to improve the generalization of feature representations. Finally, the classification
performance is improved by constructing a Heterogeneous Metrics Fusion Network for
FSL (HMFN-FSL), which fuses multiple FSL models with appropriate weighting. The aim
of the study objective is to improve the ability of the FSL method to recognize crop leaf
diseases, thus providing an effective method for recognizing crop leaf diseases in the field
with small samples. The contributions of this study can be summarized as follows:

(1) A CBAM attention module was embedded in the feature network for few-shot learning
to focus on important lesion feature regions to improve the generalization ability of
the network.

(2) Optimization of the pre-training strategy of the feature extraction network for metric
learning to improve the generalization ability of the feature encoder.

(3) A Heterogeneous Metrics Fusion Network (HMFN-FSL) was constructed to improve
the prediction performance and reliability.

(4) Extensive experiments were conducted on crop leaf disease datasets in laboratory
scenes and field scenes to validate the superiority of the model and to provide a
feasible solution for the recognition of crop leaf diseases for few-shot learning in
the field.
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2. Materials and Methods
2.1. Dataset

Three public datasets were used in this study: Mini-ImageNet [25], Plantvillage [26],
and Field-PV [27]. Plantvillage is one of the most frequently used datasets in crop leaf
disease recognition studies [27–31], containing 50,403 images covering 38 categories for
14 crops. In addition, a field scenes disease dataset named Field-PV was selected for this
study. This dataset has the same distribution of disease species as the Plantvillage dataset,
as shown in Table 1. The obvious difference between the Field-PV dataset and Plantvillage
is that its background is more complex and it is closer to natural field scenes, so that it
can be used to simulate the recognition of crop leaf diseases in field scenes. Specifically,
we selected four representative diseases (as shown in Figure 1), namely corn leaf blight,
grape black measles, potato early blight, and strawberry leaf scorch. From the two datasets
for comparison, we can see that the Field dataset’s background is more complex than that
of the Plantvillage dataset. The disease images contain background disturbances such as
healthy leaves, sunlight, and soil.

Table 1. The 14 species and 38 categories in PV and Field-PV.

Species Class
Numbers Class Name Number of PV Number of

Field-PV

Apple 4 Apple scab, black rot,
cedar, healthy 3174 72

Blueberry 1 Healthy 1502 12

cherry 2 Healthy, powdery
mildew 1905 20

corn 4 Gray leaf spot, common
gray leaf spot, common 3852 82

Grape 4 Black rot, black measles,
healthy, leaf blight 3862 52

Orange 1 Haunglongbing 5507 33
Peach 2 Bacterial spot, healthy 2657 31

Pepper 2 Bacterial spot, healthy 2473 21

Potato 3 Early blight, healthy,
late blight 2152 36

Raspberry 1 Healthy 371 8
Soybean 1 Healthy 5089 23
Squash 1 Powdery mildew 1835 25

Strawberry 2 Healthy, leaf scorch 1565 80

Tomato 10

Bacterial spot, early
blight,
Healthy, late blight, leaf
mold, septoria leaf spot,
spider

18,159 169

2.2. Problem Formulation
2.2.1. Support Set and Query Set

In few-shot learning (FSL), the dataset is divided into base classes Cbase and novel
classes Cnovel. The base class data are used for meta-training, while the novel class data
are used for meta-testing. The training data do not intersect with the categories of the test
data, Cbase ∩ Cnovel = Ø, which means that the categories of the test data are not visible to
the training process. Since the novel class only has a small number of samples, the data
are organized in the form of tasks. Specifically, the tasks that are sampled at a time are
called episodes, and each episode consists of an S (support set) and a Q (query set). It can
be expressed as:

S = {(x1, y1), . . . , (xm, ym)} (1)
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Q = {(x1, y1), . . . , (xn, yn)} (2)

where (xs, ys) is an image label pair. In the formula, m is the number of samples in the
support set and n is the number of samples in the query set. The model is trained using the
labels from Q to compute the loss and thus perform supervised learning.
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2.2.2. N-Way K-Shot

N-way K-shot means that there are N categories in the support set and only K support
samples in each category. In simple terms, the parameter K indicates exactly how few
samples there are in each category in a recognition task with N categories.

2.3. Preparatory
2.3.1. Metric Learning

For data-driven deep learning, the N-way K-shot task is a very difficult scenario.
Since only K samples are available for learning in the task, it is difficult to achieve good
results for either transfer learning or data augmentation in this scenario. However, with
the continuous emergence of FSL based on meta-learning, this problem has been solved,
which also makes meta-learning the mainstream method to solve the FSL problem at once.
Among these methods, metric learning is currently one of the more effective methods.

The right side of Figure 2 shows the overall metric learning framework. The core idea
of metric learning is to compute the distance matrix between the support set and the query
set by the metric module and achieve classification by using the distance similarity between
the samples. The model proposed in this study uses three robust metric networks: the
Prototypical Network, the Matching Network, and the DeepEMD.
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• Prototypical Network

Figure 2A shows the Prototypical Network proposed by Snell et al. [32]. It projects the
samples through an encoder into the high-dimensional space. Subsequently, it computes the
mean centers of the support set in this space, denoted as C1, C2, C3. It computes the mean
centers of the support set in this space, denoted as X, into the same feature space. It then
calculates the Euclidean distance between the mean centers, named the Average Prototype
(AP), and X. Finally, the query is classified based on the magnitude of the distance between
it and the three Average Prototypes (APs), denoted as d1, d2, d3. Thus, the classification
problem is transformed into a spatial nearest-neighbor problem.

