Impacts of Multi-Strategy Nitrogen Fertilizer Management on Potato Yield and Economic Gains in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Data Sources and Processing
2.3.1. DSSAT-SUBSTOR Model
2.3.2. Potato Cultivation Cost Data
2.3.3. Economic Gains Model
3. Results
3.1. Effects of Nitrogen Fertilizer Management on Potato Yields
3.1.1. Effects of N-AS
3.1.2. Effects of N-AL
3.1.3. Effects of N-AS and N-AL Interactions
3.2. Effects of Nitrogen Fertilizer Management on the Economic Gains of Potato
3.2.1. Potato Planting Costs
3.2.2. Changes in Potato Yield and Net Gains under Different Nitrogen Fertilizer Management Conditions
3.2.3. Analysis of Differences in Net Potato Gains in Northeastern China
3.3. Nitrogen Application Decisions for Potato
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Xu, F.; Wu, Y.; Hu, H.-H.; Dai, X.-F. Progress of potato staple food research and industry development in China. J. Integr. Agric. 2017, 16, 2924–2932. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.M.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Li, H.R.; Mei, X.R.; Wang, J.D.; Huang, F.; Hao, W.; Li, B. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agric. Water Manag. 2021, 244, 10. [Google Scholar] [CrossRef]
- Bai, Y.J.; Han, S.X.; Gao, Y.L.; Zhang, W.; Fan, G.; Qiu, C.; Nie, X.; Wen, J. Genetic Diversity of Potato virus Y in Potato Production Areas in Northeast China. Plant Dis. 2019, 103, 289–297. [Google Scholar] [CrossRef]
- Gitari, H.I.; Gachene, C.K.K.; Karanja, N.N.; Kamau, S.; Nyawade, S.; Sharma, K.; Schulte-Geldermann, E. Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems. Agric. Water Manag. 2018, 208, 59–66. [Google Scholar] [CrossRef]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilisation. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Xu, X.P.; He, P.; Chuan, L.M.; Liu, X.-Y.; Liu, Y.-X.; Zhang, J.-J.; Huang, X.-M.; Qiu, S.-J.; Zhao, S.-C.; Zhou, W. Regional distribution of wheat yield and chemical fertilizer requirements in China. J. Integr. Agric. 2021, 20, 2772–2780. [Google Scholar] [CrossRef]
- Yin, J.; Song, Z.; Guo, X.S.; Ding, F.; Shen, Y.; Zhang, J.; Zhao, C.; Liu, T.; Ma, X. Adjusting the fertilizer application structure for nutrient saving and yield increase in potato. Int. J. Plant Prod. 2023, 17, 379–387. [Google Scholar] [CrossRef]
- Prikaziuk, E.; Ntakos, G.; ten Den, T.; Reidsma, P.; van der Wal, T.; van der Tol, C. Using the SCOPE model for potato growth, productivity and yield monitoring under different levels of nitrogen fertilization. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 16. [Google Scholar] [CrossRef]
- Guo, H.; Pu, X.Q.; Jia, H.; Zhou, Y.; Ye, G.; Yang, Y.; Na, T.; Wang, J. Transcriptome analysis reveals multiple effects of nitrogen accumulation and metabolism in the roots, shoots, and leaves of potato (Solanum tuberosum L.). BMC Plant Biol. 2022, 22, 12. [Google Scholar] [CrossRef]
- Plauborg, F.; Motarjemi, S.K.; Nagy, D.; Zhou, Z. Analysing potato response to subsurface drip irrigation and nitrogen fertigation regimes in a temperate environment using the Daisy model. Field Crops Res. 2022, 276, 15. [Google Scholar] [CrossRef]
