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Abstract: Reasonable evaluation of evapotranspiration (ET) is crucial for optimizing agricultural
water resource management. In the study, we utilized the Data Mining Sharpener (DMS) model; the
Landsat thermal infrared images were sharpened from a spatial resolution of 100 m to 30 m. We
then used the Surface Energy Balance System (SEBS) to estimate daily ET during the winter wheat
growing season in the People’s Victory Irrigation District in Henan, China. It was concluded that
the spatiotemporal patterns of land surface temperature and daily evapotranspiration remained
consistent before and after sharpening. Results showed that the R2 value between the ET of 30 m
spatial resolution and the value by eddy covariance method reached 0.814, with an RMSE of 0.516 mm
and an MAE of 0.245 mm. All of these were higher than those of 100 m spatial resolution (R2 was
0.802, the RMSE was 0.534 mm, and the MAE was 0.253 mm). Furthermore, the daily ET image with a
30 m spatial resolution exhibited clear texture and distinct boundaries, without any noticeable mosaic
effects. The changes in surface temperature and ET were more consistent in complex subsurface
environments. The daily evapotranspiration of winter wheat was significantly higher in areas
with intricate drainage systems compared to other regions. During the early growth stage, daily
evapotranspiration decreased steadily until the overwintering stage. After the greening and jointing
stages, it began to increase and peaked during the sizing period. The correlation between net solar
radiation and temperature with ET was significant, while relative humidity and soil moisture were
negatively correlated with ET. Throughout the growth period, net solar radiation had the greatest
effect on ET.

Keywords: land surface temperature; data mining sharpener; surface energy balance system;
evapotranspiration

1. Introduction

Evapotranspiration (ET) is a crucial factor in the balance of terrestrial water and heat.
It is an essential indicator of vegetation’s adaptive water usage [1]. Real-time assessment of
field-scale evapotranspiration is essential for developing intelligent irrigation systems and
optimizing regional water resource allocation [2]. Given the context of modern agriculture,
near-real-time monitoring is necessary to respond to extreme events in changing climatic
conditions [3]. The use of satellite data, such as MODIS, Landsat series, GF series, and
Sentinel, has made it increasingly convenient to conduct regional- and even global-scale ET
research with the development of quantitative remote sensing [4].

Land surface temperature (LST) is a key parameter in land ET remote sensing models;
it integrates the interaction between the land surface and the atmosphere as well as the
results of energy exchange between the atmosphere and the land [5]. Due to the limitations
of thermal imaging technology, the existing satellite data are insufficient to meet the
requirements of precision agriculture [6]. The spatial resolution of shortwave band images
from medium-resolution sensors ranges from 15 m to 30 m, while the resolution of thermal

Agronomy 2023, 13, 3082. https://doi.org/10.3390/agronomy13123082 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy13123082
https://doi.org/10.3390/agronomy13123082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://doi.org/10.3390/agronomy13123082
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy13123082?type=check_update&version=1


Agronomy 2023, 13, 3082 2 of 15

infrared sensors ranges from 60 m to 120 m [7]. Obtaining high spatial and temporal
resolution surface information in complex environments has become an urgent problem [8].

Several statistical regression methods have been proposed to sharpen land surface
temperature models by using surface parameters. The aim is to improve the resolution
of ET [9]. These methods usually establish a relationship between surface temperature
and spectral signals or derived biophysical parameters in low-resolution images, which
is then applied to high-resolution spectral images [10]. The TsHARP model assumes that
the correlation between LST–NDVI (Normalized Difference Vegetation Index) and LST–
FVC (Fractional Vegetation Cover) is unique for different spatial resolutions and locations
of land cover types [11]. It seeks the empirical relationship in low-resolution imagery
and applies it to high-resolution imagery to produce sharpened thermal infrared images.
Ha Wonsook assessed the ability of the TsHARP model to achieve LST sharpened using
high-resolution NDVI imagery by seven sharpened low-resolution images (240 m, 360 m,
480 m, 600 m, 720 m, 840 m, and 960 m) to LST imagery with a resolution of 120 m. The
results showed that the RMSE of the surface temperature images before and after the
sharpening stayed in the range of 1–2 ◦C [12]. In fact, in complex subsurface environments,
the LST–NDVI correlation may vary with spatial resolution, because the aggregation of
temperature is nonlinear and the process of reflectance aggregation is linear, and the
LST–NDVI correlation and regression parameters also vary in different seasons, being
dependent on land use practices [13]. Sattari Farshid used ASTER Level1B data to study
the relationship between impervious water (ISA) and surface temperature LST in the city
of Kuala Lumpur, Malaysia. The results showed that the correlation between LST and ISA
was higher compared to NDVI [14]. Nowadays, using the powerful capabilities of machine
learning to establish multifaceted surface temperature sharpened models has become a new
area of research [15,16]. Gao utilized the DMS (Data Mining Sharpener) model to predict
the land surface temperature (LST) at high resolution. This was achieved by using the
reflectance (R) of shortwave radiation as an independent variable to identify representative
sample points of LST and R in low-resolution images. A regression decision tree was then
employed to construct the LST and R model. DMS can identify uncommon correlations
between surface temperature and reflectance without relying on hypothetical relationships,
indicating potential universal significance [17]. Radoslaw Guzinski utilized Sentinel-2
satellite data to downscale low-resolution thermal infrared data from the kilometer-scale
Sentinel-3 satellite by DMS. The resulting dataset was then used as an input to a surface
energy balance model to estimate ET from the Skjern River Basin in the Jutland Peninsula,
Denmark. The results indicate that the fluxes derived from the enhanced thermal data
were reasonably accurate (with a relative error of less than 20%) at the scale of the flux
tower footprint. Additionally, they provided more information than the corresponding
low-resolution fluxes [18].