• Matching Network

As shown in Figure 2B, the Matching Network proposed by Oriol et al. [33] is the first
meta-learning model based on metric learning. First, it extracts features from the support
set and the query set through the Long Short-Term Memory (LSTM) network [34]; this is
achieved by exploiting its memory capability in sequence modeling, so that the model can
comprehensively consider the features of both support samples and query samples. Finally,
the cosine distance between the features of the support set and the features of the query set
is computed, and the probability distribution of the query set belonging to each category is
obtained after the SoftMax operation to achieve the classification. The Matching Network
obtains the mapping of the input space to the metric space through set-to-set learning [35]
and provides an FSL method based on metric learning and the external memory.
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• DeepEMD

Shown in Figure 2C is the DeepEMD proposed by Chi et al. [36]. EMD (Earth Mover’s
Distance) is an image similarity measure. Specifically, features are extracted from the
support set and query set to obtain feature vectors of length m and k, respectively.

Aij = 1−
Si

T Dj∣∣|Si|
∣∣‖Dj‖

(3)

Minimize :∑m
i=1 ∑k

j=1 Xij Aij (4)

Subject to : ∑k
j Xij = Si (5)

∑m
i Xij = Dj (6)

where the product of the number of feature maps and the feature map size of the support
set image is k, while the query set is m. Then, m and k can be considered as the number of
places of suppliers and demanders. The unit cost of transport between vectors Aij (as in
Equation (3)) is expressed by the cosine distance. Thus, a linear programming problem
with EMD with constraints of Equations (5) and (6) is constructed for the inter-image
between the support set and query set. The optimal matching cost between the images (as
in Equation (4)) can be obtained by requiring the transport volume Xij from each supplier i
to each demander j. EMD constructs a spatial nearest-neighbor problem under the local
feature space of an image by computing the minimum matching cost in Equation (4) and
using it as the distance in the prototypical network.

2.3.2. CBAM (Convolutional Block Attention Module)

CBAM (Convolutional Block Attention Module) is a lightweight attention module
consisting of a Channel Attention Module (CAM) and a Spatial Attention Module (SAM).
CBAM can perform both spatial and channel attention operations to make the feature
encoder pay more attention to targets, which is the area of the crop leaf disease spot.

• Channel Attention Module

The Channel Attention Module (CAM) focuses on semantic concepts in the image that
are more relevant to the current classification task by modeling the correlations within the
feature channels. The structure of the Channel Attention Module, as shown in Figure 3A, is
as follows: first, the input feature maps are subjected to both maximum pooling and average
pooling in order to capture the global and salient features of the feature maps in the channel
dimension, respectively. The pooling results are fed into a convolutional network with
two layers of shared weights. In this process, down-sampling and up-sampling operations
are performed on the feature maps in order to obtain more complex feature information.
Afterwards, the output is then summed element-by-element and non-linearly transformed
using Sigmoid to obtain a weight map with just one channel representing the allocation of
attention weights to different channels. This attentional feature map highlights the features
in the input feature map that are more relevant to the current task in the channel dimension.
Eventually, the result of the inner product operation of the attention feature map with the
original feature map is used as the output to achieve the effect of enhancing valid features
to suppress invalid channel features. This structure allows the model to automatically learn
salient information about the target at the channel level.
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• Spatial Attention Module

The Spatial Attention Module (SAM) focuses on the spatial distribution of valid
information in an image by modeling the relationships within the feature space. Spatial
attention enables the model to focus on the effective region in the image by learning the
correlation inherent in the feature space, thus improving the model’s ability to recognize
and process local details, and its structure is shown in Figure 3B. First, average pooling and
maximum pooling are performed on the channel dimension, and then their feature maps
are concatenated to fuse different types of feature information. The concatenated feature
maps are convolved through a layer to generate a spatial weighting allocation feature
map, and the prominent parts of the feature map are assigned weights using the sigmoid
function. Finally, the spatial feature maps are subjected to an inner product operation
with the original feature maps to achieve weighting of the input feature maps for spatial
attention feature extraction. This structure allows the model to focus on the effective regions
in the image by learning the intrinsic spatial correlation of the input feature maps.

• CBAM

As shown in Figure 3C, the CBAM module is a feedforward structure consisting of a
Channel Attention Module (CAM) and a Spatial Attention Module (SAM) connected in
series. Firstly, the original feature maps are used as the input of the CAM module, and the
feature maps in the channel dimension are learned first. Then, the output of the CAM is
used as the input of the SAM module to learn the feature map in the spatial dimension.
In this way, the feature map obtains appropriate customized features in both the channel
and spatial dimensions. Since the input and output feature maps of the CBAM module
have the same shape, it can be seamlessly embedded into the tail of the residual block of
the ResNet network [35]. In this study, we refer to the ResNet network with the combined
CBAM module in the article as CBAM-ResNet.

