Efficacy of Eco-Friendly Bio-Pesticides against the Whitefly Bemisia tabaci (Gennadius) for Sustainable Eggplant Cultivation in Kebbi State, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Seed Procurement, Germination, and Viability Testing
2.3. Experimental Design and Agronomic Practices
2.4. Preparation and Spray of the Treatments
2.4.1. Chili Pod Extract
2.4.2. Cow Dung
2.4.3. Buttermilk
2.4.4. Neem Leaf Extract
2.4.5. Cow Urine
2.5. Statistical Analysis
3. Results
3.1. Efficacy of Traditional Treatments against the Whitefly
Efficacy (%) of the Treatments against Whiteflies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taher, D.; Solberg, S.Ø.; Prohens, J.; Chou, Y.-y.; Rakha, M.; Wu, T.-h. World vegetable center eggplant collection: Origin, composition, seed dissemination and utilization in breeding. Front. Plant Sci. 2017, 8, 1484. [Google Scholar] [CrossRef] [PubMed]
- Quamruzzaman, A. The first gm crop in bangladesh–bt eggplant. Eur. J. Agric. Food Sci. 2021, 3, 45–55. [Google Scholar] [CrossRef]
- Anjorin, S.; Jolaoso, M.; Golu, M. A survey of incidence and severity of pests and diseases of okra (Abelmoschus esculentus L. Moench) and eggplant (Solanum melongena L.) in Abuja, Nigeria. Am. J. Res. Commun. 2013, 1, 333–349. [Google Scholar]
- Farouk, S.; Almutairi, A.B.; Alharbi, Y.O.; Al-Bassam, W.I. Acaricidal efficacy of jasmine and lavender essential oil or mustard fixed oil against two-spotted spider mite and their impact on growth and yield of eggplants. Biology 2021, 10, 410. [Google Scholar] [CrossRef]
- Naeem, M.Y.; Ugur, S. Nutritional content and health benefits of eggplant. Turk. J. Agric. Food Sci. Technol. 2019, 7, 31–36. [Google Scholar] [CrossRef]
- Sharma, M.; Kaushik, P. Biochemical composition of eggplant fruits: A review. Appl. Sci. 2021, 11, 7078. [Google Scholar] [CrossRef]
- Cruz-Estrada, A.; Gamboa-Angulo, M.; Borges-Argáez, R.; Ruiz-Sánchez, E. Insecticidal effects of plant extracts on immature whitefly Bemisia tabaci Genn. (Hemiptera: Aleyroideae). Electron. J. Biotechnol. 2013, 16, 6. [Google Scholar]
- Mudereri, B.T.; Kimathi, E.; Chitata, T.; Moshobane, M.C.; Abdel-Rahman, E.M. Landscape-scale biogeographic distribution analysis of the whitefly, Bemisia tabaci (Gennadius, 1889) in Kenya. Int. J. Trop. Insect Sci. 2021, 41, 1585–1599. [Google Scholar] [CrossRef]
- Abubakar, M.; Koul, B.; Chandrashekar, K.; Raut, A.; Yadav, D. Whitefly (Bemisia tabaci) Management (WFM) Strategies for Sustainable Agriculture: A Review. Agriculture 2022, 12, 1317. [Google Scholar] [CrossRef]
- Touhidul Islam, M.; Shunxiang, R. Effect of sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) infestation on eggplant (Solanum melongena L.) leaf. J. Pest Sci. 2009, 82, 211–215. [Google Scholar] [CrossRef]
- Boopathi, T.; Karuppuchamy, P.; Kalyanasundaram, M.P.; Mohankumar, S.; Ravi, M.; Singh, S.B. Microbial control of the exotic spiralling whitefly, Aleurodicus dispersus (Hemiptera: Aleyrodidae) on eggplant using entomopathogenic fungi. Afr. J. Microbiol. Res. 2015, 9, 39–46. [Google Scholar]
- Perring, T.M.; Stansly, P.A.; Liu, T.; Smith, H.A.; Andreason, S.A. Whiteflies: Biology, ecology, and management. In Sustainable Management of Arthropod Pests of Tomato; Elsevier: Amsterdam, The Netherlands, 2018; pp. 73–110. [Google Scholar]
- Hasanuzzaman, A.T.M.; Islam, M.N.; Zhang, Y.; Zhang, C.Y.; Liu, T.X. Leaf morphological characters can be a factor for intraparietal preference of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among eggplant varieties. PLoS ONE 2016, 11, e0153880. [Google Scholar] [CrossRef] [PubMed]