Currently, it is crucial to consider both the supply and demand sides of the water
equation due to rising water demands caused by both climate and management factors,
as well as droughts [19]. Previous estimations of regional-scale evapotranspiration have
often neglected to examine land surface temperature and, in particular, the impact of land
surface temperature resolution on ET estimation results [20]. Henan Province, as a major
grain-producing region, bears the primary responsibility for ensuring the security and
consolidation of grain production [21]. However, the region has complex land use types,
serious field fragmentation, and lacks contiguous farmland. Therefore, studying water
consumption at the field scale in the region can provide technical support for water resource
allocation [22–24]. This study aimed to evaluate water consumption in the People’s Victory
Drainage Irrigation District in Henan Province using remote sensing data and the DMS
model. The ET of winter wheat was estimated using a single-layer remote sensing model.
This study analyzed the spatial and temporal distribution of ET in the study area and
evaluated the accuracy of the DMS and SEBS models. This study is of high scientific and
practical significance.
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2. Materials and Methods
2.1. Study Area

As shown in Figure 1, the People’s Victory Irrigation District is situated in the northern
region of Henan Province (35◦0′–35◦30′ N, 113◦31′–114◦25′ E) and is known as “the first
canal to divert the Yellow River in New China”. It commenced irrigation in April 1952 with
a design flow rate of 115 m3/s and was designed to irrigate an area of 1232.27 km2, of which
922 km2 is effectively irrigated. The district is primarily used for agriculture, industry,
urban life, and ecological water replenishment. The area falls within the warm temperate
continental monsoon climate zone, with an average annual temperature of 15.5 ◦C. The
average annual sunshine hours were 219.1 h, and the average annual rainfall was 409.2 mm.
The surface cover type is dominated by arable land, forest land, construction land, and
water bodies [25]. Maize is the food crop grown in the irrigation field during summer (June
to October), while wheat is grown during winter (October to the following June). The latest
government statistics report that the area under wheat cultivation is 4.99 km2, and the area
under corn cultivation is 3.85 km2.
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Figure 1. The geographical position of study area.

The flux observation site is situated at the Xinxiang Comprehensive Test Base of
the Chinese Academy of Agricultural Sciences, Qiliying Town, Xinxiang County, Henan
Province (35◦9’ 42” N, 113◦47’ 42” E). It is equipped with a complete set of eddy covariance
observation and meteorological gradient systems for real-time monitoring of water vapor
fluxes and meteorological factors in agricultural fields.

2.2. Data
2.2.1. Remote Sensing Data

In this study, we selected 15 image data during the winter wheat growth period
from 2019 to 2022 with less than 10% cloud conditions. As shown in Table 1, the data
were obtained from Landsat-8 and Landsat-9 secondary products (downloaded address:
https://earthexplorer.usgs.gov/, accessed on 30 September 2023). Landsat-9 launched on

https://earthexplorer.usgs.gov/
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27 September 2021 from Vandenberg Air Force Base, California, onboard a United Launch
Alliance Atlas V 401 rocket. Landsat-9 carried the Operational Land Imager 2 (OLI–2) and
the Thermal Infrared Sensor2 (TIRS–2). The satellite’s band resolution is consistent with
that of Landsat-8, with a spatial resolution of up to 30 m in the multispectral band and 100
m in the thermal infrared band. However, its operating cycle is offset from Landsat-8 by 8
days, making it a useful complement to Landsat-8 and addressing the issue of data scarcity.
The secondary products have undergone radiometric and atmospheric correction and only
require mosaicking and cropping to extract the surface parameters of the study area [26].

Table 1. Information of remote sensing data used in the study.