2.3.3. Stacking Framework

Stacking is a widely used multi-model fusion technique [37–39]. The framework
usually consists of two parts: a base learner and a meta-learner. As shown in Figure 4,
multiple base learners output their respective predictions. These predictions are pooled
as training inputs for the meta-learner. Finally, the parameters in the base learner and the
meta-learner are updated using the real labels of the original dataset as supervision. The
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base learners used in this study are the Prototypical Network, the Matching Network, and
the DeepEMD. The significant advantage of stacking is that it can utilize the strengths of
different base learners to compensate for their respective weaknesses, thus improving the
accuracy of the final prediction. This type of integration can effectively enhance the stability
and the generalization ability of the model.
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2.4. The Architecture of HMFN-FSL

In this subsection, we will describe the meta-learning framework of HMFN-FSL,
how the loss function takes into account the parameters in the three networks, and the
pseudocode of HMFN-FSL.

2.4.1. The Meta-Learning Framework of HMFN-FSL

For the Prototypical Network, Matching Network, and DeepEMD, in order to realize
the shift from traditional classification learning to metric learning, each base learner replaces
the linear classifier used in the pre-training phase (e.g., Figure 5A) with the distance metric
module of the corresponding model. In other words, the classification result is completely
determined by the distance between the support set and the query set, and not by the linear
discrimination of the classifier. Under the N-way K-shot task setting, for category c, this
study randomly samples K samples of this category from the support set S and inputs them
into the feature extractor F(θn) for feature extraction. The feature mean of these K samples
is then computed as the prototype vector TC of the category, which is used to represent the
category c.

TC =
1
|Sc| ∑

xs∈SC

Fθ(xs) (7)

where SC represents the number of samples in the support set in category c. Meanwhile, the
samples in the query set Q undergo feature extraction by F(θn) to obtain q high-dimensional
feature vectors xq. Then, the probability that q belongs to category c can be expressed as:

p
(
y = c

∣∣xq
)
=

exp
(
−d

(
Fθ

(
xq
)
, TC

)
∑C′ −d

(
Fθ

(
xq
)
, TC′

) (8)

where TC′ represents the center vectors of all the categories; d(F, T) represents the distance
between the vector of query set F and center vectors of the T category. The cross-entropy
loss function is computed in training by back-propagating it to the encoder F(θn) by
adjusting θn to achieve the purpose that the different categories are distant from each other
and the same categories are close to each other. The loss can be expressed as:

Loss = d
(

Fθ
(
xq
)
, TC′

)
+ log∑C′ exp

(
−d

(
Fθ

(
xq
)
, TC′

)
(9)
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Figure 5. The network architecture of HMFN-FSL. (A) Pre-training phase: pre-training the encoder
through classification tasks to obtain feature representations with generalization ability. (B) Meta-
training separately phase: train multiple base learners separately, including Prototype Networks,
Matching Networks, and DeepEMD. (C) Meta-training stacking phase: input the distance matrix
output by each base learner to the weighted fusion meta-learner and jointly fine-tune the parameters
of the base learners by back-propagation.

In the meta-training separately phase, this study performs the above training process
for each model (e.g., the Prototypical Network) individually until its convergence, in order
to obtain the individual optimal metric learning capability to provide a reliable base learner
for subsequent meta-learning.

As shown in Figure 5C, during the meta-training stacking phase, the encoder pa-
rameters of the three base learners are initialized to the optimal values of θ1, θ2, and θ3
obtained in their respective meta-training separately phases. At the same time, the three
base learners (Prototype Network, Matching Network, and DeepEMD) output the distance
matrices DA, DB, and DC, respectively. However, these three distance matrices are not on a
uniform scale due to the adoption of different distance metric functions. In order to realize
the linear fusion of the distance matrices, this study cleverly adopts SoftMax to normalize
them (see Equation (8)) and maps the three distance matrices to a unified metric space in a
probabilistic way.
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Subsequently, the three normalized distance matrices are weighted and fused using
the fusion network, to obtain the final distance matrix DM:

DM = W1·DA + W2·DB + W3·DC (10)

where W1, W2 , and W3 are the weighting parameters assigned by the meta-learning,
respectively. Based on DM, the cross-entropy loss function Loss-DM is computed and
backpropagated to the four networks to update the parameters of encoder in the base
learners as well as the parameters of the meta-learners. The final distance matrix DM is
affected by both the parameters θ1, θ2, θ3 of the three base learners as well as the meta-
learner parameter θ4. In this study, we denote all the parameters as ∅(θ1, θ2, θ3, θ4); then,
Loss-DM can be expressed as:

Loss DM = d
(

F∅
(
xq
)
, TC′

)
+ log∑C′ exp

(
−d

(
F∅

(
xq
)
, TC′

)
(11)

Meanwhile, the probability of belonging to the category c for q can be expressed as:

p
(
y = c

∣∣xq
)
=

exp
(
−d

(
F∅

(
xq
)
, TC

)
∑C′ −d

(
F∅

(
xq
)
, TC′

) (12)

This can realize the recalibration and fusion of the distance metric results of each base
learner, so that the model can synthesize the advantages of different distance metrics and
achieve stronger few-shot learning performance.

2.4.2. Feasibility of Loss-DM

Meanwhile, in order to verify whether the prediction results of all base learners can be
considered simultaneously in the back-propagation process of the loss function Loss-DM,
the following derivation is performed in this study.