- Grzebisz, W.; Szczepaniak, W.; Bocianowski, J. Potassium fertilization as a driver of sustainable management of nitrogen in potato (Solanum tuberosum L.). Field Crops Res. 2020, 254, 13. [Google Scholar] [CrossRef]
- Wang, C.; Zang, H.D.; Liu, J.G.; Shi, X.; Li, S.; Chen, F.; Chu, Q. Optimum nitrogen rate to maintain sustainable potato production and improve nitrogen use efficiency at a regional scale in China. A meta-analysis. Agron. Sustain. Dev. 2020, 40, 14. [Google Scholar] [CrossRef]
- Nurmanov, Y.T.; Chernenok, V.G.; Kuzdanova, R.S. Potato in response to nitrogen nutrition regime and nitrogen fertilization. Field Crops Res. 2019, 231, 115–121. [Google Scholar] [CrossRef]
- Vashisht, B.B.; Nigon, T.; Mulla, D.J.; Rosen, C.; Xu, H.; Twine, T.; Jalota, S. Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minnesota: Field and simulation study. Agric. Water Manag. 2015, 152, 198–206. [Google Scholar] [CrossRef]
- Rosen, C.J.; Bierman, P.M. Potato yield and tuber set as affected by phosphorus fertilization. Am. J. Potato Res. 2008, 85, 110–120. [Google Scholar] [CrossRef]
- Ierna, A.; Pandino, G.; Lombardo, S.; Mauromicale, G. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agric. Water Manag. 2011, 101, 35–41. [Google Scholar] [CrossRef]
- Liu, Q.J.; Kang, J.H.; Wu, J.R.; Sun, J.B.; Ma, X.Y.; Wang, X.Q.; Jian, T.C. Effects of nitrogen application amount on formation and yield of potato tuber starch in Ningxia arid region. J. Nucl. Agric. Sci. 2021, 35, 1196–1208. [Google Scholar]
- Zhang, F.; Chen, M.R.; Fu, J.T.; Zhang, X.; Li, Y.; Shao, Y.; Xing, Y.; Wang, X. Coupling effects of irrigation amount and fertilization rate on yield, quality, water and fertilizer use efficiency of different potato varieties in Northwest China. Agric. Water Manag. 2023, 287, 16. [Google Scholar] [CrossRef]
- Zotarelli, L.; Rens, L.R.; Cantliffe, D.J.; Stoffella, P.J.; Gergela, D.; Burhans, D. Rate and timing of nitrogen fertilizer application on potato ‘FL1867′. Part I: Plant nitrogen uptake and soil nitrogen availability. Field Crops Res. 2015, 183, 246–256. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Koch, M.; Naumann, M.; Pawelzik, E.; Gransee, A.; Thiel, H. The importance of nutrient management for potato production part I: Plant nutrition and yield. Potato Res. 2020, 63, 97–119. [Google Scholar] [CrossRef]
- Grados, D.; Garcia, S.; Schrevens, E. Assessing the potato yield gap in the Peruvian Central Andes. Agric. Syst. 2020, 181, 10. [Google Scholar] [CrossRef]
- Bohl, W.H.; Stark, J.C.; McIntosh, C.S. Potato seed piece size, spacing, and seeding rate effects on yield, quality and economic return. Am. J. Potato Res. 2011, 88, 470–478. [Google Scholar] [CrossRef]
- Wang, C.; Shi, X.Y.; Liu, J.G.; Zhao, J.; Bo, X.; Chen, F.; Chu, Q. Interdecadal variation of potato climate suitability in China. Agric. Ecosyst. Environ. 2021, 310, 11. [Google Scholar] [CrossRef]