Platform
Sensor Date of Collection

Wrs_
Path

Wrs_
Row

Scene_Center_
Latitude

Scene_Center_
Longitude

Start_
Time

Spatial Resolution Temporal
ResolutionSR Bands TIR Bands

Landsat-8 28 November 2019 124 35/36 34.6109 113.4667 3:00/3:01 30 m 100 m 16 day
Landsat-8 30 December 2019 124 35/36 36.0430 113.8780 3:00/3:01 30 m 100 m 16 day
Landsat-8 31 January 2020 124 35/36 36.0430 113.8766 3:00/3:01 30 m 100 m 16 day
Landsat-8 16 February 2020 124 35/36 36.0433 113.8682 3:00/3:01 30 m 100 m 16 day
Landsat-8 19 March 2020 124 35/36 36.0435 113.8555 3:00/3:01 30 m 100 m 16 day
Landsat-8 4 April 2020 124 35/36 36.0431 113.8549 3:00/3:01 30 m 100 m 16 day
Landsat-8 1 January 2021 124 35/36 36.0431 113.8648 3:00/3:01 30 m 100 m 16 day
Landsat-8 17 January 2021 124 35/36 36.0433 113.8815 3:00/3:01 30 m 100 m 16 day
Landsat-8 2 February 2021 124 35/36 36.0430 113.8707 3:00/3:01 30 m 100 m 16 day
Landsat-8 22 March 2021 124 35/36 36.0435 113.8665 3:00/3:01 30 m 100 m 16 day
Landsat-8 17 November 2021 124 35/36 36.0434 113.8760 3:00/3:01 30 m 100 m 16 day
Landsat-8 3 December 2021 124 35/36 36.0435 113.8638 3:00/3:01 30 m 100 m 16 day
Landsat-9 27 December 2021 124 35/36 36.0431 113.8501 3:00/3:01 30 m 100 m 16 day
Landsat-9 1 March 2022 124 35/36 36.0434 113.8680 3:00/3:01 30 m 100 m 16 day
Landsat-9 2 April 2022 124 35/36 36.0432 113.8304 3:00/3:01 30 m 100 m 16 day

2.2.2. Digital Elevation Model

The ASTER GDEM model (download address: https://glovis.usgs.gov/, accessed on
30 September 2023) was used in the study with a spatial resolution of 30 m. The image was
cropped to obtain a topographic elevation map of the study area.

2.2.3. Meteorological Data

The study utilized meteorological data obtained from GLDAS (download address:
https://ldas.gsfc.nasa.gov/data, accessed on 30 September 2023). The data had a spatial
resolution of 0.25◦ × 0.25◦ and a temporal resolution of 3 h. The meteorological elements
extracted and resampled in ArcGIS included temperature, wind speed, barometric pressure,
and relative humidity, which were used as input parameters for the SEBS model.

2.2.4. Validation Data

The measurements from eleven eddy covariance (EC) sites were used in the study.
These data were provided by the flux observation site in Xinxiang Comprehensive Test
Base of Chinese Academy of Agricultural Sciences. An eddy covariance observation sys-
tem (acronym: EC system) and a meteorological gradient system were equipped. The
EC system, with a height of 5 m, consisted of a three-dimensional ultrasonic anemome-
ter (CSAT-3, Campbell Scientific Ine, Logan, UT, USA) and a closed-circuit gas analyzer
(EC155, Campbell Scientific Ine, Logan, UT, USA). The three-dimensional wind speed,
the virtual temperature, and the change of the water vapor concentration of the farmland
were measured. The data were collected at a frequency of 10 Hz and an average period of
30 days. The meteorological gradient system consisted of air temperature sensors, wind
speed sensors, rainfall sensors, and a CNR4 Net Radiometer (CNR4) at each level; it can be
used to monitor the changes in meteorological elements at different heights.

2.3. Methodology
2.3.1. SEBS Model

The SEBS model is based on the theory of surface energy balance, and the model as-
sumes that the underlying surface is homogeneous and widely covered by vegetation. The

https://glovis.usgs.gov/
https://ldas.gsfc.nasa.gov/data


Agronomy 2023, 13, 3082 5 of 15

various meteorological parameters are used to calculate each part of the flux components,
and the regional surface energy balance equation is formed [27]:

Rn = G0 + H + λE (1)

where Rn is the net radiation flux, W/m2; H is the sensible heat flux, W/m2; G0 is the soil
heat flux, W/m2; and λE represents the latent heat flux, W/m2.