When Loss-DM is used to update the parameters of the nth model, it uses the combined
output matrix DM to calculate the gradient, which is the sum of the output matrices of
the three models. Theoretically, the gradient of the nth model will be affected by the
contribution of all models in the integrated learning to the final output and will be adjusted
accordingly. In this study, we denote the partial derivative of the loss function with respect
to the parameter θn of the nth model as d L

dFθn
. And we use the chain rule for partial

derivatives to express this derivative as:

d L
d Fθn

=
d L

d DM
× d DM

d Fθn

(13)

where d L
d DM

is the partial derivative of the loss function with respect to the combined

output matrix DM and d DM
dFθn

is the partial derivative of the combined output matrix DM

with respect to the parameter θn of the nth model. Therefore, the partial derivatives of DM
with respect to the parameter θA of model A can be computed as:

d DM
d FθA

=
d (W1·DA + W1·DB + W3·DC)

d FθA

= W1·
d DA
d FθA

(14)

The partial derivatives of the components in DB and DC and the stacking meta-models
in DM with respect to θA should be zero since they are obtained by linearly stacking DM so
they are a constant with respect to θA, which is obtained by inserting the above equation
into Equation (10):

d L
d FθA

= W1·
d L

d DM
× d DA

d FθA

(15)

This indicates that the partial derivatives of the loss function with respect to the θA
component of the parameters in model A are composed of three parts. The updating of
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the parameters in the A network via Loss-DM, which references both the performance of
d DA
d FθA

in its own predictions and the presence of W1· d L
d DM

as an externally variable constant,

suggests that the A model is updated with reference to the synergistic contributions of
the other three models to the final output of the base model A as well. Similarly, it can be
inferred that the parameter updates of other models also depend on their own effects as
well as those of other models. In this way, a synergistic optimization is achieved between
the individual base learners in the meta-learning framework.

2.4.3. Algorithm of HMFN-FSL

In order to increase the reproducibility of our method, the pseudocode of the algorithm
of this study is shown in Algorithm 1.

Algorithm 1 The algorithm of HMFN-FSL

Input: dataloader, n_way, n_shot, n_query, task_per_batch
Output: avg_acc, avg_loss
for i in epoch:

train:
for j in batch:

task = task(dataloader, n_way,n_shot, n_query, task_per_batch)
X10. . .X1n = f θ1(task.x_shot)
X1 = mean(X10. . .X1n)
y1 = f θ1(task.x_query)
X20. . .X2n = f θ2(task.x_shot)
X2 = mean(X20. . .X2n)
y2 = f θ2(task.x_query)
X30. . .X3n = f θ3(task.x_shot)
X3 = mean(X30. . .X3n)
y3 = f θ3(task.x_query)
Logits_Proto = classifer(Proto_distance(x1, y3))
Logits_Matching = classifer(Matching_distance(x2, y3))
Logits_EMD = classifer(EMD_distance(x3, y3))
Total_Logits = HMFN-FSLθ4(Logits_Proto, Logits_Matching, Logits_EMD)
Loss = cross_entropy(Total_Logits, task.label)
acc = compute (Total_Logits, task.label)
Loss.backward()

end for
Validation: val
Compute: avg_acc, avg_loss

end for
Return: avg_acc, avg_loss

3. Results

In this study, comparative experiments and ablation experiments are used to illustrate
the effectiveness of the methodology proposed in this study as well as the effect of changes
in various variables on the accuracy of the model. Specific experiments and results are
described and analyzed in detail below.

3.1. Data Setting

As shown in Figure 6, in order to satisfy the requirement of setting the training set
and test set categories as mutually exclusive in Section 2.2, the disease categories of the
Plantvillage dataset are sorted alphabetically in this study, and the training set, validation
set, and test set are partitioned. Specifically, the odd-numbered categories of the sorted
dataset (a total of 19 disease categories) were used as the training set, the odd-numbered
categories of the remaining categories (10 disease categories) were used as the validation
set, and the remaining 9 categories were used as the test set. Meanwhile, in order to fully
evaluate the recognition performance of the model on the Field-PV dataset, three different
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splits were applied to these data. (1) Field-PV-all: all categories in Field-PV were included in
the test set in order to compare the results with those in Plantvillage laboratory conditions.
(2) Field-PV-split1: five representative diseases of different crops were randomly selected
in Field-PV to form the test set to evaluate the performance of the model in recognizing
different crop leaf diseases. (3) Field-PV-split2: five tomato diseases with higher complexity
in Field-PV were selected as the test set to verify the model’s recognition performance
on fine-grained disease categories. With these three different test sets, this study is able
to comprehensively evaluate the robustness and generalization ability of the model on
Field-PV, which is a field scenes dataset.
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3.2. Training Strategy and Hyperparameters

The algorithmic process in this study is roughly divided into three main phases: pre-
training, meta-learning, and meta-testing phases. In order to comprehensively evaluate the
impact of using different datasets in different phases on the performance of the model, six
dataset configurations of S1–S6 are designed in this study (as shown in Figure 7). S1 uses
Mini-ImageNet in both pre-training and meta-learning phases, and it performs meta-testing
on the test set of Plantvillage. S2 uses Mini-ImageNet in the pre-training phase and the train
sets and test sets of Plantvillage in the meta-learning and meta-testing phases, respectively.
S3 uses the Plantvillage dataset in all the three phases. S4 uses Mini-ImageNet for pre-
training, the train set of Plantvillage for meta-learning, and all Field-PV categories for
meta-testing. S5 uses Mini-ImageNet for pre-training, Plantvillage for meta-learning, and
the Field-PV-split1 for meta-testing. The data used for pre-training and meta-learning in S6
are the same as S4 and S5. The difference is that Field-PV-split2 is used for the meta-testing
phase. By configuring these six strategies, this study can explore the best pre-training
strategies and the migration effects of models in laboratory and field scenes. In addition, it
can also explore the generalization ability of the model in different application scenes.
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dataset used for pre-training, the center represents the dataset used for meta-training, and the right
side is the dataset used for testing.