- De Lima Toledo, C.A.; da Silva Ponce, F.; Oliveira, M.D.; Aires, E.S.; Seabra Júnior, S.; Lima, G.P.P.; de Oliveira, R.C. Change in the physiological and biochemical aspects of tomato caused by infestation by cryptic species of Bemisia tabaci MED and MEAM1. Insects 2021, 12, 1105. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Barbera, A.C.; Leonardi, G.; Massimino Cocuzza, G.E.; Suma, P.; Rapisarda, C. Bemisia tabaci (Hemiptera: Aleyrodidae): What Relationships with and Morpho-Physiological Effects on the Plants It Develops on? Insects 2022, 13, 351. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, M.; Legg, J.P.; Wintermantel, W.M.; Polston, J.E. Management of whitefly-transmitted viruses in open-field production systems. Adv. Virus Res. 2014, 90, 147–206. [Google Scholar] [PubMed]
- Amari, K.; Gonzalez-Ibeas, D.; Gómez, P.; Sempere, R.N.; Sanchez-Pina, M.A.; Aranda, M.A.; Diaz-Pendon, J.A.; Navas-Castillo, J.; Moriones, E.; Blanca, J.; et al. Tomato torrado virus is transmitted by Bemisia tabaci and infects pepper and eggplant in addition to tomato. Plant Dis. 2008, 92, 1139. [Google Scholar] [CrossRef]
- Fidan, H.; Sarıkaya, P. Tomato chlorosis virus AND Tomato yellow leaf curl virus causing mixed infection in protected eggplant (Solanum melongena) crops in Turkey. Acta Sci. Pol. Hortorum Cultus 2020, 19, 81–89. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Antignus, Y.; Gerling, D. Management of Bemisia tabaci whiteflies. In The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants: Bemisia tabaci, Host Plants and Geminiviruses; Springer: Berlin/Heidelberg, Germany, 2011; pp. 293–322. [Google Scholar]
- Sani, I.; Ismail, S.I.; Abdullah, S.; Jalinas, J.; Jamian, S.; Saad, N. A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 2020, 11, 619. [Google Scholar] [CrossRef]
- Naveen, N.; Chaubey, R.; Kumar, D.; Rebijith, K.; Rajagopal, R.; Subrahmanyam, B.; Subramanian, S. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci. Rep. 2017, 7, 40634. [Google Scholar] [CrossRef]
- Pappas, M.L.; Migkou, F.; Broufas, G.D. Incidence of resistance to neonicotinoid insecticides in greenhouse populations of the whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) from Greece. Appl. Entomol. Zool. 2013, 48, 373–378. [Google Scholar] [CrossRef]
- Khalid, M.Z.; Ahmed, S.; Al-Ashkar, I.; El Sabagh, A.; Liu, L.; Zhong, G. Evaluation of resistance development in Bemisia tabaci Genn.(Homoptera: Aleyrodidae) in cotton against different insecticides. Insects 2021, 12, 996. [Google Scholar] [CrossRef] [PubMed]
- Elango, K.; Sobhana, E.; Sujithra, P.; Bharath, D.; Ahuja, A. Traditional agricultural practices as a tool for management of insects and nematode pests of crops: An overview. J. Entomol. Zool. Stud. 2020, 8, 237–245. [Google Scholar]
- Shome, S.; Mal, D. Reviving Indian indigenous agricultural practices with cow (bovine) based products: An attempt towards sustainability in the chemical based environment. In Proceedings of the Paradigmes, Modèles, Scénarios et Pratiques en Matière de Durabilité forte, Clermont-Ferrand, France, 4–6 December 2019. [Google Scholar]
- Chavan, R.; Yeotikar, S.; Gaikwad, B.; Dongarjal, R. Management of major pests of tomato with biopesticides. J. Entomol. Res. 2015, 39, 213–217. [Google Scholar] [CrossRef]
- Hussein, H.S.; Salem, M.Z.; Soliman, A.M. Repellent, attractive, and insecticidal effects of essential oils from Schinus terebinthifolius fruits and Corymbia citriodora leaves on two whitefly species, Bemisia tabaci, and Trialeurodes ricini. Sci. Hortic. 2017, 216, 111–119. [Google Scholar] [CrossRef]