Net radiation flux is the difference between the total radiation from the surface up and
down. The calculation formula is as follows:

Rn = (1 − ά)·Rswd + έa·Rlwd − έ·σ·T4
0 (2)

where ά is the surface albedo; Rswd is the downward solar radiation, W/m2; Rlwd is the
downward longwave radiation, W/m2; έa is the atmospheric emissivity; έ is the surface
specific emissivity; σ is the Boltzmann constant, which is often taken to be 5.67 × 10−8

W·m2·k−4; T0 is the surface temperature, K.
Soil heat flux is the main parameter of surface energy balance theory and is defined as

the heat exchange of soil per unit area per unit time. The empirical statistical formula is as
follows:

G0 = Rn· [Γc + (1 − fc)·(Γs − Γc) (3)

where Γc is the coefficient of the size of the proportion of vegetation cover; fc is the
vegetation cover rate; Γs is the ratio coefficient of bare soil coverage. The ratio of soil heat
flux to surface net radiation was assumed to be 0.05 and 0.315 for bare soil during model
calculation.

Sensible heat flux is the heat exchange between atmospheric turbulence and underly-
ing surface caused by temperature change. In order to derive sensible heat flux, the SEBS
model distinguishes the atmospheric boundary layer ABL, planetary boundary layer PBL,
and atmospheric surface layer ASL based on the boundary layer theory. The calculation
formula is as follows:

L =
u × ρCpθv

kgh
(4)

where ρ is the air density, g/m3; Cp is the specific heat capacity of air, J/(kg·k); θv is the po-
tential virtual temperature near the surface, K; and g is the gravitational acceleration, m/s2.

In the SEBS model, sensible heat flux and latent heat flux under dry and wet limits are
usually considered, and the relative evaporation ratio can be expressed as

Λr =
λE

λEwet
= 1 − λEwet − λE

λEwet
(5)

where Λr is the relative evaporation ratio, it is a dimensionless constant, and the subscripts
represent the dry limit and wet limit, respectively.

After calculating the relative evaporation ratio, the instantaneous ET is calculated
according to the following formula:

ETinst =
ΛrλEwet

λ
(6)

where ETinst is the instantaneous ET, mm.
After calculating the instantaneous ET, the ET ratio is calculated according to the

concept of relative ET ratio, and then the instantaneous ET is extended to the daily ET scale
with the following formula:

Λ =
λE

Rn − G0
=

ΛrλEwet

Rn − G0
(7)
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ETday = 8.60 × 107 × Λ
Rn − G0

λρw
(8)

where ETday is the extended daily scale ET, mm; Λ is the average daily ET ratio; Rn is the
average daily net radiation, W/m2; G0 is the average daily soil heat flux, W/m2; λ is the
latent heat of vaporization of water, J/kg; ρw is the density of water, 103 kg·m−3.

2.3.2. Data Mining Sharpener Model

The Data Mining Sharpener (DMS) model used in this paper is based on the machine
learning method introduced by Gao in 2012 [17]. As a machine learning method, DMS
uses regression decisions to establish the relationship between surface temperature (LST)
and reflectance (R) at low resolution. The relationship between LST and R may vary
depending on the scenario due to multiple factors. To address this, the DMS utilized a
global regression model to select samples from the entire scenario. Additionally, the DMS
implemented global and overlapping moving window methods on each scenario and
combined the results based on the residuals between the regression outputs and the low-
resolution training data. After the sharpening process, we analyzed the regression output
and low-resolution data for residuals and bias correction. This ensures consistency between
the high-resolution image elements and their corresponding low-resolution counterparts.

2.3.3. Statistical Metrics

This study used three indicators to validate the model inversion results, and the
formulas are as follows:

R2 = 1 − ∑i(ŷi − yi)
2

∑i(yi − yi)
2 (9)

R2 is the ratio of the variance of the described variable, which measures how well the
simulated value fits the measured value.

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2

(10)

RMSE is the root mean square error, which measures the deviation between the
predicted value and the true value, and it is more sensitive to outliers in the data.

MAE =
1
n∑n.

i=1 |yi − ŷi| (11)

MAE is the mean absolute error, which indicates the average of the absolute error
between the predicted value and the observed value, and it can reflect the true error.

n is the number of samples, yi is the measured value, and ŷi is the model inver-
sion value.

3. Results
3.1. Soil Information Extraction in the Study Area

Given the complexity of land surface information in the study area and the serious
fragmentation of the area used for winter wheat crop cultivation, Landsat-8 imagery data
on 30 December 2019 was selected; the maximum likelihood supervised classification
method was adopted to extract the land use information of the area, and the accuracy of the
classification results was evaluated to better explain the spatial and temporal distribution
characteristics of winter wheat ET in the area.