- He, Y.B.; Zhou, Y.F.; Cai, W.M.; Wang, Z.-Z.; Duan, D.-D.; Luo, S.-J.; Chen, J.-Z. Using a process-oriented methodology to precisely evaluate temperature suitability for potato growth in China using GIS. J. Integr. Agric. 2017, 16, 1520–1529. [Google Scholar] [CrossRef]
- Luo, S.; He, Y.B.; Li, Q.; Jiao, W.; Zhu, Y.; Zhao, X. Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage. Plant Methods 2020, 16, 14. [Google Scholar] [CrossRef]
- Bala, S.K.; Islam, A.S. Correlation between potato yield and MODIS-derived vegetation indices. Int. J. Remote Sens. 2009, 30, 2491–2507. [Google Scholar] [CrossRef]
- Gayler, S.; Wang, E.; Priesack, E.; Schaaf, T.; Maidl, F.-X. Modeling biomass growth, N-uptake and phenological development of potato crop. Geoderma 2002, 105, 367–383. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Prassad, R.; Kleinwechter, U.; Concha, J.; Condori, B.; Bowen, W.; Wolf, J.; Olesen, J.E.; Dong, Q.; et al. Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Res. 2017, 202, 57–76. [Google Scholar] [CrossRef]
- St’astna, M.; Toman, F.; Dufkova, J. Usage of SUBSTOR model in potato yield prediction. Agric. Water Manag. 2010, 97, 286–290. [Google Scholar] [CrossRef]
- Duan, D.D.; He, Y.B.; Yu, J.K.; Liu, L.; Xu, R.; Li, W. Parameter sensitivity analysis and suitability evaluation of DSSAT-SUBSTOR potato model. J. Anhui Agric. Univ. 2019, 46, 521–527. [Google Scholar]
- Ward, W.A. Cost-benefit analysis theory versus practice at the world bank 1960 to 2015. J. Benefit-Cost Anal. 2019, 10, 124–144. [Google Scholar] [CrossRef]
- Vos, J. The effects of nitrogen supply and stem density on leaf attributes and stem branching in potato (Solanum tuberosum L.). Potato Res. 1995, 38, 271–279. [Google Scholar] [CrossRef]
- Goffart, J.P.; Olivier, M.; Frankinet, M. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: Past-present-future. Potato Res. 2008, 51, 355–383. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Chen, R.W.; Wang, E.; Wang, B.; Yu, Q.; Hu, Q.; Pan, Z.; Pan, X. Climate-smart planting for potato to balance economic return and environmental impact across China. Sci. Total Environ. 2022, 850, 11. [Google Scholar] [CrossRef] [PubMed]
- Setu, H.; Mitiku, T. Response of potato to nitrogen and phosphorus fertilizers at Assosa, western Ethiopia. Agron. J. 2020, 112, 1227–1237. [Google Scholar] [CrossRef]
- Getaneh, L.; Laekemariam, F. Response of potato (solanum tuberosum L.) to NPS fertilizer rates and inter-row spacing in Kechi district, south western Ethiopia. Appl. Environ. Soil Sci. 2021, 2021, 11. [Google Scholar] [CrossRef]
- Li, C.; Feng, H.; Luo, X.Q.; Li, Y.; Wang, N.; Wu, W.; Zhang, T.; Dong, Q.; Siddique, K.H. Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas. Agric. Water Manag. 2022, 262, 11. [Google Scholar] [CrossRef]
- Mushtaq, S.; An-Vo, D.A.; Christopher, M.; Zheng, B.; Chenu, K.; Chapman, S.C.; Christopher, J.T.; Stone, R.C.; Frederiks, T.M.; Alam, G.M. Economic assessment of wheat breeding options for potential improved levels of post head-emergence frost tolerance. Field Crops Res. 2017, 213, 75–88. [Google Scholar] [CrossRef]