- Peres, M.C.; de Souza Costa, G.C.; dos Reis, L.E.; da Silva, L.D.; Peixoto, M.F.; Alves, C.C.F. In natural and nano encapsulated essential oils from Xylopia aromatica reduce oviposition of Bemisia tabaci in Phaseolus vulgaris. J. Pest. Sci. 2020, 93, 807–821. [Google Scholar] [CrossRef]
- Abubakar, M.; Koul, B. Field assessment of the effects of Citrus aurantifolia Christm and Eucalyptus camaldulensis Dehnh extracts for the management of Bemisia tabaci Gennadius on Solanum melongena L. in north west Nigeria. Int. J. Trop. Insect Sci. 2023, 1–15. [Google Scholar] [CrossRef]
- Shailaja, B.; Patnaik, H.; Mukerjee, S. Assessment of botanicals fermented in cow urine alone and along with panchagavya against brinjal shoot and fruit borer. J. Eco-Friendly Agric. 2012, 7, 24–28. [Google Scholar]
- Celsia, S.; Janarthanan, P. Indigenous technology knowledge of rice. Int. J. Curr. Res. 2019, 11, 1810–1811. [Google Scholar]
- Kumar, A.; Raj Bhansali, R.; Mali, P. Response of biocontrol agents in relation to acquired resistance against leaf curl virus in chilli. In Proceedings of the Asian Congress of Mycology Plant Pathology, Mysore, India, 1–4 October 2002; University of Mysore: Mysore, India; Indian Society of Mycology and Plant Pathology: Udaipur, India, 2002; p. 167. [Google Scholar]
- Bhutto, N.N.; Shar, Z.U.; Kalroo, M.A.; Rind, A.B.; Solangi, U.A. Management of sucking insect pests of cotton crop through yellow sticky traps under field conditions. Int. J. Farm. Alli Sci. 2021, 10, 36–39. [Google Scholar]
- Kumari, N.; Chandla, V.K. Plant extracts in cow urine (Bovine spp.): A new tool in the management of glasshouse whitefly, Trialeurodes vaporararium (Westwood). J. Ecofriendly Agric. 2010, 5, 154–155. [Google Scholar]
- Veeraragavathatham, D.; Karpagam, D.; Firdouse, S.A. Cow based Indigenous Technologies in dry farming. Indian J. Tradit. Knowl. 2006, 5, 47–50. [Google Scholar]
- Ur Rehmana, H.; Nadeema, M.; Ayyazb, M.; Beguma, H.A. Comparative Efficacy of Neem Oil and Lambdacyhalothrin against Whitefly (Bemesia tabaci) and Jassid (Amrasca Devastans Dist.) in Okra Field1. Russ. Agric. Sci. 2015, 41, 138–145. [Google Scholar] [CrossRef]
- Singh, S.; Yadav, G.S.; Das, A.; Das, B.; Devi, H.L.; Raghuraman, M.; Kumar, A. Bioefficacy, environmental safety and synergistic impacts of biorational formulations against whitefly, leafhopper and blister beetle in organic okra ecosystem. J. Agric. Sci. 2021, 159, 373–384. [Google Scholar] [CrossRef]
- Kumawat, N.; Shekhawat, P.; Kumar, R.; Sanwal, R.; Kheti, P. Formulation of biopesticides for insect pests and diseases management in organic farming. Pop. Kheti 2014, 2, 237–242. [Google Scholar]
- Meena, N.K.; Meena, R.S.; Kanojia, Y.; Roat, B.L.; Dangi, N.L. Indigenous approaches for pest management in vegetables with special reference to coriander in Southern Rajasthan, India. Indian J. Tradit. Knowl. 2021, 20, 1053–1064. [Google Scholar]
- Asare-Bediako, E.; Addo-Quaye, A.; Bi-Kusi, A. Comparative efficacy of plant extracts in managing whitefly (Bemisia tabaci Gen) and leaf curl disease in okra (Abelmoschus esculentus L). Am. J. Agric. Sci. Technol. 2014, 2, 31–41. [Google Scholar] [CrossRef]
- Lynn, O.M.; Song, W.-G.; Shim, J.-K.; Kim, J.-E.; Lee, K.-Y. Effects of azadirachtin and neem-based formulations for the control of sweetpotato whitefly and root-knot nematode. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 598–604. [Google Scholar] [CrossRef]
- Patel, N.; Korat, D.; Acharya, R. Impact evaluation of cow-urine and vermiwash on insect pests of brinjal. J. Trop. Agric. 2017, 35, 591–595. [Google Scholar]