The study area was classified into five land types using the maximum likelihood
method, namely, building land, woodland, water, wheat, and other arable land, as shown
in Figure 2. The remote sensing interpretation accuracy assessment revealed an overall
classification accuracy of 96.4% and a kappa coefficient of 0.935.
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3.2. Evaluation of DMS

To verify the sharpened accuracy of the DMS model, the pixel values at the same
latitude and longitude as the four-component radiometer erected on the flux tower were
selected for comparison. Table 2 shows that the R2 was 0.961, which was between the
LST at 100 m spatial resolution and the measured surface temperature by the CNR4, the
RMSE was 0.968 ◦C, and the MAE was 2.236 ◦C. The R2 was 0.975, which was between
the LST at 30 m spatial resolution and the measured surface temperature by the CNR4,
the RMSE was 0.811 ◦C, and the MAE was 1.948 ◦C. The difference in surface temperature
before and after sharpening was maintained between 1~2 ◦C. The correlation coefficients
of the two thermal infrared images with different spatial resolutions were consistently
above 0.9 [28]. Compared to the 100 m spatial resolution, the LST at 30 m spatial resolution
showed improved accuracy. Additionally, the two spatial distributions appeared similar
visually, and the 30 m spatial resolution surface temperature image provided better detail.
The surface temperature image with a 100 m spatial resolution can represent the subsurface
environment, which may include factories, roads, fields, and other features. In this case,
the pixel value reflects the weighted average of the surface temperature of the complex
environment. This is different from the measurement range of the quadruple-component
radiometer. When the spatial resolution was improved to 30 m, the pixel value from the
quadruple-component radiometer corresponded to only a small piece of agricultural land
at the same latitude and longitude. This adjustment made the pixel value more accurate.
Figure 3 showed that sharpening the resolution of independent pixels from 100 m to 30 m
improved the texture of the image, made the boundary lines more distinct, and resulted in
smoother surface temperature changes.

Table 2. Comparison of ground surface temperature sharpened results.

Dates CNR4/◦C 100 mLST/◦C 30 mLST/◦C Image Correlation
Coefficient

28 November 2019 8.191 10.548 10.614 0.993
30 December 2019 5.291 7.456 5.995 0.989

31 January 2020 8.643 11.798 12.028 0.995
16 February 2020 8.259 12.594 11.363 0.993

19 March 2020 17.814 19.923 18.648 0.994
4 April 2020 20.454 19.899 22.052 0.882

1 January 2021 6.517 8.773 8.855 0.975
17 January 2021 6.906 8.681 8.274 0.975
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Table 2. Cont.

Dates CNR4/◦C 100 mLST/◦C 30 mLST/◦C Image Correlation
Coefficient

2 February 2021 9.653 10.817 11.832 0.989
22 March 2021 16.072 18.277 17.292 0.986

17 November 2021 16.507 18.055 17.857 0.663
3 December 2021 15.527 18.328 18.556 0.652

27 December 2021 4.308 6.819 6.427 0.968
1 March 2022 12.156 14.688 14.156 0.543
2 April 2022 18.083 20.149 19.663 0.737
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3.3. Evaluation of Sharpened ET

To verify the inversion accuracy of the SEBS model, the pixel values at the same
latitude and longitude as the closed-circuit EC system were selected. The inversion results
are shown in Table 3; the R2 between the 100 m spatial resolution of ET and the measured
value by EC system reached 0.814, the RMSE was 0.516 mm, and the MAE was 0.245 mm.
The R2 between the 30 m spatial resolution of ET and the measured value by EC system
reached 0.802, the RMSE was 0.534 mm, and the MAE was 0.253 mm. Results showed that
the accuracy of the ET inversion after sharpening was significantly improved compared
with the previous one.

The People’s Victory Irrigation District spans the Yellow River and Haihe River basins.
The water source of the irrigation district is mainly diverted from the Yellow River. A
rotation system of winter wheat and summer corn is implemented throughout the year [29].
Figures 4 and 5 illustrate the daily ET of winter wheat in the People’s Victory Irrigation
District. The trend of ET gradually increases from east to west and from north to south,
which is consistent with the layout of the farmland water conservancy system in this
irrigation district. The southwest area of the People’s Victory Irrigation District has more
trunk canals, complex canal system distribution, and abundant water resources. The daily
evapotranspiration in the southwest area was significantly higher than that in the northeast
area. Upon examining the land use type map of the irrigation area, it became apparent that
the ET of water was higher than that of woodland, wheat, and other arable land. Although
water areas and forest lands have the ability to contain water, their distribution is limited
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in the People’s Victory Irrigation area. Therefore, the ET in this irrigation area is primarily
supplied by the winter wheat growing area. During the period of rapid winter wheat
growth, the low NDVI of construction land may result in significant loss in ET estimation.
This is particularly evident in the ET interpolation map with 30 m spatial resolution.

Table 3. Comparison of daily ET results.