The hyperparameters for model training were then set as follows: in the pre-training
phase, an SGD optimizer used in [40] was used with a momentum parameter of 0.9 and
a weight decay factor of 5 × 10−4. The initial learning rate was set to 1 × 10−2, and the
weights were decayed with the multiplicity of 0.2 every 20 rounds for a total of 100 training
rounds. In the meta-training stacking, the base learners still used the SGD with an initial
learning rate of 5 × 10−3. In contrast, the meta-learner used the AdamW optimizer used
in [36] with an initial learning rate of 1 × 10−3. The learning rates of both the base learner
and the meta-learner decayed with a multiplier of 0.5 every 30 rounds. In the meta-training
stacking, the base learners still used the SGD with an initial learning rate of 5 × 10−3, while
the meta-learner used the optimizer named AdamW used in [41] with an initial learning
rate of 1 × 10−3, and the learning rates of both the base learner and the meta-learner
decayed with a multiplier of 0.5 every 30 rounds. The average accuracy and the 95% MSE
(mean square error) of 600 episodes used in [42] were measured in the testing phase.

3.3. CBAM Effectiveness
3.3.1. The Performance of Base Learners with CBAM

In order to verify the effectiveness of CBAM on the three underlying networks, we
conducted a total of six sets of ablation experiments under the S3 data strategy on three base
learners by controlling the presence or absence of CBAM in the backbone network. Accord-
ing to Table 2, upon integrating CBAM, the Prototypical Network, Matching Network, and
DeepEMD achieved accuracies of 74.55%, 74.61%, and 78.22%, respectively. The accuracy
of three networks increased by 2.34%, 2.10%, and 1.98%, respectively. The result confirms
that the CBAM module can effectively improve the performance of disease recognition in
basic metric learning models.
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Table 2. Experimental results of CBAM effectiveness.

ID Encoder Method 5way-1shot (Acc (%)) 5way-1shot
(95% MSE)

E1 ResNet Prototypical Net 72.21 0.12
E2 CBAM-ResNet Prototypical Net 74.55 0.05
E3 ResNet Matching Net 72.51 0.10
E4 CBAM-ResNet Matching Net 74.61 0.12
E5 ResNet DeepEMD 76.34 0.10
E6 CBAM-ResNet DeepEMD 78.22 0.07

In order to increase the interpretability of CBAM-ResNet, this study uses the Grad-
CAM visualization technique in the form of heat maps to show the degree of attention of
the pre-trained network to different regions in the image recognition process. Figure 8 takes
potato early blight as an example; Figure 8A shows the original image, and Figure 8B,C
shows the heat maps of CBAM-ResNet and ResNet, respectively. The highlighted areas
in red on the heat map indicate the areas of higher model attention. It can be seen that
regions a and b in both CBAM-ResNet and ResNet are mainly focused on the root and
lesion regions of potato leaves, which indicates that potato disease recognition mainly
relies on the bases and lesion sites of crop leaves. Meanwhile, it can be noted that the
a and b regions in Figure 8B exhibit higher brightness compared to the corresponding
regions in Figure 8C. This suggests that, in comparison to ResNet, CBAM-ResNet pays
more attention to the lesion areas of the original image, which verifies the effectiveness of
the CBAM attention mechanism. Moreover, both networks attend to the background region;
however, the c region of the CBAM-ResNet heat map is noticeably darker than that of
ResNet. The highlighted region in the lower left corner demonstrates the same pattern. The
experimental results of Algorithm 1 concur with this, showing that the robustness of the
model improves and the influence of background noise reduces after integrating CBAM.
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3.3.2. Base Learner Training Loss Curve

Loss function curves are shown in Figure 9. Figure 9A–C shows the loss function
curves in the independent learning phase of the base learner, respectively. We can observe
that although it is after the pre-training phase, the training loss of the model at the beginning
of the meta-training phase is still large. This is because the feature space differentiation
is still not distinct enough despite the pre-training. However, as the distance of different
samples in the feature space becomes greater, the train losses of DeepEMD, Prototypical
Network, and Matching Network gradually converge to 0.15, 1.30, and 0.9, respectively,
and the value losses converge to 0.75, 1.40, and 1.0. Basically, the models start to converge
within 60 rounds.
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3.4. The Impact of Training Strategy

The broader application of the model feature representation can be improved by imple-
menting transfer learning [43–45]. In this study, two training strategies are presented: one
that uses exclusively Plantvillage pre-training and another that additionally incorporates
Mini-ImageNet pre-training. Since the Mini-ImageNet dataset is larger and more diverse,
using it for pre-training should theoretically result in more generalized feature representa-
tions. In order to verify the effectiveness of this training strategy in few-shot learning, this
study conducted comparative experiments on Prototypical Networks, Matching Networks,
and DeepEMD using the training strategy as the independent variable and testing accuracy
as the dependent variable. The specific results are shown in Table 3. The addition of
Mini-ImageNet pre-training has resulted in a notable improvement in the accuracy of the
three models by 0.79%, 0.65%, and 5.55%, respectively. Especially for DeepEMD, which
has higher requirements for feature expression, the accuracy improvement reaches 5.55%.
These results corroborate that using Mini-ImageNet for pre-training can effectively improve
the generalization capabilities of the feature extractor.