- Chand, A.; Tiwari, R. Efficacy of cow urine against bacterial disease, European foulbrood, in honey bee, Apis mellifera (L.) colonies at different locations of Uttarakhand-an eco-friendly and novel approach. Int. J. Basic. Appl. Sci. 2012, 1, 179–189. [Google Scholar]
- Dhingra, S.; Walia, S.; Kumar, J.; Singh, S.; Singh, G.; Parmar, B.S. Field efficacy of azadirachtin-A, tetrahydroazadirachtin-A, NeemAzal® and endosulfan against key pests of okra (Abelmoschus esculentus). Pest Manag. Sci. Former. Pestic. Sci. 2008, 64, 1187–1194. [Google Scholar] [CrossRef]
- Castillo-Sánchez, L.E.; Jiménez-Osornio, J.J.; Delgado-Herrera, M.A.; Candelaria-Martínez, B.; Sandoval-Gío, J. Effects of the hexanic extract of neem Azadirachta indica against adult whitefly Bemisia tabaci. J. Entomol. Zool. Stud. 2015, 3, 95–99. [Google Scholar]
- Ali, S.S.; Ahmed, S.S.; Rizwana, H.; Bhatti, F.; Khoso, A.; Mengal, M.I.; Jatoi, J.H.; Bugti, A.; Rind, M.A.; Shahwani, S.A. Efficacy of different bio-pesticides against major sucking pests on brinjal under field conditions. J. Basic Appl. Sci. 2017, 13, 133–138. [Google Scholar]
- Akhtar, M.K.; Hafeez-ur-Rehman, T.I. Bioefficacy of Aqueous Neem Leaf (Azadirachta indica) Extract against Whitefly (Bemisia tabaci) on Cotton. Biol. Times 2023, 2, 19–20. [Google Scholar]
- Okolo, E.T.; Iledun, O.C. Insecticidal effect of neem (Azadirachta indica) extracts obtained from leaves and seeds on pests of cowpea (Vigna unguiculata). Sumerianz J. Agric. Vet. 2019, 2, 20–28. [Google Scholar]
- Saxena, R. Neem seed oil for leaf folder control. Plant Proc. News 1981, 10, 48–50. [Google Scholar]
- Jackai, L. The use of neem in controlling cowpea pests. IITA Res. 1993, 7, 5–11. [Google Scholar]
- Agona, J.; Owera-Odom, F.; Kyamanywa, S.; Silim-Nahdy, M.; Willson, H. Field management of bruchids on beans using selected phytochemicals, insecticides and entomopathogen. Uganda J. Agric. Sci. 2003, 8, 377–382. [Google Scholar]
- Hossain, M.A.; Al-Toubi, W.A.; Weli, A.M.; Al-Riyami, Q.A.; Al-Sabahi, J.N. Identification and characterization of chemical compounds in different crude extracts from leaves of Omani neem. J. Taibah Univ. Sci. 2013, 7, 181–188. [Google Scholar] [CrossRef]
- Mandal, S.; Padamshali, S.; Rana, N.; Kolhekar, S. ITK Based Pest Management Module for Sucking Peston Brinjal (Solanummelongena L.) Under Terai Agro-Ecological System of West Bengal. J. Pharmacogn. Phytochem. 2018, 7, 2065–2070. [Google Scholar]
- Mandavgane, S.A.; Kulkarni, B.D. Valorization of cow urine and dung: A model biorefinery. Waste Biomass Valorization 2020, 11, 1191–1204. [Google Scholar] [CrossRef]
- Patel, C.; Singh, D.; Sridhar, V.; Choudhary, A.; Dindod, A.; Padaliya, S. Bioefficacy of cow urine and different types of bio-pesticide against major sucking insect pests of Bt cotton. J. Entomol. Zool. Stud. 2019, 7, 1181–1184. [Google Scholar]
- Gahukar, R. Cow urine: A potential biopesticide. Indian. J. Entomol. 2013, 75, 212–216. [Google Scholar]
- Pradhan, S.S.; Verma, S.; Kumari, S.; Singh, Y. Bio-efficacy of cow urine on crop production: A Review. IJCS 2018, 6, 298–301. [Google Scholar]
- Guleria, S.J. Field efficacy of biopesticides and pesticide combinations against whitefly infesting gerbera. Munis Entomol. Zool. 2013, 8, 895–899. [Google Scholar]
- Ahirwar, R.; Gupta, M.; Banerjee, S. Field efficacy of natural and indigenous products on sucking pests of sesame. Indian J. Nat. Prod. Resour. 2010, 1, 221–226. [Google Scholar]
- Geetanjaly, G.; Tiwari, R. Bioefficacy of cow urine based eco-friendly formulations against Spilarctia obliqua (Walker). J. Appl. Nat. Sci. 2014, 6, 680–686. [Google Scholar] [CrossRef]