Dates 100 mET/mm 30 mET/mm EC/mm

28 November 2019 1.072 1.071 0.862
30 December 2019 1.002 0.988 1.138

31 January 2020 1.307 1.306 1.150
16 February 2020 1.744 1.751 1.761

19 March 2020 2.657 2.713 4.732
4 April 2020 3.258 3.281 3.289

1 January 2021 1.072 1.073 0.972
17 January 2021 1.200 1.204 1.158
2 February 2021 1.506 1.501 1.504
22 March 2021 2.752 2.772 3.342

17 November 2021 1.295 1.275 1.064
3 December 2021 1.109 1.110 1.129

27 December 2021 1.052 1.043 0.935
1 March 2022 2.289 2.281 2.254
2 April 2022 3.241 3.231 3.275

Agronomy 2023, 13, x FOR PEER REVIEW  10  of  16 
 

 

The People’s Victory Irrigation District spans the Yellow River and Haihe River ba-

sins. The water source of the irrigation district is mainly diverted from the Yellow River. 

A rotation system of winter wheat and summer corn is implemented throughout the year 

29. Figures 4 and 5 illustrate the daily ET of winter wheat in the People’s Victory Irrigation 

District. The trend of ET gradually increases from east to west and from north to south, 

which is consistent with the layout of the farmland water conservancy system in this irri-

gation district. The southwest area of  the People’s Victory  Irrigation District has more 

trunk canals, complex canal system distribution, and abundant water resources. The daily 

evapotranspiration in the southwest area was significantly higher than that in the north-

east area. Upon examining the land use type map of the irrigation area, it became apparent 

that the ET of water was higher than that of woodland, wheat, and other arable land. Alt-

hough water areas and forest lands have the ability to contain water, their distribution is 

limited in the People’s Victory Irrigation area. Therefore, the ET in this irrigation area is 

primarily supplied by the winter wheat growing area. During the period of rapid winter 

wheat growth, the low NDVI of construction land may result in significant loss in ET es-

timation. This is particularly evident in the ET interpolation map with 30 m spatial reso-

lution. 

 

Figure 4. Spatial and temporal distribution of daily ET.



Agronomy 2023, 13, 3082 10 of 15

Agronomy 2023, 13, x FOR PEER REVIEW  11  of  16 
 

 

Figure 4. Spatial and temporal distribution of daily ET. 

 

Figure 5. Comparison of daily ET before and after downscaling. 

Combined with the horizontal comparison of ET data over the years, it can be seen 

that the daily ET of winter wheat in the People’s Victory Drainage Irrigation District dur-

ing different reproductive periods showed systematic changes. During the early growth 

stage, spanning from November to January, the ET of wheat exhibited a decreasing trend. 

This was due to the weak average daily temperature and net solar radiation, which re-

sulted in relatively slow growth of the wheat. In February of the following year, as the 

temperature increased, the leaf area index of winter wheat and the vegetation coverage 

rate of the field gradually increased, leading to a change in the ET of winter wheat. After 

reaching  the  jointing and heading stages,  the  increase  in air  temperature and net solar 

radiation  led to a further increase in transpiration and interplant evaporation of winter 

wheat. As a result, the daily water demand sharply increased, and the field evapotranspi-

ration continued to rise. The growth of winter wheat was the most vigorous during the 

filling stage, with the largest leaf area index observed. The daily ET also reached its max-

imum value during the entire growth period. Following the filling stage, the winter wheat 

matured into grains gradually. The leaves began to fall off, and the ET started to decline 

again until the harvest was completed. 

3.4. Analysis of ET Influence Factors 

The SEBS model takes into account both surface and meteorological parameters. In 

this study, we analyzed the correlation between ET and meteorological data during the 

winter wheat growth period in 2019. The influencing factors considered were air temper-

ature (Ta), relative humidity (RH), mean water vapor pressure (E), wind speed (WS), net 

solar radiation (Rn), soil temperature (Soil-T), soil moisture (Soil-VWC), and surface tem-

perature (LST). We used SPSS for path analysis, and the specific results are shown in Table 

4. 
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Combined with the horizontal comparison of ET data over the years, it can be seen
that the daily ET of winter wheat in the People’s Victory Drainage Irrigation District during
different reproductive periods showed systematic changes. During the early growth stage,
spanning from November to January, the ET of wheat exhibited a decreasing trend. This
was due to the weak average daily temperature and net solar radiation, which resulted in
relatively slow growth of the wheat. In February of the following year, as the temperature
increased, the leaf area index of winter wheat and the vegetation coverage rate of the field
gradually increased, leading to a change in the ET of winter wheat. After reaching the
jointing and heading stages, the increase in air temperature and net solar radiation led to a
further increase in transpiration and interplant evaporation of winter wheat. As a result,
the daily water demand sharply increased, and the field evapotranspiration continued to
rise. The growth of winter wheat was the most vigorous during the filling stage, with the
largest leaf area index observed. The daily ET also reached its maximum value during the
entire growth period. Following the filling stage, the winter wheat matured into grains
gradually. The leaves began to fall off, and the ET started to decline again until the harvest
was completed.