Table 3. The impact of pre-training strategies on performance.

ID Training Stage Method 5way-1shot (Acc (%)) 5way-1shot
(95% MSE)

F1 S2 Prototypical Net 75.34 0.11
F2 S3 Prototypical Net 74.55 0.05
F3 S2 Matching Net 75.26 0.10
F4 S3 Matching Net 74.61 0.12
F5 S2 DeepEMD 83.77 0.13
F6 S3 DeepEMD 78.22 0.07

3.5. The Performance of HMFN-FSL
3.5.1. Comparison with the Baseline Method

In this section, we select the S2 training strategy for comparison experiments between
HMFN-FSL and the base learner with the addition of CBAM. As shown in Table 4, the
experimental results show that the tested accuracy of the HMFN-FSL model reaches 91.20%,
which is significantly better than the accuracy of the three base learners. Compared with
the best base learner, DeepEMD, HMFN-FSL achieves an accuracy improvement of 7.43%.
This advantage indicates that the HMFN-FSL fusion framework designed in this study
can effectively utilize the characteristics of each base learner to improve the overall perfor-
mance of FSL. In summary, this study effectively integrates multiple metric networks by
constructing the HMFN-FSL model. Thus, a more powerful few-shot classifier is obtained
to provide an effective FSL method for the few-shot crop leaf disease recognition task.
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Table 4. HMFN-FSL performance analysis experimental results.

ID Method 5way-1shot (Acc (%)) 5way-1shot (95% MSE)

G1 Prototypical Net 75.34 0.11
G2 Matching Net 75.26 0.10
G3 DeepEMD 83.77 0.13
G4 HMFN-FSL 91.20 0.13

3.5.2. Ablation Analysis

In order to accurately quantify the contribution of each module to HMFN-FSL, we
conducted ablation experiments on HMFN-FSL and evaluated the model on 5way-1shot,
5way-5shot tasks by controlling for the use of Mini-Imagenet and the presence or absence
of CBAM. The specific experimental results are shown in Table 5, where pre-training
with Mini-Imagenet resulted in 3.27% and 0.98% increases in model accuracy under the
5way-1shot and 5way-5shot tasks, respectively, and using CBAM resulted in 1.46% and
0.27% increases in model accuracy, respectively. The ablation experiments demonstrate
that both pre-training with CBAM and Mini-Imagenet can improve the performance of
the model.

Table 5. The ablation analysis of HMFN-FSL.

Pre-Train on
Mini-Imagenet CBAM

5way-1shot 5way-5shot

Acc (%) 95% MSE Acc (%) 95% MSE

86.37 0.13 96.06 0.05√
89.64 0.13 97.04 0.05√
87.83 0.12 96.33 0.07√ √
91.20 0.13 98.29 0.03

3.5.3. K-Fold Cross-Validation

In order to better verify the robustness and generalization of the model, we evaluated
the model using K-fold cross-validation. Specifically, we homogenized the training data into
(A, B, C, D, E) five folds and trained them separately under S2 training strategy conditions.
We obtained a total of five sets of accuracy data. The average accuracy rate was obtained by
averaging them and using this as the K-fold accuracy rate. The specific experimental results
are shown in Table 6; the five folds achieved 91.20% and 98.17% accuracies on 5way-1shot
and 5way-5shot, respectively, with polar deviations of 1.15% and 1.9%, respectively. The
experimental results show that our model has strong stability and generalization ability.

Table 6. Performance analysis of HMFN-FSL K-fold cross-validation.

Fold ID Method 5way-1shot (Acc (%)) 5way-5shot (Acc (%))

Fold A HMFN-FSL 91.17 98.29
Fold B HMFN-FSL 90.64 97.07
Fold C HMFN-FSL 91.15 98.09
Fold D HMFN-FSL 91.79 98.97
Fold E HMFN-FSL 91.23 98.36
AVG HMFN-FSL 91.20 98.17