- Ma, W.J.; Opp, C.; Yang, D.W. Spatiotemporal supply-demand characteristics and economic benefits of crop water footprint in the semi-arid region. Sci. Total Environ. 2020, 738, 12. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.P.; He, P.; Qiu, S.J.; Zhao, S.; Ding, W.; Zhou, W. Nutrient management increases potato productivity and reduces environmental risk: Evidence from China. J. Clean. Prod. 2022, 369, 10. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Nishiyama, S.; Kang, Y.H. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric. Water Manag. 2003, 63, 153–167. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.M.; Hegab, S.A.; El Gawad, A.M.A.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Kahsay, W.S. Effects of nitrogen and phosphorus on potatoes production in Ethiopia: A review. Cogent Food Agric. 2019, 5, 7. [Google Scholar] [CrossRef]
Experimental Treatments | Nitrogen Fertilizer Application Styles (N-AS) | ||||
---|---|---|---|---|---|
CK1 | M1 | M2 | M3 | ||
Nitrogen fertilizer application levels (N-AL) | CK2 (0 kg/hm2) | CK1CK2 | M1CK2 | M2CK2 | M3CK2 |
L1 (55 kg/hm2) | CK1L1 | M1L1 | M2L1 | M3L1 | |
L2 (110 kg/hm2) | CK1L2 | M1L2 | M2L2 | M3L2 | |
L3 (165 kg/hm2) | CK1L3 | M1L3 | M2L3 | M3L3 | |
L4 (220 kg/hm2) | CK1L4 | M1L4 | M2L4 | M3L4 | |
L5 (275 kg/hm2) | CK1L5 | M1L5 | M2L5 | M3L5 | |
L6 (330 kg/hm2) | CK1L6 | M1L6 | M2L6 | M3L6 | |
L7 (385 kg/hm2) | CK1L7 | M1L7 | M2L7 | M3L7 |
Year | Gains | NJ | BA | FJ | TL | SFH |
---|---|---|---|---|---|---|
2013 | Min net income (CNY) | 5893.84 | 8018.60 | 7485.02 | 9584.88 | 12,690.00 |
Max net income (CNY) | 20,479.66 | 28,894.22 | 23,960.34 | 29,417.70 | 46,937.02 | |
Max growth rate (%) | 2.47 | 2.60 | 2.20 | 2.07 | 2.70 | |
2014 | Min net income (CNY) | 11,790.80 | 11,368.50 | 9416.40 | 8751.12 | 4226.40 |
Max net income (CNY) | 38,946.86 | 37,535.16 | 25,567.06 | 21,692.80 | 18,799.66 | |
Max growth rate (%) | 2.30 | 2.30 | 1.72 | 1.26 | 3.45 | |
2015 | Min net income (CNY) | 9113.80 | 9641.20 | 13,834.20 | 7475.30 | 13,275.40 |
Max net income (CNY) | 36,619.11 | 35,367.81 | 40,846.51 | 22,245.91 | 52,030.41 | |
Max growth rate (%) | 3.02 | 2.67 | 1.95 | 1.98 | 2.92 | |
2016 | Min net income (CNY) | 9618.49 | 10,084.20 | 14,500.00 | 9607.10 | 6227.70 |
Max net income (CNY) | 40,174.93 | 41,820.25 | 40,385.28 | 23,863.98 | 23,896.38 | |
Max growth rate (%) | 3.18 | 3.15 | 1.79 | 1.48 | 2.84 | |
2017 | Min net income (CNY) | 9835.10 | 11,223.24 | 13,837.85 | 9379.20 | 7371.00 |
Max net income (CNY) | 37,949.92 | 38,933.91 | 42,237.92 | 25,827.17 | 29,395.56 | |
Max growth rate (%) | 2.86 | 2.47 | 2.05 | 1.75 | 2.99 |
Year | Gains | QA | NA | DH | GZL | MHK |
---|---|---|---|---|---|---|
2013 | Min net income (CNY) | 11,614.82 | 12,250.04 | 9646.29 | 9629.51 | 8856.46 |
Max net income (CNY) | 26,085.98 | 34,801.40 | 33,178.08 | 26,183.74 | 24,646.82 | |
Max growth rate (%) | 1.25 | 1.84 | 2.44 | 1.72 | 1.78 | |
2014 | Min net income (CNY) | 5902.50 | 11,814.05 | 6943.23 | 11,830.19 | 10,020.36 |