3.4. Analysis of ET Influence Factors

The SEBS model takes into account both surface and meteorological parameters. In this
study, we analyzed the correlation between ET and meteorological data during the winter
wheat growth period in 2019. The influencing factors considered were air temperature
(Ta), relative humidity (RH), mean water vapor pressure (E), wind speed (WS), net solar
radiation (Rn), soil temperature (Soil-T), soil moisture (Soil-VWC), and surface temperature
(LST). We used SPSS for path analysis, and the specific results are shown in Table 4.

Field ET is the fundamental variable for turbulent exchange between crops, surface
soils, and the atmosphere. The influencing factors are complex and have different propor-
tions at different scales. Additionally, there are interactions between these factors. Table 4
shows the degree of influence of each factor on ET, with net solar radiation having the
greatest influence, followed by surface temperature, air temperature, relative humidity,
soil moisture, average water vapor pressure, and wind speed. The net solar radiation and
temperature exhibited a highly significant positive correlation with ET, while humidity
showed a negative correlation. Throughout the growth period, the net solar radiation
served as the primary source of energy for the turbulent exchange between crops and soil,
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making it the most influential factor in ET changes. Temperature difference was the main
gradient force between vegetation transpiration and soil evaporation. As the temperature
increases, the capacity for both vegetation transpiration and soil evaporation also increases.
While wind speed can enhance turbulence exchange speed between the atmosphere, its
impact on water surface ET is more significant than on farmland ET. Relative humidity
and soil moisture are both significantly and negatively correlated with ET. In agricultural
production, high humidity can reduce the saturated water vapor pressure difference and
weaken the driving force for evapotranspiration. This can affect plant transpiration and
cause a decline in evapotranspiration in farmland. The net solar radiation Rn has the
greatest effect on ET, with a direct flux coefficient of 0.992 and an indirect flux coefficient
of 1.926. The second most influential factor on ET is air temperature, with its direct effect
being greater than its indirect effect. Changes in air temperature can cause fluctuations in
mean water vapor pressure and soil temperature, which in turn affect ET.

Table 4. Path analysis table of field ET influence factors.

Impact
Factor R Direct Path

Coefficient

Indirect Path Coefficient
Total

Ta RH E WS Rn Soil-T Soil-VWC LST

Ta 0.667 0.586 — −0.233 0.489 −0.004 0.472 0.568 −0.389 0.562 1.467
RH −0.566 −0.058 0.023 — −0.003 0.007 0.029 0.021 −0.011 0.026 0.093
E 0.465 −0.080 −0.067 −0.004 — 0.011 −0.053 −0.068 0.054 −0.067 −0.194

WS 0.083 0.143 −0.001 −0.017 −0.019 — −0.015 −0.009 0.013 −0.011 −0.060
Rn 0.869 0.992 0.800 −0.502 0.654 −0.105 — 0.829 −0.631 0.882 1.926

Soil-VWC −0.530 −0.194 0.129 −0.036 0.130 −0.018 0.123 0.144 — 0.129 0.602
LST 0.736 0.184 0.176 −0.081 0.155 −0.014 0.164 0.177 −0.123 — 0.453

4. Discussion

The Landsat series of satellites have provided a long series of thermal infrared (TIR)
observations, which are a valuable data source for acquiring surface temperature [30].
The Landsat-9 and Landsat-8 products used in the study showed good consistency, but
some areas were seriously affected by cloud shadows. During the cropping process, the
phenomenon of blank banding occurs in the non-study area portion of the image. Meng
et al, discovered that the occurrence of blank banding in Landsat-9 LST products was due to
its surface temperature algorithm. This issue can be resolved by using the gap elimination
method or alternative surface temperature algorithms [26].

Cheng et al. conducted downscaling research using thermal infrared data from
kilometer-scale satellites such as MODIS or Sentinel-3. The data were compared with
the thermal infrared band of Landsat, which has a 100 m scale, to achieve a more pro-
nounced downscaling effect [31]. However, downsizing the thermal infrared data from
kilometer-scale to 100 m made it difficult to ensure the accuracy and completeness of the
results [32], and there was a high likelihood that data were lost during the temperature
reconstruction process [33]. In this study, Landsat thermal infrared data with a resolution
of 100 m were sharpened to 30 m, which is consistent with Gao’s original idea. The distri-
bution of land surface temperature at a spatial resolution of 100 m after sharpening was
found to be similar to that at 30 m resolution. The sharpening process did not significantly
alter the temperature distribution. The surface temperature at 30 m resolution was found
to be more accurate when compared to the measured data of the CNR4. As a result, the
evaluation index also improved.