- Singh, S.; Das, B.; Devi, H.L.; Sunani, S.K.; Suklabaidya, A.; Majumder, P. Evaluation of biorational pesticides against Bemisia tabaci Gennadius and Amrasca biguttula Ishida and its impact on natural enemies population in cowpea ecosystem. Arch. Phytopathol. Plant Prot. 2022, 55, 63–75. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Bohra, J.; Pradhan, S.; Verma, S. Effect of fertility level and cow urine application as basal and foliar spray on growth and nutrient uptake of Indian mustard (Brassica juncea). Ecol. Environ. Conserv. 2017, 23, 1549–1553. [Google Scholar]
- Devasena, M.; Sangeetha, V. Cow urine: Potential resource for sustainable agriculture. In Emerging Issues in Climate Smart Livestock Production; Elsevier: Amsterdam, The Netherlands, 2022; pp. 247–262. [Google Scholar]
- Miah, M.N.A.; Miah, M.; Alam, M. Determining chemical composition of cattle urine and indigenous plant extracts. Int. Ann. Sci. 2017, 3, 23–26. [Google Scholar] [CrossRef]
- Wesolowska, A.; Jadczak, D.; Grzeszczuk, M. Chemical composition of the pepper fruit extracts of hot cultivars Capsicum annuum L. Acta Sci. Polonorum. Hortorum Cultus 2011, 10, 171–174. [Google Scholar]
- Zhang, D.; Sun, X.; Battino, M.; Wei, X.; Shi, J.; Zhao, L.; Liu, S.; Xiao, J.; Shi, B.; Zou, X. A comparative overview on chili pepper (Capsicum genus) and sichuan pepper (Zanthoxylum genus): From pungent spices to pharma-foods. Trends Food Sci. Technol. 2021, 117, 148–162. [Google Scholar] [CrossRef]
- Fening, K.; Tegbe, R.; Adama, I. On-farm evaluation of homemade pepper extract in the management of pests of cabbage, Brassica oleraceae L., and french beans, Phaseolus vulgaris L., in two agro-ecological zones in Ghana. Afr. Entomol. 2014, 22, 552–560. [Google Scholar] [CrossRef]
- Legaspi, J.C.; Simmons, A.M. Evaluation of selected commercial oils as oviposition deterrents against the silverleaf whitefly, Bemisia argentifolii (Hemiptera: Aleyrodidae). Subtrop. Plant Sci. 2012, 64, 49–53. [Google Scholar]
- Sumaili, J.M.; Saidi, M.; Kamau, A.W. Controlling Greenhouse Whitefly with Erectomocerus eremicus Rose & Zolnerowich and crude plant extracts of garlic and chilli improves yield of tomato. NASS J. Agric. Sci. 2021, 3, 1–9. [Google Scholar]
- Rosulu, H.; ONI, M.; Ofuya, T.; Adebayo, R. Bioefficacy of chilli pepper Capsicum frutescens (L.) and it’s intercropping on the growth, yield and insect pest management of cowpea Vigna unguiculata (L.) WALP in the rain forest area of nigeria. J. Glob. Agric. Ecol. 2022, 13, 7–18. [Google Scholar]
- Taggar, G.; Singh, R. Evaluation of some nonconventional insecticides against whitefly Bemisia tabaci in black gram. Indian J. Entomol. 2020, 82, 294–297. [Google Scholar] [CrossRef]
- Kumari, S.; Sood, A.K.; Sharma, P.K. Toxicity of natural and organic insecticidal products to greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Aleyrodidae: Hemiptera). Himachal J. Agric. Res. 2022, 48, 307–311. [Google Scholar]
- Sood, A.; Ghongade, D. Safety Evaluation of Natural Products and Insecticides to Encarsia formosa Gahan, an Endoparasitoid of Trialeurodes vaporariorum; Westwood: London, UK, 2023. [Google Scholar]
- Chakraborti, S.; Chatterjee, P.; Das, A. Testing safer options to manage apical leaf curling in chilli. J. Entomol. Res. 2019, 43, 457–466. [Google Scholar] [CrossRef]
- Jain, D.; Kumar, H.; Chouhan, B.S.; Singh, B.; Sumeriya, H. Comparative efficacy of different bio and synthetic insecticides against sucking pests of okra (Abelmoschus esculentus L. Moench). Pharma Innov. J. SP 2021, 10, 719–727. [Google Scholar]
- Gebreselassie, N.; Abrahamsen, R.K.; Beyene, F.; Abay, F.; Narvhus, J.A. Chemical composition of naturally fermented buttermilk. Int. J. Dairy Technol. 2016, 69, 200–208. [Google Scholar] [CrossRef]