3.6. Comparison with Related Models

To verify the superiority of the proposed method in this study, comparative experi-
ments were conducted with several other state-of-the-art methods, including Prototypical
Network [32], Matching Network [33], DeepEMD [36], FEAT [46], and MAML [42]. The
experiments for all groups except group A6 were conducted under the S1 training strategy,
i.e., the PlantVillage dataset was used in all three phases. While group A6 used Plantvillage
in the pre-training phase with Mini-Imagenet, the meta-training and meta-testing phases
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used the S1 training strategy. The final experimental results are shown in Table 7. The
results show that the algorithm proposed in this study has a significant advantage in both
5way-1shot and 5way-5shot conditions and the accuracy rates reach 91.20% and 98.29% in
5way-1shot and 5way-5shot conditions, respectively. Compared with other models, the
best-performing DeepEMD improved by 14.86% and 3.96% in 5way-1shot and 5way-1shot,
respectively. In the meta-testing stage, each base learner gives a separate score for belonging
to a particular disease, and that disease type with the highest score after multiplying the
scores of the base learners by their respective weights is the final output of the group of
base learners. Thus, it can be shown theoretically that the combined decision result of
multiple base learners improves the stability of the classifier compared to a single meta-
learner. Figure 10 is a comparison between other methods and HMFN-FSL. Whether on
the 5way-1 shot task or the 5way-5 shot task, the accuracy of HMFN-FSL is higher than
that of other base learners. The result shows that the integration of multiple learners has a
higher accuracy rate than related methods using a single learner. The above results indicate
that the algorithm in this study achieves state-of-the-art among the algorithms related to
few-shot crop leaf disease recognition.

Table 7. Different performances of the models.

ID Method
5way-1shot 5way-5shot

Acc (%) 95% MSE Acc (%) 95% MSE

A1 Prototypical Net 72.21 0.12 91.26 0.13
A2 Matching Net 72.51 0.10 89.47 0.14
A3 DeepEMD 76.34 0.10 94.33 0.07
A4 FEAT 75.25 0.03 92.01 0.03
A5 MAML 63.25 0.16 82.17 0.07
A6 HMFN-FSL 91.20 0.13 98.29 0.03
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3.7. Cross-Domain and Field Scenes

Cross-domain generalization capability is an important metric for evaluating models.
In this subsection, the cross-domain generalization capability of the proposed method
is explored from two aspects: (1) the migration from the non-crop leaf disease domain
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(Mini-ImageNet) to the crop leaf disease domain (Plantvillage); (2) the migration from the
laboratory scenes (Plantvillage) to the field scenes (Field-PV). Meanwhile, in this study,
fine-grained recognition [47] experiments were conducted on five diseases of tomatoes
(Field-PV-Split1) to further validate the cross-domain and fine-grained classification ability
of the model. For this purpose, a total of five experiments were conducted in this study, as
shown in Table 8.

Table 8. Cross-domain experimental results of the model.

ID Training Stage
5way-1shot 5way-5shot

Acc (%) 95% MSE Acc (%) 95% MSE

H1 S1 79.52 0.14 92.30 0.12
H2 S2 91.20 0.13 98.29 0.03
H3 S4 73.60 0.11 85.86 0.11
H4 S5 76.80 0.11 88.49 0.10
H5 S6 44.38 0.22 58.13 0.08

As shown in Figure 11, the experimental results show that in the meta-training stage,
the 1-shot and 5-shot accuracies of the H1 group, which did not use any Plantvillage data,
decreased by 11.68% and 5.98%, respectively, compared with those of the H2 group, which
used Plantvillage data in the meta-training. This confirms that the size of the inter-domain
differences directly affects the performance of the model and that the differences between
the source and target domains should be as small as possible in practical applications.
Notably, the performance of HMFN-FSL untrained by Plantvillage exceeds the performance
of all the algorithms in Table 5. This is further evidence of the superiority of HMFN-FSL.
In addition, the complexity of the scenes is also a key influencing factor. The H3 group is
tested on the complex field scenes data and compared with the H2 group in the laboratory
domain; the accuracies of 5way-1shot and 5way-5shot are 73.80% and 85.86%, respectively.
There is an obvious performance decay, indicating that the complex scenes increase the
recognition difficulty and place higher demands on the model’s generalization ability.
However, this result is still on par with the performance of all of the algorithms in Table 7
in the laboratory scenes. Even in the case of very limited training samples, this method can
still get close to or even exceed the effect of lab algorithms under field sample conditions.
This provides a strong guarantee for the intelligent diagnosis of crop leaf diseases from the
laboratory to the field.
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Figure 11. The performance of cross-domain and fine-grained recognition. (A) The performance
of cross-disease domain. (B) The performance of cross-scenario domain. (C) The performance of
fine-grained recognition.

Unfortunately, as shown in the confusion matrix in Figure 12, compared with coarse-
grained recognition, fine-grained recognition only achieves 58.13% accuracy on 5way-5shot,
and the number of errors increases from 345 to 1249, with a significant degradation in
performance. This indicates that fine-grained crop leaf disease recognition in the field is
still a challenge.
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The rich cross-domain experimental results show that the model proposed in this
study has strong cross-domain generalization capability. When migrating from the non-
crop leaf disease domain to the crop leaf disease domain, as well as from laboratory scenes
to complex field scenes, the performance of the model decreases to different degrees, but
it is still better than the algorithms in Table 7. Especially in the few-shot field scenes
where the training samples are extremely scarce, the model can still reach close to or even
exceed the recognition effect of the traditional algorithm in the laboratory scenes, showing
a strong adaptive ability. Meanwhile, this study also notes that increasing scene complexity
and refining recognition granularity have a certain negative impact on the generalization
performance of the model. This suggests that improving the generalization ability of
the model in complex environments and fine-grained classification are key directions for
intelligent recognition of crop leaf diseases from laboratory to field applications.