SEBS is a single-source surface energy balance model, which estimates atmospheric
turbulent fluxes and surface evaporative fraction from remote sensing data. It has been
applied and validated in many places, but there are even fewer studies on crop water
demand for winter wheat growing areas in Henan Province with long time series. In the
study, the evapotranspiration problem of winter wheat in the People’s Victory Irrigation
District of Henan Province was estimated by using Landsat data and meteorological data
for 3 years, and the inversion results were compared with the measured data. After scaling
down, the correlation coefficient R2 between the inversion value of the SEBS model and the
measured vorticity value reached 0.814, it had a high inversion accuracy, and the results
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were similar to the conclusion drawn by Zhang and Jiang. Based on the SEBS model, Zhang
conducted experiments on the inversion of ET under two scenarios of using MODIS remote
sensing data alone and MODIS integrated with VIIRS remote sensing data, respectively.
After verifying the accuracy of the evapotranspiration results, it was found that the accuracy
of evapotranspiration was improved by the integration of VIIRS remote sensing data [34].
Estimation of evapotranspiration of winter wheat at different fertility stages based on
Landsat-8 remote sensing data was carried out in Liangyuan District, Shangqiu City, Henan
Province, China, by Jiang [35] Secondly, the temporal and spatial distribution of daily
evapotranspiration after downscaling was essentially the same as before downscaling. The
inversion accuracy slightly improved compared to before downscaling, which increased
the reliability of ET after downscaling. From a visual perspective, Figure 5 illustrates
that the daily ET distribution map with 30 m spatial resolution and that with 100 m
resolution were significantly different in detail, particularly near the boundary line. The
effect of downscaling was evident, and in some areas with complex underlying surface
conditions, such as the intersection of cultivated land and construction land, the daily ET
map after downscaling did not show a clear mosaic phenomenon, and the changes in ET
were smoother.

From the research process described above, some deficiencies in the study were
identified. Firstly, the use of DMS to determine the limitations of surface temperature
sharpening was found to be inadequate. There was a correlation between LST and R in
different scenarios [36]. Guzinski showed that thermal infrared images and reflectance
can capture this information in the case of crop water stress, which has led to the two
becoming complementary [18]. The surface conditions of the observation area selected
for the study were similar to those of the crop. Specifically, the selected observation area
had good water holding capacity and did not exhibit any signs of drought. Therefore, it
is necessary to discuss in depth whether DMS is suitable for early monitoring of water
stress or precision irrigation. In this study, a significant difference was observed between
the measured value and the inversion value. For instance, on 19 March 2020, the actual
ET value was 4.732 mm, which differed greatly from the inversion value. This difference
could be attributed to the jointing period of winter wheat and the manmade irrigation
treatment in the field. When the field experiences rainfall or manmade full irrigation, the
ET in the field will increase within two or three days, which can distort the measured data.
The input parameters for the SEBS model, based on the energy balance formula, include
the normalized vegetation index, surface temperature, and surface albedo. Excluding soil
moisture information could hinder obtaining these parameters in a timely manner, which
may impede the energy balance model’s ability to estimate surface ET in real time [37].

Until a new generation of thermal satellites is launched, DMS will be a useful solution
for overcoming the lack of thermal data, which has led to the lack of real-time performance
of the energy balance model in estimating surface ET [38]. This method can even be
combined with UAV to monitor crop water requirements at smaller scales if higher spatial
resolution is required. On the other hand, we chose to use simultaneous sensors [39].
Simultaneous sensor acquisitions from the same platform represent the best-case scenario
for estimating evapotranspiration (ET) due to inherent advantages over multisource sensors.
This approach ensures input consistency between land surface temperature (LST) and
vegetation indices for ET models. When combining multiple sensors for an experiment,
it is important to maximize scene coverage, avoid image misalignments due to sensor
registration differences, and enable improved cloud detection [40].

5. Conclusions

The study utilized the DMS surface temperature sharpened model, the SEBS model,
and multiyear Landsat image data to estimate the daily ET during the growth period of
winter wheat in the People’s Victory Irrigation District. The results indicate that the accuracy
of surface temperature and daily ET at 30 m spatial resolution after downscaling improved
to varying degrees. The study adhered to the initial concept of the experimental results.
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Compared to the longitudinal interpolated map with a 100 m resolution, the downscaling
process provided more specific details on the distribution of surface temperature and daily
ET, making complex regional differences more apparent. This demonstrates the feasibility
of using DMS to downscale land surface temperature from the Landsat satellite and verifies
the applicability of the SEBS model in Henan Province. By analyzing the spatiotemporal
distribution of ET during different growth stages of winter wheat, it was found that ET
in the southwest was significantly higher than that in the northeast. Throughout the
growth period, the daily average ET of winter wheat exhibited a pattern of decreasing, then
increasing, and then decreasing again. The analysis of factors influencing ET reveals that
net solar radiation and temperature have a highly significant positive correlation with ET.
Wind speed has a weaker correlation with ET, while relative humidity and soil moisture are
both significantly negatively correlated with ET. The direct and indirect path coefficients
indicate that net solar radiation has the greatest influence on ET and plays a promoting role.
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