- Malik, A.U.; Hasan, M.U.; Khalid, S.; Mazhar, M.S.; Shafique, M.; Khalid, M.N.K.; Anwar, R. Biotic and abiotic factors causing rind blemishes in citrus and management strategies to improve the cosmetic quality of fruits. Int. J. Agric. Biol. 2021, 25, 298–318. [Google Scholar] [CrossRef]
- Gupta, K.K.; Aneja, K.R.; Rana, D. Current status of cow dung as a bioresource for sustainable development. Bioresour. Bioprocess. 2016, 3, 28. [Google Scholar] [CrossRef]
Treatments | Type | Concentration %/Dosage (mL/L) |
---|---|---|
ChPo20 | Chili pods | 10% w/v (20) |
ChPo40 | ,, ,, ,, (40) | |
ChPo60 | ,, ,, ,, (60) | |
CoDu50 | Cow dung | 50% w/v (50) |
CoDu100 | ,, ,, ,, (100) | |
CoDu150 | ,, ,, ,, (150) | |
BuMi50 | Buttermilk | 50% v/v (50) |
BuMi100 | ,, ,, ,, (100) | |
BuMi150 | ,, ,, ,, (150) | |
CoUr25 | Cow urine | 50% v/v (25) |
CoUr50 | ,, ,, ,, (50) | |
CoUr75 | ,, ,, ,, (75) | |
NeLe20 | Neem leaf | 10% w/v (20) |
NeLe40 | ,, ,, ,, (40) | |
NeLe60 | ,, ,, ,, (60) | |
CheIn6 | Malathion EC 50% | (6) |
Control | Water | …. |
Treatments | Average Adult Whiteflies/Leaf | Average Adult Whiteflies/Leaf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | |||||||||||||
D0 | D1 | D2 | D3 | D5 | D7 | D15 | D0 | D1 | D2 | D3 | D5 | D7 | D15 | |
ChPo20 | 53.8 a | 48.3 a | 47.1 ab | 41.1 a | 37.7 ab | 30.3 abc | 31.5 abc | 49.9 a | 45.5 a | 41.1 ab | 38.3 ab | 35.9 abc | 34.8 ab | 31.7 ab |
ChPo40 | 55.3 a | 46.9 a | 42.4 ab | 36.0 a | 35.1 ab | 27.0 abc | 24.1 bcd | 51.9 a | 38.9 a | 37.8 ab | 35.2 ab | 33.4 abc | 31.9 bc | 24.4 ab |
ChPo60 | 51.6 a | 42.7 a | 37.1 ab | 32.8 a | 30.7 ab | 22.2 bc | 21.6 bcd | 54.2 a | 32.9 ab | 33.3 b | 30.8 b | 28.6 bc | 27.7 bc | 22.6 b |
CoDu50 | 50.1 a | 49.5 a | 47.4 ab | 44.1 a | 38.6 ab | 34.6 ab | 32.9 ab | 49.2 a | 44.3 a | 41.7 ab | 38.8 ab | 36.4 abc | 33.4 bc | 31.3 ab |
CoDu100 | 51.5 a | 48.9 a | 43.8 ab | 40.1 a | 37.6 ab | 29.7 abc | 26.5 abc | 49.4 a | 41.1 a | 39.4 ab | 37.7 ab | 37.9 ab | 36.5 ab | 32.5 ab |
CoDu150 | 50.4 a | 47.5 a | 41.2 ab | 38.7 a | 33.6 bc | 28.5 abc | 27.6 abc | 51.1 a | 39.6 a | 36.5 ab | 33.5 ab | 33.1 bcd | 30.1 bc | 30.9 ab |
BuMi50 | 54.8 a | 48.6 a | 44.4 ab | 42.3 a | 37.1 ab | 30.6 abc | 26.8 abc | 52.1 a | 43.8 a | 41.2 ab | 40.4 ab | 37.9 abc | 33.0 bc | 27.7 ab |
BuMi100 | 55.2 a | 46.9 a | 42.2 ab | 41.1 a | 34.1 ab | 29.6 abc | 25.6 abc | 56.6 a | 40.4 a | 35.4 ab | 33.6 ab | 31.9 ab | 29.4 bc | 29.1 ab |
BuMi150 | 57.9 a | 43.5 a | 42.7 ab | 35.6 a | 31.8 ab | 26.9 abc | 23.9 abc | 54.1 a | 36.1 a | 33.0 b | 34.5 ab | 30.0 bcd | 25.7 bc | 25.8 ab |
CoUr25 | 50.1 a | 48.9 a | 43.2 ab | 39.5 a | 34.4 ab | 29.3 abc | 22.8 bcd | 50.5 a | 38.9 a | 35.0 ab | 33.6 ab | 31.1 bc | 31.3 bc | 27.0 ab |
CoUr50 | 53.9 a | 44.4 a | 41.6 ab | 34.1 a | 28.6 bc | 23.4 bc | 20.1 cd | 51.7 a | 37.3 a | 35.4 ab | 35.3 ab | 32.2 abc | 29.3 bc | 23.2 b |
CoUr75 | 56.2 a | 42.7 a | 35.2 ab | 28.8 b | 26.3 bc | 22.5 bc | 15.8 d | 53.5 a | 35.9 a | 33.2 b | 31.5 b | 29.1 abc | 25.1 bc | 20.6 b |
NeLe20 | 54.2 a | 44.2 a | 41.4 ab | 34.3 a | 30.7 bc | 26.3 abc | 23.0 bcd | 50.4 a | 38.2 a | 34.9 ab | 32.9 ab | 31.4 abc | 28.0 bc | 20.9 b |
NeLe40 | 51.9 a | 42.2 a | 35.8 ab | 32.7 a | 26.7 bc | 24.6 bc | 21.6 bcd | 53.7 a | 32.1 ab | 29.5 b | 29.5 b | 30.3 bc | 26.5 bc | 18.7 b |
NeLe60 | 55.1 a | 38.0 a | 29.7 b | 29.2 b | 25.8 c | 19.3 c | 15.7 d | 48.3 a | 30.7 ab | 28.9 b | 27.9 b | 23.7 c | 21.6 c | 16.9 b |
CheIn6 | 52.6 a | 40.7 a | 34.2 ab | 31.6 a | 26.4 bc | 21.9 bc | 22.6 bcd | 55.9 a | 35.0 a | 32.4 b | 30.7 b | 26.6 bc | 20.5 c | 20.5 b |