4. Discussion
4.1. The Impact of Way and Shot

N-way refers to the number of categories in the task, and K-shot refers to the number
of support set images in the task. In order to explore the effect of shot and way on
performance, this study counts the accuracy after changing the way and number of shots
to quantify the impact. Figure 13A shows the variation of the accuracy with shot. The
model prediction accuracy increases dramatically when the shots increase from 1 to 10.
The accuracy increases from 91.20% to 98.29%. The change in accuracy stabilizes when
the shot is greater than 10. In addition, the 95%MSE (mean square error) also tends to
decrease when increasing the number of shots. (The trend of variance change is shown in
Figure 13B). The 95%MSE (mean square error) decreases drastically from 1 shot to 5 shots,
and stabilizes after 10 shots, which proves that the model predictions are getting more and
more stable. Similarly, this subsection reports experiments conducted on Field-PV-split1
in a complex scenario, as shown in Figure 13C. The accuracy increased from 73.80% to
92.40% when the number of shots increased from 1 to 7. The complex scenario at 7 shots
is comparable to the lab scenario 1-shot accuracy. Figure 14 shows the trend of 95%MSE
(mean square error) and accuracy with the number of ways. When ways increase from 2 to
8, the accuracy decreases from 94.93% to 80.41% in the laboratory scenario and from 87.04%
to 57.32% in the field scenario. The accuracy decreases with way increase. This means that
FSL still remains limited in a wide variety of application scenes. On the other hand, unlike
shot, 95%MSE fluctuates only slightly with increasing way, meaning that the number of
ways has a minor effect on the stability of the model predictions.
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The above phenomenon indicates that the accuracy increases with the increase of shot
while the accuracy decreases with the increase of the number of ways; an increase in the
number of ways will increase the information entropy, and more shots mean more a priori
information. Therefore, in this study, we believe that when we face an application scenario
with many categories, we should increase the number of support sets as much as possible
as compensation to improve the accuracy.

4.2. Limitations and Future Work

Although the recognition method proposed in this study initially solves the problem
of recognizing few shots in field scenes, the current method still has some limitations. First,
each image in the Plantvillage and Field-PV datasets used in this study contains only one
disease, but multiple diseases may occur on the same crop in the field scenes. This makes
the model ineffective in recognizing multiple diseases on the same crop [48]. In future work,
we intend to use multimodal information for semantic segmentation and feature calibration.
Regarding fine-grained recognition, HMFN-FSL only achieves 58.13% recognition accuracy
in field scenes. This limits the wide range of applications of the few-shot learning model
for different diseases of the same crop and difficult disease recognition tasks. To address
this issue, we intend to experimentally select a more robust feature extraction backbone
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to provide noise-resistant feature representations in future work. Finally, cross-domain
few-shot learning is a promising approach for disease recognition. However, the typical
scene is that when unpredictable external factors such as disease class, disease severity,
weather, and light are present during the testing phase, the performance of the model
degrades unimaginably. Therefore, we intend to address this issue from the perspective
of the direction of training data collection and the choice of training strategy in order to
narrow the gap and improve the performance of the model in future work.

5. Conclusions

Fine recognition of crop leaf diseases is an urgent need in the field of agricultural
information. To overcome the difficulty of small-sample crop leaf disease recognition in
field scenes, this study proposes a new few-shot learning network, HMFN-FSL, based on a
meta-learning framework and an integrated learning approach, which improves the overall
disease recognition accuracy as a whole. Taking the public dataset Plantvillage and the
field scenes dataset Field-PV as the research object, the following conclusions are drawn by
setting six training strategies to conduct training and testing experiments on the model:

(1) The impact of CBAM on the performance of base learner experiments shows that
fusing the CBAM module into the feature extraction network of the base learner can
significantly improve the feature extraction capability of the model. Compared to the
base learner, the average accuracy of the embedded CBAM model increased by 2.14%.

(2) Compared to other base learners, the HMFN-FSL proposed in this study has higher
accuracy and robustness. On 5way-1shot, the proposed model improves the accuracy
of DeepEMD by 7.43% over the best base learners. The experimental results show that
HMFN-FSL is effective for few-shot crop leaf disease recognition. Moreover, this study
compares with state-of-the-art algorithms [32,33,36,42,46], and the model achieves the
best performance. In addition, by changing the way and shot parameter configurations
of the learning process, some key features affecting the classification accuracy were
revealed. Overall, the model accuracy of the model increased as the number of shots
increased, while the accuracy decreased as the number of ways increased.

(3) Cross-domain experiments of the model show that HMFN-FSL trained using the
no-disease domain achieves 79.52% and 92.30% accuracy on the 5way-1shot and
5way-5shot tasks in the laboratory scenes, respectively. Moreover, it still shows high
recognition accuracy on the complex scene dataset. The average recognition accuracy
of the model reaches 73.80% and 85.86% on the 5way-1shot and 5way-5shot tasks,
respectively. These results further demonstrate that the HMFN-FSL proposed in this
study can be adapted to few-shot recognition in laboratory and field scenes.

In conclusion, the method proposed in this study provides an effective scheme for crop
leaf disease recognition in few-shot field scenes and provides techniques and references
for subsequent crop leaf disease recognition for few shots. In future developments, we
intend to deploy it on robotic or automated devices to automatically monitor and recognize
a wider range of plant disease information. Meanwhile, plant disease identification can
be combined with other agricultural technologies, such as drones and sensor networks, to
support precision agriculture.
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