Max net income (CNY) | 15,429.25 | 34,388.40 | 24,461.88 | 31,183.13 | 30,455.27 | |
Max growth rate (%) | 1.61 | 1.91 | 2.52 | 1.64 | 2.04 | |
2015 | Min net income (CNY) | 9600.96 | 8861.86 | 9503.27 | 10,934.59 | 10,954.07 |
Max net income (CNY) | 21,076.44 | 23,200.84 | 33,280.82 | 30,385.57 | 31,284.55 | |
Max growth rate (%) | 1.20 | 1.62 | 2.50 | 1.78 | 1.86 | |
2016 | Min net income (CNY) | 5708.84 | 5332.30 | 4762.48 | 4646.90 | 8450.22 |
Max net income (CNY) | 15,511.89 | 15,230.04 | 16,960.54 | 12,443.05 | 30,313.24 | |
Max growth rate (%) | 1.72 | 1.86 | 2.56 | 1.68 | 2.59 | |
2017 | Min net income (CNY) | 7092.90 | 4895.50 | 5627.90 | 5323.00 | 11,788.60 |
Max net income (CNY) | 20,276.63 | 14,870.14 | 18,648.89 | 15,365.33 | 35,693.64 | |
Max growth rate (%) | 1.86 | 2.04 | 2.31 | 1.89 | 2.03 |
Year | Gains | JP | LZ | DG | SZ | WFD |
---|---|---|---|---|---|---|
2013 | Min net income (CNY) | 17,594.4 | 13,968 | 17,257.6 | 16,239.5 | 22,271.7 |
Max net income (CNY) | 28,869.04 | 28,916.05 | 58,277.28 | 30,461.15 | 42,011.04 | |
Max growth rate (%) | 0.64 | 1.07 | 2.38 | 0.88 | 0.89 | |
2014 | Min net income (CNY) | 16,845.6 | 12,118.6 | 19,417.6 | 10,832.8 | 15,709.15 |
Max net income (CNY) | 34,096.16 | 29,449.21 | 67,641.31 | 26,170.76 | 45,180.26 | |
Max growth rate (%) | 1.02 | 1.43 | 2.48 | 1.42 | 1.88 | |
2015 | Min net income (CNY) | 19,123 | 11,866 | 11,144 | 14,299.4 | 16,114 |
Max net income (CNY) | 33,673.81 | 27,756.36 | 37,474.26 | 36,085.96 | 41,983.76 | |
Max growth rate (%) | 0.76 | 1.34 | 2.36 | 1.52 | 1.61 | |
2016 | Min net income (CNY) | 12,355.8 | 5010 | 10,650.05 | 17,418.4 | 20,154.4 |
Max net income (CNY) | 28,963.79 | 14,907.91 | 36,498.34 | 47,084.99 | 40,035.79 | |
Max growth rate (%) | 1.34 | 1.98 | 2.43 | 1.70 | 0.99 | |
2017 | Min net income (CNY) | 15,026.8 | 8774.2 | 8846 | 12,229.9 | 20,809.5 |
Max net income (CNY) | 35,383.98 | 29,098.98 | 34,411.18 | 43,216.58 | 62,418.68 | |
Max growth rate (%) | 1.35 | 2.32 | 2.89 | 2.53 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Luo, S.; Zha, Y.; Jiang, X.; Wang, X.; Chen, H.; Han, S. Impacts of Multi-Strategy Nitrogen Fertilizer Management on Potato Yield and Economic Gains in Northeast China. Agronomy 2023, 13, 2920. https://doi.org/10.3390/agronomy13122920
He Y, Luo S, Zha Y, Jiang X, Wang X, Chen H, Han S. Impacts of Multi-Strategy Nitrogen Fertilizer Management on Potato Yield and Economic Gains in Northeast China. Agronomy. 2023; 13(12):2920. https://doi.org/10.3390/agronomy13122920
Chicago/Turabian StyleHe, Yingbin, Shanjun Luo, Yan Zha, Xueqin Jiang, Xiangyi Wang, Huicong Chen, and Shengnan Han. 2023. "Impacts of Multi-Strategy Nitrogen Fertilizer Management on Potato Yield and Economic Gains in Northeast China" Agronomy 13, no. 12: 2920. https://doi.org/10.3390/agronomy13122920
APA StyleHe, Y., Luo, S., Zha, Y., Jiang, X., Wang, X., Chen, H., & Han, S. (2023). Impacts of Multi-Strategy Nitrogen Fertilizer Management on Potato Yield and Economic Gains in Northeast China. Agronomy, 13(12), 2920. https://doi.org/10.3390/agronomy13122920