Control | 52.3 a | 50.2 a | 50.3 a | 44.8 a | 40.0 a | 38.4 a | 35.6 a | 54.2 a | 47.5 a | 48 a | 45.5 a | 43.8 a | 47.0 a | 40.4 a |
C.D. | 0.0 | 0.0 | 10.0 | 8.9 | 9.1 | 7.1 | 6.5 | 0.0 | 9.4 | 8.0 | 7.4 | 7.3 | 7.1 | 8.9 |
SEM± | 3.8 | 2.9 | 3.5 | 3.1 | 3.1 | 2.4 | 2.3 | 3.2 | 3.3 | 2.8 | 2.6 | 2.5 | 2.5 | 3.1 |
F-value | 1.0 | 1.5 | 2.3 | 2.6 | 2.3 | 3.9 | 5.6 | 1.1 | 2.1 | 3.2 | 2.9 | 3.6 | 6.3 | 3.9 |
p-value (5%) | 0.661 | 0.155 | 0.021 | 0.01 | 0.022 | 0.0004 | <0.0001 | 0.370 | 0.033 | 0.003 | 0.004 | 0.001 | <0.0001 | 0.001 |
Treatments | Average Adult Whiteflies/Leaf | Average Adult Whiteflies/Leaf | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | |||||||||||
D1 | D2 | D3 | D5 | D7 | D15 | D1 | D2 | D3 | D5 | D7 | D15 | |
ChPo20 | 22.9 abc | 18.2 abc | 13.5 bcd | 10.0 bc | 9.4 bcd | 12.0 b | 27.3 b | 28.4 ab | 23.5 bc | 21.7 ab | 17.7 b | 12.9 bcd |
ChPo40 | 18.9 bcd | 17.3 abc | 10.2 bcd | 7.4 bc | 7.3 bcd | 5.8 def | 22.4 bcd | 20.4 bcd | 16.7 bcd | 13.6 bcd | 12.8 bcd | 11.0 bcd |
ChPo60 | 17.1 cd | 11.3 bc | 9.2 bcd | 5.8 c | 4.8 bcd | 5.7 def | 20.2 bcd | 16.7 cde | 12.1 def | 10.1 def | 6.6 d | 5.1 efg |
CoDu50 | 27.5 ab | 21.1 ab | 16.2 b | 12.9 b | 10.8 bc | 10.4 bc | 26.5 bc | 23.9 bcd | 20.7 bcd | 21.3 bc | 18.8 b | 18.0 b |
CoDu100 | 21.6 abc | 16.9 abc | 13.4 bcd | 9.7 bc | 7.7 bcd | 7.3 cde | 28.8 b | 28.5 ab | 24.5 b | 18.9 bcd | 15.6 bc | 14.3 bc |
CoDu150 | 19.9 bcd | 12.6 bc | 11.1 bcd | 10.0 bc | 5.3 bcd | 3.8 efg | 27.9 b | 22.6 bcd | 19.6 bcd | 15.6 bcd | 11.3 bcd | 9.4 cde |
BuMi50 | 25.0 abc | 16.8 abc | 14.6 bcd | 10.7 bc | 11.8 b | 9.9 bcd | 29.9 ab | 26.9 abc | 23.1 bc | 23.7 ab | 18.5 b | 15.3 bc |
BuMi100 | 17.7 bcd | 13.7 bc | 13.2 bcd | 8.9 bc | 9.6 bcd | 7.0 cde | 26.8 bc | 24.1 bcd | 21.9 bc | 14.2 bcd | 12.7 bcd | 10.2 bcd |
BuMi150 | 21.5 abc | 12.1 bc | 11.8 bcd | 8.0 bc | 7.7 bcd | 4.2 efg | 23.3 bcd | 19.3 bcd | 16.3 bcd | 14.1 bcd | 12.7 bcd | 11.9 bcd |
CoUr25 | 20.6 abc | 10.1 bc | 9.4 bcd | 6.4 c | 7.3 bcd | 3.3 efg | 22.8 bcd | 18.9 bcd | 14.8 cde | 10.8 cde | 12.6 bcd | 13.3 bcd |
CoUr50 | 17.9 bcd | 9.4 c | 8.0 bcd | 6.1 c | 4.8 bcd | 4.0 efg | 20.5 bcd | 22.6 bcd | 15.2 cde | 14.4 bcd | 10.3 bcd | 10.4 bcd |
CoUr75 | 15.6 cd | 8.4 c | 6.5 cd | 4.9 c | 3.3 cd | 2.7 g | 17.8 bcd | 13.7 de | 8.9 efg | 6.7 h | 4.9 d | 5.6 def |
NeLe20 | 16.9 cd | 12.2 bc | 9.1 bcd | 7.0 c | 4.2 cd | 7.7 bcd | 19.0 bcd | 20.7 bcd | 16.6 bcd | 16.7 bcd | 12.0 bcd | 10.5 bcd |
NeLe40 | 15.3 cd | 13.2 bc | 7.1 cd | 5.7 c | 3.2 d | 3.6 efg | 16.6 bcd | 13.0 de | 9.9 efg | 8.5 def | 6.5 d | 5.1 efg |
NeLe60 | 13.7 d | 9.9 bc | 5.4 d | 5.2 c | 2.4 d | 2.8 fg | 13.5 cd | 10.7 e | 7.1 fg | 4.9 fg | 4.3 d | 3.4 fg |
CheIn6 | 16.2 cd | 16.1 bc | 10.3 bcd | 7.4 bc | 7.8 bcd | 5.2 efg | 11.6 d | 10.2 e | 6.6 g | 4.5 g | 7.5 cd | 2.9 g |
Control | 30.1 a | 27.6 a | 27.9 a | 26.2 a | 26.7 a | 21.8 a | 43.2 a | 37.4 a | 39.7 a | 32.a | 36.4 a | 36.4 a |
C.D. | 5.9 | 6.2 | 4.8 | 3.2 | 4.1 | 2.5 | 7.3 | 6.2 | 5.1 | 5.9 | 4.6 | 4.2 |
SEM± | 2.0 | 2.1 | 1.7 | 1.1 | 1.4 | 0.9 | 2.5 | 2.1 | 1.7 | 2.1 | 1.6 | 1.5 |
F-value | 5.7 | 5.3 | 9.6 | 14.9 | 15.4 | 31.1 | 8.5 | 11.1 | 21.5 | 13.1 | 22.1 | 25.6 |
p-value (5%) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatments | Average Adult Whiteflies/Leaf | Average Adult Whiteflies/Leaf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | |||||||||||||
D1 | D2 | D3 | D5 | D7 | D15 | Yield (kg/ha) | D1 | D2 | D3 | D5 | D7 | D15 | Yield (kg/ha) | |
ChPo20 | 8.4 bc | 8.5 bcd | 5.5 bcd | 6.9 bc | 5.8 bc | 8.8 bc | 820.8 e | 10.6 bcd | 9.7 b | 11.6 bc | 9.9 bc | 9.2 bc | 8.9 bc | 803.6 f |
ChPo40 | 5.5 bc | 5.9 bcd | 3.2 cd | 3.5 bcd | 2.3 cd | 5.5 bcd | 805.3 e | 7.5 bcd | 6.2 b | 9.3 bc | 9.3 bc | 8.3 bc | 7.2 bc | 812.9 fg |
ChPo60 | 4.7 bc | 3.6 cde | 2.2 cd | 2.2 bcd | 1.3 d | 2.9 de | 898.4 cd | 4.2 de | 3.6 b | 2.7 c | 3.2 e | 1.3 c | 2.1 f | 908.4 cd |
CoDu50 | 10.9 b | 9.0 bcd | 9.7 b | 7.5 b | 4.8 bcd | 10.6 b | 747.3 f | 15.3 bc | 13.4 b | 10.9 bc | 9.3 bc | 12.1 b | 10.8 bc | 923.8 c |
CoDu100 | 7.9 bc | 7.7 bcd | 4.1 bcd | 4.4 bcd | 3.3 bcd | 8.4 bcd | 751.9 f | 12.3 bcd | 11.1 bc | 11.9 bc | 11.9 bc | 10.4 b | 11.4 b | 769.7 g |
CoDu150 | 5.8 bc | 5.7 bcd | 2.4 cd | 2.5 bcd | 1.5 d | 5.2 bcd | 919.9 cd | 9.6 bcd | 8.1 b | 7.8 bc | 7.8 cde | 6.8 bc | 7.0 bc | 877.3 e |
BuMi50 | 8.8 bc | 9.4 b | 7.5 bc | 6.6 bcd | 4.8 bcd | 8.4 bcd | 879.0 d | 16.3 b | 12.6 b | 14.3 b | 14.0 b | 12.5 b | 9.3 bcd | 892.2 de |
BuMi100 | 6.0 bc | 4.2 bcd | 2.9 cd | 3.2 bcd | 4.0 bcd | 3.5 cde | 820.2 e | 10.3 bcd | 8.2 b | 11.3 bc | 10.5 bcd | 6.2 bc | 3.9 cde | 896.1 de |
BuMi150 | 3.6 bc | 3.3 de | 2.6 cd | 2.9 bcd | 10.9 b | 2.3 e | 912.6 cd | 8.8 bcd | 11.7 b | 5.8 bc | 5.8 cde | 3.6 bc | 3.1 ef | 992.4 b |
CoUr25 | 3.7 bc | 3.2 de | 3.6 bcd | 2.9 bcd | 2.2 cd | 6.4 bcd | 919.0 cd | 10.4 bcd | 8.1 b | 7.3 bc | 7.3 cde | 6.5 bc | 5.8 bcd | 880.4 de |
CoUr50 | 3.1 c | 2.7 e | 2.1 cd | 1.7 bcd | 1.4 d | 2.2 e | 905.7 cd | 6.9 cde | 4.7 b | 4.1 bc | 4.2 de | 2.4 bc | 3.6 efg | 1001.2 b |
CoUr75 | 2.7 c | 3.3 de | 2.2 cd | 1.9 bcd | 1.1 d | 2.1 e | 1082.4 a | 3.5 de | 2.5 b | 1.8 c | 1.8 e | 1.1 c | 1.3 f | 1061.6 a |
NeLe20 | 5.9 bc | 5.9 bcd | 3.7 bcd | 3.8 bcd | 3.2 bcd | 3.4 cde | 889.2 d | 10.7 bcd | 8.7 b | 7.4 bc | 6.8 cde | 4.6 bc | 4.6 bcd | 910.4 cd |
NeLe40 | 4.0 bc | 3.0 e | 2.9 cd | 1.4 cd | 1.5 d | 2.1 e | 891.8 d | 5.0 de | 3.3 b | 1.9 c | 1.9 e | 2.8 bc | 3.9 cde | 1013.3 b |
NeLe60 | 3.2 cd | 2.7 e | 1.2 d | 2.0 bcd | 0.7 d | 1.6 e | 999.2 b | 2.7 e | 2.7 b | 2.0 c | 2.0 e | 1.6 c | 1.3 f | 1051.0 a |
CheIn6 | 5.1 bc | 4.6 bcd | 5.9 bcd | 3.5 bcd | 3.9 bcd | 1.8 e | 988.0 bc | 3.9 de | 2.4 b | 2.5 c | 2.4 e | 1.5 c | 0.9 f | 1008.6 b |
Control | 24.5 a | 28.0 a | 28.0 a | 20.8 a | 21.1 a | 26.2 a | 570.9 g | 34.6 a | 32.5 a | 30.8 a | 32.6 a | 31.5 a | 33.4 a | 654.8 b |
C.D. | 4.0 | 3.0 | 3.5 | 4.1 | 5.6 | 3.0 | 13.4 | 5.1 | 6.2 | 5.7 | 5.9 | 5.4 | 3.9 | 11.7 |
SEM± | 1.4 | 1.0 | 1.2 | 1.4 | 1.9 | 1.0 | 11.1 | 1.8 | 2.1 | 2.0 | 2.0 | 1.9 | 1.4 | 7.4 |
F-value | 13.9 | 34.3 | 27.5 | 27.8 | 39.9 | 33.9 | 170 | 18.0 | 11.1 | 12.9 | 13.8 | 14.6 | 32.1 | 146.2 |
p-value (5%) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abubakar, M.; Yadav, D.; Koul, B.; Song, M. Efficacy of Eco-Friendly Bio-Pesticides against the Whitefly Bemisia tabaci (Gennadius) for Sustainable Eggplant Cultivation in Kebbi State, Nigeria. Agronomy 2023, 13, 3083. https://doi.org/10.3390/agronomy13123083
Abubakar M, Yadav D, Koul B, Song M. Efficacy of Eco-Friendly Bio-Pesticides against the Whitefly Bemisia tabaci (Gennadius) for Sustainable Eggplant Cultivation in Kebbi State, Nigeria. Agronomy. 2023; 13(12):3083. https://doi.org/10.3390/agronomy13123083
Chicago/Turabian StyleAbubakar, Mustapha, Dhananjay Yadav, Bhupendra Koul, and Minseok Song. 2023. "Efficacy of Eco-Friendly Bio-Pesticides against the Whitefly Bemisia tabaci (Gennadius) for Sustainable Eggplant Cultivation in Kebbi State, Nigeria" Agronomy 13, no. 12: 3083. https://doi.org/10.3390/agronomy13123083
APA StyleAbubakar, M., Yadav, D., Koul, B., & Song, M. (2023). Efficacy of Eco-Friendly Bio-Pesticides against the Whitefly Bemisia tabaci (Gennadius) for Sustainable Eggplant Cultivation in Kebbi State, Nigeria. Agronomy, 13(12), 3083. https://doi.org/10.3390/agronomy13123083